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Rationale

No one in a clean state of mind can read VNFDs or NSDs easily
— And less relate them to general network definitions (or policies, or...)

There is no simple way of reusing tested VNFs to build more
elaborate VNFs

— Current descriptors are most focused on deployment and resource
management aspects
What is right in terms of orchestration goals
— But goes against one of the goodies of software design/production:
RE-USABILITY

Bridge the gap between network definition and NFV (and
SDN) orchestration

— And this is when intent starts to play
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How Would this Work?

Use NEMO as declarative network definition language
— Intent declarations
— https://wiki.opendaylight.org/view/NEMO:Main

VNFDs like those in OSM are used as low level blocks

NEMO allows us to describe how VNFs are used to build a network
service

— Caveat emptor: Service has many meanings here!

Forwarding graphs become more clear using the Connection
concept

— And suitable for parameterization by matching them to VNF interfaces

Reuse models
— Opening the door to recursiveness




What We Want

* Find a way to describe VNFs as close as possible to this graph

 And be able to translate this definition into an appropriate
orchestration script
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vl Bringing a VNFD into NEMO

e Reference the descriptor URI

— VNF producers are required to provide them to orchestrators

e Reference the VNF interfaces relevant for the NodeModel
— ldentifying them by the ConnectionPoint construct

CREATE NodeModel sample_vnf VNFD

https://github.com/nfviabs

/openmano.git/openmano/vnfs/examples/dataplaneVNF1l.yaml;
ConnectionPoint data_inside at VNFD:geO;
ConnectionPoint data_outside at VNFD:gel;
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/ Making It Recursive

* Use the imported NodeMode to build more complex functionality

 The Connection construct is used to define the service graph
— Referencing connection points in the composed VNFs

* And this becomes an NS (in ETSI terms) or a composed VNF, or...
— Recursion at any level you see fit

CREATE NodeModel complex_vnf;
Node input_vnf Type sample_vnf;
Node output_vnf Type shaper_vnf;
ConnectionPoint 1input;
ConnectionPoint output
Connection 1icon Type p2p Endnodes input, input_vnf:data_inside;
Connection ocon Type p2p Endnodes output, output_vnf:wan;
Connection intn Type p2p input_vnf:data_outside, output_vnf:lan;

e ————— +

| complex_vnf |

| F———————— + Fm———————— + |
input | | | | output

e + sample_vnf +-——————————- + shaper_vnf +-————— =

| I | | I I

| F———————— + Fm———————— + |

| data_inside data_outside lan wan |
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The Current Status

Changes to the NEMO syntax already implemented
— OpenDaylight Beryllium release

Extended parser with the necessary constructs

— NodeModel reference to VNFD (as a URI)
— ConnectionPoint construct referring to VNFD interfaces
— Connection able to use ConnectionPoint references

(Partial) support for recursion
— For NodeModel with VNFD
— Arbitrary NodeMode 1 composition being considered

Working in the translation to OSM descriptors
— Full recursion would imply OSM plus ODL => SDN/NFV convergence

We plan a demo for Prague
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