

Network Coding in the SHINE ESA project IETF98, Chicago

Network Coding in the SHINE ESA project IETF98, Chicago

The SHINE Project

- SHINE: "Secure Hybrid In Network caching Environment"
- An end-to-end secure infrastructure for real-time streaming over integrated satellite terrestrial networks
- A combination of multicast and unicast communication scenarios where satellite links are exploited to support local in network caching

- SHINE: "Secure Hybrid In Network caching Environment"
- An end-to-end secure infrastructure for real-time streaming over integrated satellite terrestrial networks
- A combination of multicast and unicast communication scenarios where satellite links are exploited to support local in network caching

SHINE basic concepts

- Use coded multicast across the satellite-enabled trunks of the overall platform
- Use either MPEG-DASH or WebRTC within the edge access networks

Coded multicast

- Improves caching performance
 - thanks to the "multiplexing" of different content chunks into every transmitted frame
- Increases the security level of satellite enabled transmissions
 - by making them resilient to network attacks like snooping and eavesdropping

- Improves caching performance
 - thanks to the "multiplexing" of different content chunks into every transmitted frame
- Increases the security level of satellite enabled transmissions
 - by making them resilient to network attacks like snooping and eavesdropping

- Receives coded multicast frames
- Encapsulates received frames in DVB
- Transmits DVBencoded coded multicast frames to the receiving earth stations

Satellite content distribution core network

 Delivers DVBencoded coded multicast content to receiving earth stations

Receiving earth Station

- Receives DVBencoded coded multicast frames
- Reconstructs the original coded multicast frames by decoding the DVB stream
- Securely stores reconstructed coded multicast frames
- Acts as an edge cache towards end-users in the access network

What happens @ the edges?

- Secure streaming towards the endusers
- Two options will be investigated
 - MPEG-DASH with Common ENCryption (CENC)
 - WebRTC (Web Real Time Communications)

(Media Present Descrip manifor relate segm • Leve (Com

(Con ENC spe ma inf

We

MPEG-DASH edge cache

- Acts as a DASHenabled streaming server to deliver streaming content to the end-users
- Builds MPD
 (Media
 Presentation
 Description)
 manifests and
 related media
 segments
- Leverages CENC (Common ENCryption) specification to manage DRM information

Access Network

- Transfers MPD files via HTTP or other protocol
- Transfers MPEG-DASH bit-streams (chunks) via HTTP

MPEG-DASH client

- Retrieves MPD manifests
- Leverages

 Encrypted Media
 Extensions (EME)
 and Media Source
 Extension (MSE)
 APIs for DRM
 purposes
- Retrieves media segments via HTTP GET requests

WebRTC-enabled edge cache

- Acts as a WebRTC peer towards enduser browsers
- Leverages DTLS to protect data while in transit
- Leverages
 certificate
 fingerprint
 information to
 manage DRM-like
 access to content

WebRTC-enabled access network

- Securely transfers real-time streaming content via SRTP over DTLS
- Leverages
 WebRTC simulcast capabilities
 (combined with RTCP feedback) for adaptive streaming
- Optimizes QoS parameters (delay, jitter, packet loss)

WebRTC-enabled client

- Dynamically generates client certificates and associated fingerprints
- Leverages
 fingerprint
 information for
 proper
 management of
 client's identity
- Negotiates secure DTLS sessions with the server
- Accesses (if authorized) multimedia content via SRTP

VNCF @ IETF

draft-vazquez-nfvrg-netcod-function-virtualization-00

VNF	VNF	VNCF	VNF	
N: Virtual	+ NFV NFV Management and Orchestration			
 + +				
	 te St	 orage	Network	

Figure 1: ETSI NFV framework with one VNCF box as part of the set of available VNFs.

+	Network Function	ons (VNFs)	+		
	NFV Infrastructure (NFVI) Virtual Virtual Virtual				
+ +	Storage				

Figure 1: ETSI NFV framework with one VNCF box as part of the set of available VNFs.

SHINE and VNCF

- SHINE as a use case for the effective application of VNCF to a real-world scenario
- Preliminary work already ongoing:
 - planning to co-author a draft with Angeles Vazquez-Castro

VNCF-based SHINE scenario

- Caching as a Network Service (NS)
- SHINE orchestrator used to deploy/operate both core and edge cache nodes
- VNCF leveraged in the satellite part of the network to implement coded multicast transmissions

Questions?

Network Coding in the SHINE ESA project IETF98, Chicago

