High-level VNF Descriptors using NEMO

draft-aranda-nfvrg-recursive-vnf-03

Pedro A. Aranda paranda@it.uc3m.es
Diego Lopez diego.r.lopez@telefonica.com
Stefano Salsano stefano.salsano@uniroma?2.it
Elena Batanero elena.batanerogarcia@telefonica.com

Rationale

No one in a clean state of mind can read VNFDs or NSDs easily
— And less relate them to general network definitions (or policies, or...)

There is no simple way of reusing tested VNFs to build more
elaborate VNFs

— Current descriptors are most focused on deployment and resource
management aspects
What is right in terms of orchestration goals
— But goes against one of the goodies of software design/production:
RE-USABILITY

Bridge the gap between network definition and NFV (and
SDN) orchestration

— And this is when intent starts to play

avs

How Would this Work?

Use NEMO as declarative network definition language
— Intent declarations
— https://wiki.opendaylight.org/view/NEMO:Main

VNFDs like those in OSM are used as low level blocks

NEMO allows us to describe how VNFs are used to build a network
service

— Caveat emptor: Service has many meanings here!

Forwarding graphs become more clear using the Connection
concept

— And suitable for parameterization by matching them to VNF interfaces

Reuse models
— Opening the door to recursiveness

What We Want

* Find a way to describe VNFs as close as possible to this graph

 And be able to translate this definition into an appropriate
orchestration script

7

vl Bringing a VNFD into NEMO

e Reference the descriptor URI

— VNF producers are required to provide them to orchestrators

e Reference the VNF interfaces relevant for the NodeModel
— ldentifying them by the ConnectionPoint construct

CREATE NodeModel sample_vnf VNFD

https://github.com/nfviabs

/openmano.git/openmano/vnfs/examples/dataplaneVNF1l.yaml;
ConnectionPoint data_inside at VNFD:geO;
ConnectionPoint data_outside at VNFD:gel;

7

C

/ Making It Recursive

* Use the imported NodeMode to build more complex functionality

 The Connection construct is used to define the service graph
— Referencing connection points in the composed VNFs

* And this becomes an NS (in ETSI terms) or a composed VNF, or...
— Recursion at any level you see fit

CREATE NodeModel complex_vnf;
Node input_vnf Type sample_vnf;
Node output_vnf Type shaper_vnf;
ConnectionPoint 1input;
ConnectionPoint output
Connection 1icon Type p2p Endnodes input, input_vnf:data_inside;
Connection ocon Type p2p Endnodes output, output_vnf:wan;
Connection intn Type p2p input_vnf:data_outside, output_vnf:lan;

e ————— +

| complex_vnf |

| F———————— + Fm———————— + |
input | | | | output

e + sample_vnf +-——————————- + shaper_vnf +-————— =

| I | | I I

| F———————— + Fm———————— + |

| data_inside data_outside lan wan |

avs

The Current Status

Changes to the NEMO syntax already implemented
— OpenDaylight Beryllium release

Extended parser with the necessary constructs

— NodeModel reference to VNFD (as a URI)
— ConnectionPoint construct referring to VNFD interfaces
— Connection able to use ConnectionPoint references

(Partial) support for recursion
— For NodeModel with VNFD
— Arbitrary NodeMode 1 composition being considered

Working in the translation to OSM descriptors
— Full recursion would imply OSM plus ODL => SDN/NFV convergence

We plan a demo for Prague

Acknowledgement

This work has been partially performed in the scope of the
SUPERFLUIDITY project, which has received funding from the European
Union Horizon 2020 research and innovation programme under grant
agreement No.671566 (Research and Innovation Action).

