

Presentation Outline

* Enterprise Microservices Backgrounder
« Enterprise Infrastructure Architecture Impact
* Microservices on the Edge
» Edge Infrastructure Architecture Impact
* Microservices for Virtual Network Functions — New Potential Models
« Common Infrastructure Architecture for Microservices
» Containers, Resource Modelling, SLA Monitoring and Policy Abstractions

« Open Source/Standards Efforts Next Steps

Enterprise Microservices - Backgrounder

: 5

S
o
$~|||D g E % E //\\

vl
specialists

st 33993

|
L
10
4

.8 | B

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law

monolith - multiple modules in the same process microservices - modules running in different processes

Key Microservice Architecture Tenants

- Service split based on business need

Decentralized governance — different processes and data stores
Module reuse - share common modules such as logging, monitoring
Loosely coupled - scale independently, new service flexibility
Standardize the APIs across microservices

Adapted from: https://martinfowler.com/articles/microservices.html

Classic Application Architecture

Any organization will produce a design whose
structure is a copy of the organization's
communication structure -- Melvyn Conway, 1967

Enterprise Microservices:
Real-time Transaction Travel-booking Example

Individual services:
Seven tiles in the figure.

Interaction:

Arranged to show which microservices can interact
with other microservices.

bookFlights service — receives external customer
request.

Independent scale:

The services' different vertical heights represent how
they are used in different quantities in relation to one
another.

Loosely coupled — flexible to add new service:
Example -- add discount coupon service

Adapted from: https://www.ibm.com/developerworks/cloud/library/cl-bluemix-microservices-in-action-part-1-trs/

Infrastructure Architecture Impact — An Exemplary Deployment Model

Network Fabric

E.g. Leaf/Spine
switches with
small buffers

E.g. 3 Stage
leaf-spine Clos

/

Storage Intensive Nodes
e.g. Red Hat Ceph, Microsoft
Azure storage

—

Memory Intensive Nodes
e.g. SAP Hana, Microsoft SQL

Compute Intensive Nodes = General Purpose Nodes server, Big Data Apache Spark
HW Acceleration e.g: e.g. Machine Learning, 3D e.g. Wet?/MiddIe Tier .
Compute/Network — RDMA app“cation Streaming appllcatlons HW Acceleration e.g.. Compute
(RoCE, InfiniBand etc.), /Nfetyvork — RDMA (RoCE,
Network/Storage — x86 AES-NI, HW Acceleration e.g.: GPU, HW Acceleration e.g.: InfiniBand etc.), Nfetwork crypto
Intel Quick Assist, Cavium (ARM) customizable FPGA (Parallel ~ Network crypto — x86 AES- — x86 AES-NI, Cavium
ThunderX2, Customizable FPGA floating point etc.), RDMA NI, Cavium ThunderX2 (TLS VAT EIP2, el I (A
etc. (TLS, Secure storage etc.) (RoCE, InfiniBand etc.), etc.) etc. (TLS etc)

Takeaways

- Towards a Converged infrastructure -> Flexible node personality is important

- HW acceleration key for deterministic performance, especially for latency sensitive workloads -> Reconfigurable
components are highly desirable

Infrastructure Architecture Impact:
Real-time Transaction Travel-booking Example

General Purpose Nodes General Purpose Nodes Memory Intensive Nodes Storage Intensive Nodes
HW Acceleration e.g.: Network HW Acceleration e.g.: Compute HW Acceleration e.g.. Compute
crypto — x86 AES-NI, Cavium /Network — RDMA (RoCE, InfiniBand /Network — RDMA (RoCE, InfiniBand
ThunderX2 , Customizable FPGA etc. etc.), Network crypto — x86 AES-NI, etc.), Network /Storage crypto — x86
(TLS, IPSEC etc.) Cavium ThunderX2, Customizable AES-NI, Intel Quick Assist, Cavium
FPGA etc. (TLS etc.) ThunderX2, Customizable FPGA etc.
(TLS, Secure storage etc.)
1
Web Front End — Book épp Tier —'\(/Iireate , Database Tier — Create Storage Tier — Create
Flight Customer Input USOIED Wl esEreias Customer Trigger Customer Trigger

1 1
Network Fabric | :

App Tier —Adjust . Database Tier — Adjust . Storage Tier — Adjust
Inventory Microservice Inventory Trigger Inventory Trigger

Takeaways

- No. of hops proportional to number of microservices, bursty nature of data (Storage I/O block operations, HW Protocol (TCP
etc.) offload batching, CPU batch processing etc.) -> service assurance challenge for latency sensitive applications

- HW acceleration is key for deterministic performance -> challenge managing heterogeneity

- Dynamic service creation -> challenge managing dynamic scaling in a shared heterogenous infrastructure

- Database decoupling/scale/PACLEC requirements -> challenge in choosing the right database

Up Next

» Enterprise Microservices Backgrounder
» Enterprise Infrastructure Architecture Impact

* Microservices on the Edge
« Edge Infrastructure Architecture Impact ...

Edge Computing — Use Case Summary

Use cases from MEC -- http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
» Video analytics

Location services

* Internet-of-Things (loT)
« Examine in detail a low-latency service such as air quality measurement

* Augmented reality
* Optimized local content distribution

» Data caching

Edge Computing loT Microservices:

Real-time Analytics Air Quality Measurement Example

monitoring
spin up
new service
Service type 1
5 A .) ;
4 >E ¢ :\“ o):x‘ '
thresholds topic ! g a2 Ser\nce type 3

devices Xto Y

pollution events topic
devices Yto Z

Takeaways

- Microservices architecture key to distributed
computing across smart sensors, 10T
gateways, Edge DC, Cloud DC

- HW acceleration key to deterministic

Foobot

performance and reducing edge node footprint

Alerting Microservice: Trigger air quality alerts -
leverage statistics and machine learning jobs.

Weekly reporting Microservice: Weekly air quality
reports — leverage statistics job.

Event reporting Microservice: Process dynamic
events from Mobile and Web applications.

Data Reception, Storage & Transformation Job:
Receive raw sensor data from IoT device - store in
file system. Perform data validation and transform
data into (JSON) format.

Contextual Enrichment Job: Add device specific
data to transformed JSON format.

Statistics Job: Compute moving average/long-term
statistics.

Machine Learning Job: Dynamic
learning/refinement of air quality alter threshold.

Adapted from: http://airboxlab.github.io/streaming/microservices/iot/spark/real-time/2016/08/29/streaming-microservices.html

Infrastructure Architecture Impact:
Real-time Analytics 0T Air Quality Measurement Example

General Purpose Nodes Compute Intensive Nodes Memory Intensive Nodes Storage Intensive Nodes
e e (Spark ML etc.) (SQL/NoSQL DB, Spark (HDFS etc.)
crypro = x ASC t HW Acceleration e.g.: Storage crypto
ThunderX2, Customizable FPGA etc. e C.) _ 86 AES-NI, Intel Quick Assist
(TLS, IPSEC etc.) HW Accin.: x86 AVX, ARM Cortex Cavium ThunderX2, Customizable
M4 FPGA etc. (TLS, Secure storage etc.)
Al Tier - Machine
: Learning Job : o
Data Reception and . . Storage Tier — Statistics
P : HW Accln.: x86 AVX, ARM Analytics Tier — Statistics 9¢
Storage Microservice Cortex M4 St ina Job — Streaming Job
HW Accln.: MQTT (TLS etc.) réaming Jo HW Accln.: Secure storage,
decryption : Storage integrity check
: Network Fabric , :
I ' '
: : : Analytics Tier — Alertin Storage Tier — Machine
Alerting Microservice YK 9 J
Streaming Job Learning Job
HW Accln.: Machine Learning HW Accln.: Secure storage,
model evaluation Storage integrity check

Takeaways (similar to enterprise travel booking example)

- No. of hops proportional to number of microservices, bursty nature of data (Storage /O block operations, CPU batch
processing etc.) -> service assurance challenge for latency sensitive applications such as real-time alerting

Up Next

* Enterprise Microservices Backgrounder
« Enterprise Infrastructure Architecture Impact
 Microservices on the Edge
» Edge Infrastructure Architecture Impact

» Microservices for Virtual Network Functions — New Potential Models ...

Potential Microservices Architecture for NAT VNF

General Purpose Nodes Memory Intensive Nodes
Deployment Model HW Acceleration e.g.: Compute HW Acceleration e.g.: Compute
_ Read/Write intensive NAT tableS (ke -value pair /Network — RDMA (RoCE, InfiniBand /Network — RDMA (RoCE, InfiniBand
. . y etc.), SR-IOV etc)
hash table) Memory intensive nodes
- Packet processing - General purpose nodes, -
Optional NAT table caching
NAT Packet Processing NAT RAM Table Storage
Microservice — Microservice

Network Fabric

Adapted from: http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/hotmiddlebox/p49.pdf

Takeaways
- Benefits: Packet processing decoupled from database management
- Challenges: Tables are in RAM with higher Capex than classic solution, Additional network hop per

packet

Potential Microservices Architecture for Stateless Firewall VNF

Deployment Model _ General Purpose Nodes Storage Intensive Nodes
- Read intensive Firewall tables (key'Value pair HW Acceleration e.g.: Compute HW Acceleration e.g.: Compute

. c /Network — RDMA (RoCE, InfiniBand /Network — RDMA (RoCE, InfiniBand
hash tables for different + optionally TCAM) - etc), SR-IOV etc), Lookup - TCAM

Storage intensive nodes

- Packet processing - General purpose nodes
, Firewall table caching, counter batch update
- PACELC theorem in action — Firewall table
caching — consistency vs latency tradeoff

Firewall Packet Firewall Table Storage
Processing Microservice = (SSD etc.) Microservice

Network Fabric

Takeaways

- Benefits: Packet processing decoupled from database management, Lower Capex than classic
solution

- Challenges: Additional network hop per packet batch

Up Next

» Enterprise Microservices Backgrounder
» Enterprise Infrastructure Architecture Impact
* Microservices on the Edge
» Edge Infrastructure Architecture Impact
* Microservices for Virtual Network Functions — New Potential Models

« Common Infrastructure Architecture for Microservices

* Containers ...

Containers — FCAPS framework (1)

Key Microservice Tenant - App and Database separation
« Containers can be created/destroyed on the fly and ideal for apps
« Stateless apps are desirable for containers — does not preclude stateful applications (e.g. classic VNFs)

“‘F” in FCAPS — Fault Management
PACELC theorem availability vs consistency tradeoff

“C” in FCAPS — Configuration Management
* Open source implementations for microservice, e.g. Kubernetes/Mesos service implementation
» Open source HW acceleration integration — work in progress

“A” in FCAPS — Accounting Management for billed infrastructure
» Open source implementations for microservice, e.g. Kubernetes Datadog integration
» Open source HW acceleration integration — work in progress

Containers — FCAPS framework (2)

“P” in FCAPS — Performance Management

« PACELC theorem latency vs consistency tradeoff — Recall firewall VNF example

« SW isolation (memory, CPU, storage etc.) in a virtualized infrastructure — supported by Linux Kernel
 HW isolation/monitoring (cache etc.) — Intel RDT [Ref. 1] cache partitioning/monitoring etc.

« Performance Monitoring with HW acceleration (e.g. SR-IOV, RDMA) — work in progress

“S” in FCAPS — Security Management

« SW security — Linux Namespaces, SELinux, AppArmor etc.

« HW security - *difficult to match VMs*
« Containers (or processes) in VMs - two hardware indirection tables for virtual address translation
« Native Containers on Host OS - single hardware indirection table for virtual address translation
* Intel Clear Containers [Ref. 2] — HW security similar to VMs but other challenges

« HW security requirements — dictated by deployment model
« SaaS - Typical deployment model is native containers on Host OS
« PaaS/laaS — Typical deployment model is Containers (or processes) in VMs

Ref. 1: http://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
Ref. 2: https://clearlinux.org/features/intel%C2%AE-clear-containers

Containers and NFV (3)

Practical Deployment
 NFV deployments are starting out as SaaS
» Occasionally need to run third party apps

» Viable for a predominantly containerized deployment as long as there are no performance issues; third
party apps can be run as VMs

Next Steps

« Call for participation in NFVRG
* Expand on current draft -- https://www.ietf.org/archive/id/draft-natarajan-nfvrg-containers-for-nfv-03.txt
» Detailed security best practices leveraging Selinux, AppArmour etc.

Up Next

» Enterprise Microservices Backgrounder
» Enterprise Infrastructure Architecture Impact
* Microservices on the Edge
 Edge Infrastructure Architecture Impact
* Microservices for Virtual Network Functions — New Potential Models
« Common Infrastructure Architecture for Microservices
 Containers

« HW Acceleration Resource Modelling and SLA monitoring ...

HW Acceleration Resource Modelling (1)

Some of the important Modelling Aspects of HW Accelerators with constrained resources

HW capabilities: Features supported by the accelerator
» E.g. Crypto Acceleration (AES-NI, Intel QuickAssist etc.)
 Different crypto algorithms (AES-CBC etc.), Protocols (IPSEC, TLS etc.)

HW capacity: Operations per second
» E.g. Crypto Acceleration (Intel QuickAssist etc.) bandwidth

HW Topology: How the accelerators are interconnected from the CPU perspective
* E.g. Multi-GPU <-> CPU PCl-e interconnect topology

SW capabilities: OS Kernel driver and user space library integration
« E.g. Linux/Windows OS support, Libcrypto/Libssl library support

HW Acceleration Resource Modelling (2)

Small buffer switch can be modelled as a HW Accelerator — important for low-latency SLA
monitoring/enforcement for RDMA based-protocols such as RoCE

» As an example, OCP switch designs [Ref. 1] use Broadcom Trident (Alpha Networks SNX-60x0-486F
etc.) and Broadcom Tomahawk (Facebook Backpack, Edgecore Networks AS7300-54X etc.)

» Broadcom Trident family and Tomahawk family have different internal buffering architectures, i.e.
different HW topologies
« Trident has a single shared buffer pool for all ports
« Tomahawk has multiple buffer pools, one per port group

« Dynamic switch buffer pool utilization with topology knowledge is also a key metric for SLA monitoring
besides egress queue depth etc.

Ref. 1: http://www.opencompute.org/wiki/Networking/SpecsAndDesigns

HW Acceleration Resource Modelling (3)

HW Acceleration Resource Modelling is a key area where the community can bring value
» Can leverage the industry efforts on related topics

NFVRG Policy-based Resource Management -- https://datatracker.ietf.org/doc/html/draft-irtf-nfvrg-policy-based-resource-
management and several other drafts
OpenStack Enhanced Platform Awareness -- hitps://01.org/sites/default/files/pagelopenstack-epa_wp_fin.pdf

OpenStack Resource Providers -- https://specs.openstack.org/openstack/nova-specs/specs/newton/implemented/resource-
providers-allocations.html

OpenStack Policy and Platform-awareness — nttps:/iwww.openstack.org/videos/video/dell-developing-a-policy-driven-platform-
aware-and-devops-friendly-nova-scheduler; https://review.openstack.org/#/c/341341/7/specs/newton/approved/standardize-network-
capabilities.rst,unified

Kubernetes GPU Support -- https://github.com/kubernetes/community/blob/master/contributors/design-proposals/gpu-support.md

RDMA-based Distributed Tensorflow on Apache Spark -- nttps:/iyahooeng.tumblr.com/post/157196488076/open-
sourcing-tensorflowonspark-distributed-deep

Low-latency network SLA monitoring/enforcement is another key area for additional IETF contributions
« Can leverage several IETF drafts in the area

https://datatracker.ietf.org/doc/draft-krishnan-opsawg-in-band-pro-sla/?include_text=1
https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-03
More ...

Up Next

» Enterprise Microservices Backgrounder
» Enterprise Infrastructure Architecture Impact
* Microservices on the Edge

» Edge Infrastructure Architecture Impact
* Microservices for Virtual Network Functions — New Potential Models

« Common Infrastructure Architecture for Microservices
» Containers, HW Acceleration Resource Modelling and SLA monitoring

* Policy Abstractions ...

Policy Abstractions

The right infrastructure Policy Abstractions are key to using the HW acceleration resource modelling and
delivering low-latency SLAS

* The industry favored implementation model in OpenStack, Kubernetes etc.

« JSON/YAML for policy language
» Policies managed by the infrastructure orchestrator admin (OpenStack, Kubernetes etc. admin)

» This is a key area where the community and IETF can bring value
« Can leverage the industry efforts on related topics
* NFVRG Policy-based Resource Management -- https://datatracker.ietf.org/doc/html/draft-irtf-nfvrg-policy-based-
resource-management and several other drafts

* OpenStack Policy and Platform-awareness — https://www.openstack.org/videos/video/dell-developing-a-policy-driven-
platform-aware-and-devops-friendly-nova-scheduler; https://review.openstack.org/#/c/341341/7/specs/newton/approved/standardize-network-
capabilities.rst,unified

» Kubernetes Resource QOS -- https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-
gos.md

« SUPAWG -- https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model €tC.

Policy Abstractions — Example OpenStack JSON Policy

For "low-latency" workloads:

At least 8GB of free ram
At |east 8 free vCPUs
NUMA awareness

X86 AES-NI for crypto

['=', 'Suser.type', 'low-latency'],

['>’, "Shost.free ram mb’, 8%*1024],

['>’, ’"Shost.vcpus total’ - 'Shost.vcpus used',6K 8],
['=', 'Shost.crypto.x86-aes-ni', ‘True'],

[‘not’, ['=', '$host.numa_topology', 'None']]1]]

Up Next

* Enterprise Microservices Backgrounder
« Enterprise Infrastructure Architecture Impact
* Microservices on the Edge
» Edge Infrastructure Architecture Impact
* Microservices for Virtual Network Functions — New Potential Models
« Common Infrastructure Architecture for Microservices
» Containers, Resource Modelling, SLA Monitoring and Policy Abstractions

» Open Source/Standards Efforts Next Steps ...

« Containers — Contribution to NFVRG and beyond
Expand on current draft (https://www.ietf.org/archive/id/draft-natarajan-nfvrg-containers-for-nfv-03.txt) based on discussion points
Detailed security best practices leveraging Selinux, AppArmour etc.

 HW Acceleration Resource Modelling/Policy Abstractions - key value add area for community/IETF

NFVRG Policy-based Resource Management -- https://datatracker.ietf.org/doc/html/draft-irtf-nfvrg-policy-based-resource-management
and several other drafts

OpenStack Enhanced Platform Awareness -- https:/01.org/sites/default/files/page/openstack-epa_wp_fin.pdf

OpenStack Resource Providers -- https://specs.openstack.org/openstack/nova-specs/specs/newton/implemented/resource-providers-
allocations.html

OpenStack Policy and Platform-awareness — https://www.openstack.org/videos/video/dell-developing-a-policy-driven-platform-aware-and-
devops-friendly-nova-scheduler; https://review.openstack.org/#/c/341341/7/specs/newton/approved/standardize-network-capabilities.rst,unified
Kubernetes GPU Support -- https://github.com/kubernetes/community/blob/master/contributors/design-proposals/gpu-support.md
Kubernetes Resource QOS -- https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-qos.md
RDMA-based Distributed Tensorflow on Apache Spark -- https://yahooeng.tumblr.com/post/157196488076/open-sourcing-
tensorflowonspark-distributed-deep

SUPA WG -- https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model €tC.

« Low-latency network SLA monitoring/enforcement — key contribution area leveraging current work

https://datatracker.ietf.org/doc/draft-krishnan-opsawg-in-band-pro-sla/?include_text=1
https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-03

