802.3 Ethernet Interface YANG Task Force (802.3cf) and RMON MIB (RFC 3635) (Also Power over Ethernet YANG)

Rob Wilton
Cisco

2017 Jan 30, IETF/IEEE liaison meeting
Updated 27 Feb 2017
Disclaimer

“At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.”

http://standards.ieee.org/ipr/disclaimers.html
Ethernet 802.3 YANG Task Force

• IEEE 802.3cf is defining Ethernet YANG models:
 E.g. basic Ethernet interface, Power over Ethernet, PON, Physical Link OAM (Ethernet in the first mile)

• A lot of content was previously defined in various MIBs (e.g. Etherlike MIB - RFC 2665)

• These MIBs were originally defined in IETF, but subsequently transitioned to IEEE 802.3 (via RFC 7448). Now defined in IEEE 802.3.1.
Ethernet 802.3 Clause 30 Background

• Clause 30 of IEEE 802.3 is an internal management API for all 802.3 standards compliant Ethernet devices.
• Hardware implementations of 802.3 must implement all of the appropriate parts of clause 30 (some parts are optional), if supporting management.
• Standard Ethernet management models (e.g. SNMP, YANG) are written to clause 30.
 o IEEE 802.3 standards models **must** only relate to fields defined in clause 30.
 o They can be combined, and not all fields must be used.
Ethernet 802.3 YANG – RMON MIB

• Some Ethernet related statistics are defined in the RMON MIB (RFC 2819)
 – Of particular interest is the Ethernet-Statistics group
• This MIB doesn’t only define Ethernet related data, and ownership was not transitioned to IEEE 802.3
• 802.3cf would like to define YANG for some of the Ethernet counters previously defined in the RMON MIB
Ethernet 802.3 YANG – RMON MIB

• Don’t plan on defining 802.3 YANG for all of RMON MIB Ethernet counters:
 – Only those that are supported by underlying Ethernet 802.3 clause 30 definitions (which may be extended)
 – Only those that are still relevant on modern hardware
 – 802.3cf proposes that some Ethernet related fields are defined in IETF RFCs (i.e. those that are not, or cannot, be tied back to IEEE 802.3 clause 30)
 – The proposal is to add them to the interfaces-ethernet-like module, this is being defined in draft-ietf-netmod-intf-ext-yang (I’m an author of this draft)
Ethernet 802.3 YANG – Questions

• Is anyone aware of any plans to convert the RM ON MIB to YANG?
 – If so which WG, NETMOD?
 – If this work was ever done, then the Ethernet related counters could just be left out.

• Does anyone (particularly from IETF) have any comments or concerns on this approach?
 – I intend to run this approach via the NETMOD WG as well.
Ethernet 802.3 YANG
Power over Ethernet (PoE)

• Similar issue, but in the reverse direction!
• 802.3.1 currently owns the PoE MIB (originally RFC 3621), but doesn’t have the underlying clause 30 definitions to support all of it.
 – The PSE/PD port information (pethPsePortTable) should be defined in 802.3cf
 – The power supply information (pethMainPseObjects, pethNotificationControlTable) should not be defined in 802.3cf
• It looks like some of the information being reported is quite closely aligned to the Entity MIB, and the associated Entity YANG model currently being developed in NETMOD.
• Propose talking with the authors of the Entity YANG draft and NETMOD to see if appropriate parts of the PoE YANG model could be aligned with it (and possibly also be standardized in NETMOD).
Thank you!
Backup Slides
IETF interface YANG statistics
(For reference. Every Ethernet interface always has these)

+--ro statistics
 +--ro discontinuity-time yang:date-and-time

 +--ro in-octets? yang:counter64 = (total good bytes, inc fcs chars)
 +--ro in-unicast-pkts? yang:counter64 = good uni pkts (not drop/error/
 +--ro in-broadcast-pkts? yang:counter64 = good bcast pkts unknown)
 +--ro in-multicast-pkts? yang:counter64 = good mcast pkts
 +--ro in-discards? yang:counter32 = e.g. QoS/ACL drops
 +--ro in-errors? yang:counter32 = e.g. Frame errors
 +--ro in-unknown-protos? yang:counter32 = e.g. Unknown proto drops.

+--ro out-octets? yang:counter64
+--ro out-unicast-pkts? yang:counter64
+--ro out-broadcast-pkts? yang:counter64
+--ro out-multicast-pkts? yang:counter64
+--ro out-discards? yang:counter32
+--ro out-errors? yang:counter32
Existing RMON MIB Ethernet counters
(For reference purposes only, defined in RFC 2819)

etherStatsDropEvents Counter32, // Drop due to lack of resources
etherStatsOctets Counter32, // Total bytes (good + bad)
etherStatsPkts Counter32, // Total pkts (good + bad)
etherStatsBroadcastPkts Counter32, // Total good bcast pkts
etherStatsMulticastPkts Counter32, // Total good mcast pkts
etherStatsCRCAlignErrors Counter32, // 64 <= pkt <= 1518, bad CRC/align
etherStatsUndersizePkts Counter32, // pkt < 64, good CRC
etherStats OversizePkts Counter32, // pkt > 1518, good CRC
etherStatsFragments Counter32, // pkt < 64, bad CRC
etherStatsJabbers Counter32, // pkt > 1518, bad CRC
etherStatsCollisions Counter32, // Collision estimate
etherStatsPkts64Octets Counter32, // 64 byte pkts
etherStatsPkts65to127Octets Counter32, // 65 – 127 byte pkts
etherStatsPkts128to255Octets Counter32, // 128 – 255 byte pkts
etherStatsPkts256to511Octets Counter32, // 256 – 511 byte pkts
etherStatsPkts512to1023Octets Counter32, // 512 – 1023 byte pkts
802.3 Ethernet Frame/Phy Counters
(Combined Etherlike MIB and RMON MIB)

This counters are in addition to the ietf-interfaces statistics.

interfaces-state/interface/ethernet/frame-statistics:
in-total-octets counter64, // Total received bytes (good + bad)
in-total-pkts counter64, // Total received pkts (good + bad)
in-pkts-errors-fcs counter64, // 64 <= pkt <= 1518, bad CRC or alignment
in-pkts-errors-runt counter64, // pkt < 64
in-pkts-errors-giant counter64, // pkt > MRU
out-total-octets counter64, // Total transmitted bytes (good + bad)
out-total-pkts counter64, // Total transmitted pkts (good + bad)
// May still be some generic input/output errors missing.

interfaces-state/interface/ethernet/phy-statistics:
in-errors-symbol counter64, // symbol errors
lpi {
 <- TODO, make LPI a feature.
in-lpi-transitions counter64, // lpi transitions
in-lpi-time decimal64, // lpi time (seconds, 6 d.p.)
out-lpi-transitions counter64, // lpi transitions
}