PERC and WebRTC

draft-roach-perc-webrtc-00
IETF 98 — Chicago, lllinois, USA
PERC Working Group

Adam Roach

Purpose and Introduction

e Validate that the PERC model works with
WebRTC

» |dentify what additional protocol mechanisms
(if any) are required

» Current version is call flows (ladder diagrams)
with labeling for each steps

» Note: Key goal is to minimize the changes of
an already-WebRTC enabled endpoint; in
particular, this means using WebRTC identity

Important Notes

1. Key goal is to minimize the changes of an
already-WebRTC enabled endpoint; in
particular, this means using WebRTC identity

2. Diagrams show MD as a monolithic node. In
practice, this will probably have a controller
and a media handler, separated by a
proprietary protocol. Although these flows
may have bearing on this proprietary
protocol, we do not call them out.

demiy Servee 1) | ol e |) i) PetrCompecton | | dentity Senvice2)

1. GET /perc/room-identifier

2.200 OK (with app)

3. new KD();

4. kd, 1);

. 5. kd.getFingerprint();

6. fingerprint

7. POST /start-conf (KID fingerprint)
8. New Conference (KD fingerprint)
9. ack

10. 200 (MDD name and port)

1. kd. (mdNafe,port)

12.TLS setup

KD checks that MDD cert matches name, signed by known CA
MD checks that the client fingerprint matches
13. Profiles

14. resolve connect promise

15. new PC();

16. setidentity(id1);
17. createOffer(

18. GET /.well-k d
19.200
20. XHR POST /sign (ffer)
21. 200 (signed offer)

p-

22. resolve createAnsier() promise

23, POST fpercloffertrpom-identifier (with signdd offer)

24. signed offer

Creates answer, daes not yet send it

25. sign(offer, answer)

26. GET well-k dp
27.200 (with public key)
28. GET /well-k dp
29.200

30. XHR POST /sign (YD answer)
31. 200 (signed MD apswer)

32. signed answer, KIJ identit

3. signed answer

34.200 (signed answd)

35. setRemoteDs

36. GET /well-k p
37. 200 (with public Key)
PC validates signature with public key from Identity Service
38. DTLS setup
39. Tunnel(DTLS setug)
media
41. GET /perc/room-identifier
42.200 OK (with app)
43. new PC();
44. setidentity(id2);
45. createOffer(
46. GET /well-knownlidp-proxy/default
47.200
48. XHR POST /sign (affer)
49. 200 (signed offer)
50. resolve createAnswer() promise
51. POST /perclofferzipom-identifier (signed offer)
52. offer
53. sign(offer, answer)
54. GET /well-k p
55. 200 (with public key)
56. GET /.well-k Ip
57. 200

58. XHR POST /sign (1D answer)
59. 200 (signed MD apswer)

60. signed answer, KIJ identity

61. signed answer
62. 200 (signed answdr)

GET /.well-k ip
65. 200 (with public key)

1dP validates signature with public key from Identity Service
66. DTLS setup

67. Tunnel(DTLS setup)

68. Double e

4.1.1 Conference Establishment

Owner

Browser

K

D

HTTP Server

MDD

. GET /perc/room-ide

ntifier

A

. 200 OK (with app)

\ 4

. new KD();

. kd.setldentity(id1);

. kd.getFingerprint();

\a

. fingerprint

A

RV K= K2 B ¥ N HOS T SR

. POST /start-conf (Kl

D fingerprint)

A

10. 200 (MDD name ¢

nd port)

\ 4

8. New Conference (KD fingerprint)

9. ack

11. kd.connect(mdNa

me,port)

12.TLS setup

»

_13. Profiles

KD checks that MDD cert matches name, signed by known CA

| MD checks that the client fingerprint matches

14. resolve connect pf

omise

A

4.1.1 Conference Establishment

1.

The conference owner
loads the conference
application. Although not
required, information
sufficient to identify the
conference is frequently
sent as part of the URL.

The HTTP server returns
the conferencing web
application.

Owner

KD

Browser

HTTP Server

1. GET /perc/room-identifier

_ 2.200 OK (with app)

\4

4.1.1 Conference Establishment

6.

The conferencing web
application instantiates a
new Key Distributor (KD)
object. Upon instantiation,
this KD creates a new
certificate.

The conferencing web app
sets the owner’s identity on
the KD.

The application asks for the
certificate’s fingerprint...

...which the KD provides

Browser

Owner

KD

HTTP Server

1. GET /perc/room-identifier

\4

_ 2.200 OK (with app)

3. new KD();

\4

4. kd.setldentity(id1);

LA

5. kd.getFingerprint();

\A

_ 6. fingerprint

4.1.1 Conference Establishment

10.

The application initiates the
conference, including the KD cert
fingerprint as part of the initiation
message.

The HTTP server passes the KD
fingerprint along to the Media
Distributor (MD). This is used later

by the MD to ensure that the
correct KD 1s connecting to it.

The MD acknowledges creation of
a new conference. This
acknowledgement contains the
hostname and port that the MD is
listening on for the KD to connect
to.

The web server responds to the
conferencing web app with the
hostname of the Mlﬂoas well as the
port it is listening on for the KD to
connect.

/ner
wser

K

D

HTTP Server

MDD

. GET /perc/room-ide

ntifier

. 200 OK (with app)

\

A

. new KDJ();

»
'

. kd.setldentity(id1);

>

. kd.getFingerprint();

'

. fingerprint

A

N (oo [N =

. POST /start-conf (K

D fingerprint)

10. 200 (MDD name &

nd port)

\

8. New Conference (K

_9.ack

A

D fi

4.1.1 Conference Establishment

11.

12.

The application passes along
the MD name and port to the
KD object.

The KD initiates a TLS
connection to the MD. This
connection uses the protocol
defined in
[I-D.ietf-perc-dtls-tunnel]. The
KD verifies that the certificate
presented by the MD matches
the name it used to connect to
it, and that it chains up to a
trusted certificate authority. The
MD verifies that the client cert
provided by the KD matches the
fingerprint that it received
earlier from the HTTP server.

/ner

KD

HTTP Server

MDD

wser
—

1. GET /perc/room-ide

ntifier

_2.200 OK (with app)

\

3. new KD(); g
4. kd.setldentity(id1);

>

5. kd.getFingerprint();

'

_ 6. fingerprint
7. POST /start-conf (KI

D fingerprint)

_ 10.200 (MDD name g

nd port)

\

8. New Conference (K

_ 9. ack

D fi

<

11. kd.connect(mdNa

me,port)
12.TLS setup

\d

4.1.1 Conference Establishment

13. The MD returns its list of KD HTTP Server MDD
supported profiles, as
described in

1. GET /perc/room-identifier
_ 2.200 OK (with app)

\

[[-D.ietf-perc-dtls- B.new KDO;
) 4. kd.setldentity(id1)'b
tU nne I] . 5. kd.getFingerprint();
. . . _ 6. fingerprint
1 4. The KD ObJeCt I nd I Cates) 7. POST /start-conf (KD fingerprint) -

8. New Conference (KD fi

to the conferencing app
that the KD—MD - 10. 200 (MDD name and port)

11. kd.connecttmdName,port)

connection has been 12715 setup
Successfu I Iy eStabl lShed . KD checks that MDD cert matches name, signed by

_ 9. ack

»
'

_13. Profiles

_14. resolve connect promise

10

4.1.2 Owner Sends Offer to
Conference

Identity Service 1 e B HTTP Server
e Browser PeerConnection
———
1. new PC();

2. setldentity(id1);
3. createOffer();
<4 GET /.well-known/idp-proxy/default
5.200
¢ 6 XHR POST /sign (offer)
7. 200 (signed offer)

>
< 8. resolve createAnswer() promise

9. POST /perc/offer?room-identifier (with signec offer)

4.1.2 Owner Sends Offer to

Conference
Owner Owner . The COnferenCing Web
Browser PeerConnection applicati()n creates a
new WebRTC
- RTCPeerConnection
1. new ;

2. setldentity(id1); .
3. createOffer();

(PC) object to allow
sending and receiving
media.

. The conferencing web

app sets the owner’s
identity on the PC...

...and requests an offer
to be created.

12

4.1.2 Owner Sends Offer to

Conference
e ——— Owner owner 4. AS described In
L foser e [I-D.ietf-rtcweb-security-
arch], the PC requests the
| new PCO; IDP proxy code trom the
2. setidentityid1); | Identity Service...
3. createOffer(); 5. ...which it returns.
¢4.GET/.Well—known/ile—proxy/default 6. Upon being executed,
2. 20 , - the idp-proxy code sends
o0 XHRTOST fign offer) the offer to the Identity
7. 200 (signed offer) q Service
7. ...which verifies user’s

identity, the signs the
offer, and returns the
signed offer to the PC.

13

4.1.2 Owner Sends Offer to
Conference

8. The PC then returns

= .. emms= (hesigned offerto the
conferencing web

1. new PC(); q app.

2. setldentity(id1 N .

s ceseotent; 9. The conferencing
vn/idp-proxy/default Web app Sends the
L ofer " signed offer to the
e HTTP server to begin

. resolve createAnswer() promise . .
9. POST /perc/offer?ropm-identifier (with signe=c offer) eStabI ISh | ng the

media connection.

14

4.1.3 Conference Processes Owner
Offer

Identity HTTP

Service KD Server i

1. signed offer

\4

Creates answer, does not yet send it

2. sign(offer, answer)

<3 GET /.well-known/idp-proxy/default
4. 200 (with public k=e)

<2 GET /.well-known/idp-proxy/default
6.200 ~

¢7. XHR POST /sign (f\V/\ID answer)
8. 200 (signed MD an swer)

9. signed answer, KD identity

\4

_10. signed answer

15

4.1.3 Conference Processes Owner
Offer

KD

HTTP
Server

<2 sign(offer, answer)

1. signed offer

. The HTTP server sends

the signed offer to the
MD to allow it to start
setting up the media
connection.

. The MD creates an

answer to the received
offer, and sends both
offer and answer over
the MD-KD tunnel

connection.

16

4.1.3 Conference Processes Owner

3. Similar to the PC validation procedure

enity KD described in

fRiice — | [I-D.ietf-rtcweb-security-arch], the KD
requests the IDP proxy code from the
Identity Service based on the identity in
the offer...

4. ...which it returns. The KD uses the IDP
proxy code to validate the identity of the
party that generated the offer.

Similar to the PC signing procedure
3. GET /.well-known/idp-proxy/defaul described in _

~ : : [I-D.ietf-rtcweb-security-arch], the KD

4. 200 (with public ke) requests the IDP proxy code from the

5. GET /.well-known/idp-proxy/defaul ldentity Service...
< 00 6 ...which it returns.

> 7. Upon being executed, the idp-proxy
|« /- XHR POST /sign (MD answer) code sends the MD answer to the

: Identity Service...
8. 200 (signed MD + Y OCTVIE o .
(signe agswer) 8. ...which verifies KD’s identity, the signs

the MD answer, and returns the signed
MD answer to the KD.

< 2. sign(offer, 5

17

4.1.3 Conference Processes Owner
Offer

KD i wo 9. The KD sends the
signed MD answer
1. signed offer q baCk tO the MD.
2. sign(offer, answer) 1 O‘The MD Sends the
< : .
fip-proxy/defaul signed answer to the
2
/iflp-proxy/default HTTP SErver.
>
MD answer)
Q.,wer)

9. signed answer, KD jdentity

>
10. signed answer
¢

18

4.1.4 Owner Processes Answer

Identity Owner
Service Browser

Owner HTTP
PeerConnection Server

_ 1.200 (signed answer

2. setRemoteDescripti

dp-proxy/default

3. GET /.well-known/i
4. 200 (with public ke

)

»
>

pn(answer)

PC validates signature with public key from Identity Service

1. To complete the offer/answer exchange, the HTTP server returns the signed answer
(asserting the KD’s identity) to the owner’s conference web app.

2. The conference web app sets the remote description on the PC to the received answer

3. Using the identity validation procedure described in [I-D.ietf-rtcweb-security-arch],
the PC requests the IDP proxy code from the Identity Service based on the identity in
the answer...

4. ...which it returns. The PC uses the IDP proxy code to validate the identity of the party

that generated the answer.

19

4.1.5 Owner sets up media
connection

1.

Owner

The PC, USing the PeerConnection o o

addressing information
present in the answer,
negotiates a DTLS association 1. DTLS setup .
towards the MD. We make an <2 Tunnel(DTLS setup)
assumption that the SDP | _3.Double encrypted media____________|
generated by the MD contains a

port number that is unique to the conference, allowing it to correlate
the incoming DTLS messages to the correct KD.

The MD uses the tunneling protocol defined in
[1-D.ietf-perc-dtls-tunnel] to forward the DTLS setup messages
between the PC and the KD. These DTLS setup messages make use
of the mechanism described in [I-D.ietf-perc-srtp-ekt-diet] to
establish end-to-end keys for the media.

Using the mechanism described in [I-D.ietf-perc-double], the PC
nhow egins to send and received SRTP-encrypted media to and from
the MD.

20

4.1.6 Participant Joins Conference

HTTP Participant Participant Identity
Server Browser PeerConnection Service

< - GET /perc/room-identifier
2.200 OK (with appL

3. new PC();
4. setldentity(id2);
5. createOffer();

6. GET /.weIl-known/»ialp—proxy/default

7. 200
<

8. XHR POST /sign (cﬁfer)
<2200 (signed offer)

10. resolve createAnswer() promise

1. POST /perc/offer{room-identifier (signed offer)

21

4.1.6 Participant Joins Conference

HTTP Participant
Server Browser

< - GET /perc/room-ide

2.200 OK (with app) |

ntifier

1.

The conference owner
loads the conference
application. Although
not required,
information sufficient
to identify the
conference is
frecLuently sent as part
of the URL.

. The HTTP server

returns the
conferencing web
application.

22

4.1.6 Participant Joins Conference

Participant
Browser

erc/room-ide

< (with a99=

Participant
PeerConnection

ntifier

3. new PC();

P

4. setldentity(id2); g

5. createOffer();

3. The conferencing web

application creates a
new WebRTC
RTCPeerConnection
(PC) object to allow
sending and receiving
media.

The conferencing web
app sets the owner’s
identity on the PC...

...and requests an offer
to be created.

23

4.1.6 Participant Joins Conference

Participant
PeerConnection

Identity
Service

6. GET /.well-known/>i

7. 200
4

dp-proxy/default

8. XHR POST /sign ((ac

fer)

<2200 (signed offer)

6.

N

As described in
[I-D.ietf-rtcweb-security-
arch], the PC requests the
IDP proxy code from the
Identity Service...

...which it returns.

Upon being executed,
the idp-proxy code sends
the offer to the Identity
service...

...which verifies user’s
identity, the signs the
offer, and returns the
signed offer to the PC.

24

4.1.6 Participant Joins Conference

TTP Participant Participe
rver Browser PeerConne
< - GET /perc/room-identifier
2.200 OK (with app).
3. new PC();
>

4. setldentity(id2); g

5. createOffer();

1. POST /perc/offer?r

< 10. resolve createAnsy

pom-identifier (signed off

10.The PC then returns

11

the signed offer to the
conferencing web

app.

.The conferencing

web app sends the
signed offer to the
HTTP server to begin
establishing the
media connection.

25

4.1.7 Conference Processes
Participant Offer

ldenpty KD HTTP MD
Service Server e
1. offer
>
<2 sign(offer, answer)
<3 -proxy/default
4. 200 (wit V)
<2 GET /.well-known/idp- efa
6. 200

< XHR POST /sign (MD answer)

8. 200 (signed MD ans,wer) q
9. signed answer, KD |degtity
10. sifned anier}
< 'S

26

4.1.8 Participant Processes Answer

Service

Participant
Browser

J Participant J

PeerConnection

3. GET /.well-known/i
4. 200 (with public ke

moteDescripti

pn(answer)

IdP validates signature with public key from Identity Service

27

4.1.9 Participant sets up media
connection

S

MDD

Participant
PeerConnection

g 1. DTLS setup
<2 Tunnel(DTLS setfp)
3. e encrypted r

nedia

28

NEW STUFF WE NEED

29

New DOM API (not for this WQG)

interface RTCKeyDistributor : EventTarget {

void setIdentityProvider(DOMString provider,
optional RTCIdentityProviderOptions options);

Promise<DOMString> getIdentityAssertion();
readonly attribute Promise<RTCIdentityAssertion> peerldentity;
readonly attribute DOMString? idpLoginUrl;
readonly attribute DOMString? idpErrorInfo;
Promise<RTCCertificate> getCertificate();

Promise<void> connect(DOMString mdHost, unsigned short mdPort);

attribute EventHandler onfingerprintfailure;

30

New Tunnel Messages

|L 2. sign(offer, answer) | | | ! 9. signed answer, KD !dentity g
|l I { —
struct { struct {
opaque offer<l..2724-1>; opague answer<l..2724-1>;

opaque answer<l..2724-1>; [} SignAnswerAck;
} SignAnswer;

31

Next Steps

» Sanity checking approach, information flow

e |Is this all we need?

— | don't think we need anything special in the
SDP — support for PERC can be inferred from

double crypto suites.

* Probably need a co-author to help, if we
plan to progress this work

32

