
PERC and WebRTC

draft-‐roach-‐perc-‐webrtc-‐00	
IETF 98 – Chicago, Illinois, USA

PERC Working Group
Adam Roach

 1

Purpose and Introduction
•  Validate that the PERC model works with

WebRTC
•  Identify what additional protocol mechanisms

(if any) are required
•  Current version is call flows (ladder diagrams)

with labeling for each steps
•  Note: Key goal is to minimize the changes of

an already-WebRTC enabled endpoint; in
particular, this means using WebRTC identity

2

Important Notes
1.  Key goal is to minimize the changes of an

already-WebRTC enabled endpoint; in
particular, this means using WebRTC identity

2.  Diagrams show MD as a monolithic node. In
practice, this will probably have a controller
and a media handler, separated by a
proprietary protocol. Although these flows
may have bearing on this proprietary
protocol, we do not call them out.

3

Overview

Identity Service 2Participant
PeerConnection

Participant
BrowserMDHTTP

ServerKDOwner
PeerConnection

Owner
BrowserIdentity Service 1

68. Double encrypted media

67. Tunnel(DTLS setup)

66. DTLS setup

IdP validates signature with public key from Identity Service

65. 200 (with public key)

64. GET /.well-known/idp-proxy/default

63. setRemoteDescription(answer)

62. 200 (signed answer)

61. signed answer

60. signed answer, KD identity

59. 200 (signed MD answer)

58. XHR POST /sign (MD answer)

57. 200

56. GET /.well-known/idp-proxy/default

55. 200 (with public key)

54. GET /.well-known/idp-proxy/default

53. sign(offer, answer)

52. offer

51. POST /perc/offer?room-identifier (signed offer)

50. resolve createAnswer() promise

49. 200 (signed offer)

48. XHR POST /sign (offer)

47. 200

46. GET /.well-known/idp-proxy/default

45. createOffer();

44. setIdentity(id2);

43. new PC();

42. 200 OK (with app)

41. GET /perc/room-identifier

40. Double encrypted media

39. Tunnel(DTLS setup)

38. DTLS setup

PC validates signature with public key from Identity Service

37. 200 (with public key)

36. GET /.well-known/idp-proxy/default

35. setRemoteDescription(answer)

34. 200 (signed answer)

33. signed answer

32. signed answer, KD identity

31. 200 (signed MD answer)

30. XHR POST /sign (MD answer)

29. 200

28. GET /.well-known/idp-proxy/default

27. 200 (with public key)

26. GET /.well-known/idp-proxy/default

25. sign(offer, answer)

Creates answer, does not yet send it

24. signed offer

23. POST /perc/offer?room-identifier (with signed offer)

22. resolve createAnswer() promise

21. 200 (signed offer)

20. XHR POST /sign (offer)

19. 200

18. GET /.well-known/idp-proxy/default

17. createOffer();

16. setIdentity(id1);

15. new PC();

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

4

4.1.1 Conference Establishment
MDDHTTP ServerKDOwner

Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

5

4.1.1 Conference Establishment
1.  The conference owner

loads the conference
application. Although not
required, information
sufficient to identify the
conference is frequently
sent as part of the URL.

2.  The HTTP server returns
the conferencing web
application.

MDDHTTP ServerKDOwner
Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

6

4.1.1 Conference Establishment

3.  The conferencing web
application instantiates a
new Key Distributor (KD)
object. Upon instantiation,
this KD creates a new
certificate.

4.  The conferencing web app
sets the owner’s identity on
the KD.

5.  The application asks for the
certificate’s fingerprint…

6.  …which the KD provides

MDDHTTP ServerKDOwner
Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

7

4.1.1 Conference Establishment
7.  The application initiates the

conference, including the KD cert
fingerprint as part of the initiation
message.

8.  The HTTP server passes the KD
fingerprint along to the Media
Distributor (MD). This is used later
by the MD to ensure that the
correct KD is connecting to it.

9.  The MD acknowledges creation of
a new conference. This
acknowledgement contains the
hostname and port that the MD is
listening on for the KD to connect
to.

10.  The web server responds to the
conferencing web app with the
hostname of the MD as well as the
port it is listening on for the KD to
connect.

MDDHTTP ServerKDOwner
Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

8

4.1.1 Conference Establishment
11.  The application passes along

the MD name and port to the
KD object.

12.  The KD initiates a TLS
connection to the MD. This
connection uses the protocol
defined in
[I-D.ietf-perc-dtls-tunnel]. The
KD verifies that the certificate
presented by the MD matches
the name it used to connect to
it, and that it chains up to a
trusted certificate authority. The
MD verifies that the client cert
provided by the KD matches the
fingerprint that it received
earlier from the HTTP server.

MDDHTTP ServerKDOwner
Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

9

4.1.1 Conference Establishment
13. The MD returns its list of

supported profiles, as
described in
[I-D.ietf-perc-dtls-
tunnel].

14. The KD object indicates
to the conferencing app
that the KD-MD
connection has been
successfully established.

MDDHTTP ServerKDOwner
Browser

14. resolve connect promise

13. Profiles

MD checks that the client fingerprint matches

KD checks that MDD cert matches name, signed by known CA

12. TLS setup

11. kd.connect(mdName,port)

10. 200 (MDD name and port)

9. ack

8. New Conference (KD fingerprint)

7. POST /start-conf (KD fingerprint)

6. fingerprint

5. kd.getFingerprint();

4. kd.setIdentity(id1);

3. new KD();

2. 200 OK (with app)

1. GET /perc/room-identifier

10

4.1.2 Owner Sends Offer to
Conference

HTTP ServerOwner
PeerConnection

Owner
BrowserIdentity Service 1

9. POST /perc/offer?room-identifier (with signed offer)

8. resolve createAnswer() promise

7. 200 (signed offer)

6. XHR POST /sign (offer)

5. 200

4. GET /.well-known/idp-proxy/default

3. createOffer();

2. setIdentity(id1);

1. new PC();

11

4.1.2 Owner Sends Offer to
Conference

HTTP ServerOwner
PeerConnection

Owner
BrowserIdentity Service 1

9. POST /perc/offer?room-identifier (with signed offer)

8. resolve createAnswer() promise

7. 200 (signed offer)

6. XHR POST /sign (offer)

5. 200

4. GET /.well-known/idp-proxy/default

3. createOffer();

2. setIdentity(id1);

1. new PC();

1.  The conferencing web
application creates a
new WebRTC
RTCPeerConnection
(PC) object to allow
sending and receiving
media.

2.  The conferencing web
app sets the owner’s
identity on the PC…

3.  …and requests an offer
to be created.

12

4.1.2 Owner Sends Offer to
Conference

HTTP ServerOwner
PeerConnection

Owner
BrowserIdentity Service 1

9. POST /perc/offer?room-identifier (with signed offer)

8. resolve createAnswer() promise

7. 200 (signed offer)

6. XHR POST /sign (offer)

5. 200

4. GET /.well-known/idp-proxy/default

3. createOffer();

2. setIdentity(id1);

1. new PC();

4.  As described in
[I-D.ietf-rtcweb-security-
arch], the PC requests the
IDP proxy code from the
Identity Service…

5.  …which it returns.
6.  Upon being executed,

the idp-proxy code sends
the offer to the Identity
service…

7.  …which verifies user’s
identity, the signs the
offer, and returns the
signed offer to the PC.

13

4.1.2 Owner Sends Offer to
Conference

HTTP ServerOwner
PeerConnection

Owner
BrowserIdentity Service 1

9. POST /perc/offer?room-identifier (with signed offer)

8. resolve createAnswer() promise

7. 200 (signed offer)

6. XHR POST /sign (offer)

5. 200

4. GET /.well-known/idp-proxy/default

3. createOffer();

2. setIdentity(id1);

1. new PC();

8.  The PC then returns
the signed offer to the
conferencing web
app.

9.  The conferencing
web app sends the
signed offer to the
HTTP server to begin
establishing the
media connection.

14

4.1.3 Conference Processes Owner
Offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

15

4.1.3 Conference Processes Owner
Offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

1.  The HTTP server sends
the signed offer to the
MD to allow it to start
setting up the media
connection.

2.  The MD creates an
answer to the received
offer, and sends both
offer and answer over
the MD-KD tunnel
connection.

16

4.1.3 Conference Processes Owner
Offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

3.  Similar to the PC validation procedure
described in
[I-D.ietf-rtcweb-security-arch], the KD
requests the IDP proxy code from the
Identity Service based on the identity in
the offer…

4.  …which it returns. The KD uses the IDP
proxy code to validate the identity of the
party that generated the offer.

5.  Similar to the PC signing procedure
described in
[I-D.ietf-rtcweb-security-arch], the KD
requests the IDP proxy code from the
Identity Service…

6.  …which it returns.
7.  Upon being executed, the idp-proxy

code sends the MD answer to the
Identity Service…

8.  …which verifies KD’s identity, the signs
the MD answer, and returns the signed
MD answer to the KD.

17

4.1.3 Conference Processes Owner
Offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

9.  The KD sends the
signed MD answer
back to the MD.

10. The MD sends the
signed answer to the
HTTP server.

18

4.1.4 Owner Processes Answer

1.  To complete the offer/answer exchange, the HTTP server returns the signed answer
(asserting the KD’s identity) to the owner’s conference web app.

2.  The conference web app sets the remote description on the PC to the received answer
3.  Using the identity validation procedure described in [I-D.ietf-rtcweb-security-arch],

the PC requests the IDP proxy code from the Identity Service based on the identity in
the answer…

4.  …which it returns. The PC uses the IDP proxy code to validate the identity of the party
that generated the answer.

HTTP
Server

Owner
PeerConnection

Owner
Browser

Identity
Service

PC validates signature with public key from Identity Service

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. setRemoteDescription(answer)

1. 200 (signed answer)

19

4.1.5 Owner sets up media
connection
1.  The PC, using the���

addressing information���
present in the answer,���
negotiates a DTLS association���
towards the MD. We make an���
assumption that the SDP���
generated by the MD contains a���
port number that is unique to the conference, allowing it to correlate
the incoming DTLS messages to the correct KD.

2.  The MD uses the tunneling protocol defined in
[I-D.ietf-perc-dtls-tunnel] to forward the DTLS setup messages
between the PC and the KD. These DTLS setup messages make use
of the mechanism described in [I-D.ietf-perc-srtp-ekt-diet] to
establish end-to-end keys for the media.

3.  Using the mechanism described in [I-D.ietf-perc-double], the PC
now begins to send and received SRTP-encrypted media to and from
the MD.

MDKDOwner
PeerConnection

3. Double encrypted media

2. Tunnel(DTLS setup)

1. DTLS setup

20

4.1.6 Participant Joins Conference
Identity
Service

Participant
PeerConnection

Participant
Browser

HTTP
Server

11. POST /perc/offer?room-identifier (signed offer)

10. resolve createAnswer() promise

9. 200 (signed offer)

8. XHR POST /sign (offer)

7. 200

6. GET /.well-known/idp-proxy/default

5. createOffer();

4. setIdentity(id2);

3. new PC();

2. 200 OK (with app)

1. GET /perc/room-identifier

21

4.1.6 Participant Joins Conference
Identity
Service

Participant
PeerConnection

Participant
Browser

HTTP
Server

11. POST /perc/offer?room-identifier (signed offer)

10. resolve createAnswer() promise

9. 200 (signed offer)

8. XHR POST /sign (offer)

7. 200

6. GET /.well-known/idp-proxy/default

5. createOffer();

4. setIdentity(id2);

3. new PC();

2. 200 OK (with app)

1. GET /perc/room-identifier

1.  The conference owner
loads the conference
application. Although
not required,
information sufficient
to identify the
conference is
frequently sent as part
of the URL.

2.  The HTTP server
returns the
conferencing web
application.

22

4.1.6 Participant Joins Conference
Identity
Service

Participant
PeerConnection

Participant
Browser

HTTP
Server

11. POST /perc/offer?room-identifier (signed offer)

10. resolve createAnswer() promise

9. 200 (signed offer)

8. XHR POST /sign (offer)

7. 200

6. GET /.well-known/idp-proxy/default

5. createOffer();

4. setIdentity(id2);

3. new PC();

2. 200 OK (with app)

1. GET /perc/room-identifier

3.  The conferencing web
application creates a
new WebRTC
RTCPeerConnection
(PC) object to allow
sending and receiving
media.

4.  The conferencing web
app sets the owner’s
identity on the PC…

5.  …and requests an offer
to be created.

23

4.1.6 Participant Joins Conference
Identity
Service

Participant
PeerConnection

Participant
Browser

HTTP
Server

11. POST /perc/offer?room-identifier (signed offer)

10. resolve createAnswer() promise

9. 200 (signed offer)

8. XHR POST /sign (offer)

7. 200

6. GET /.well-known/idp-proxy/default

5. createOffer();

4. setIdentity(id2);

3. new PC();

2. 200 OK (with app)

1. GET /perc/room-identifier

6.  As described in
[I-D.ietf-rtcweb-security-
arch], the PC requests the
IDP proxy code from the
Identity Service…

7.  …which it returns.
8.  Upon being executed,

the idp-proxy code sends
the offer to the Identity
service…

9.  …which verifies user’s
identity, the signs the
offer, and returns the
signed offer to the PC.

24

4.1.6 Participant Joins Conference
Identity
Service

Participant
PeerConnection

Participant
Browser

HTTP
Server

11. POST /perc/offer?room-identifier (signed offer)

10. resolve createAnswer() promise

9. 200 (signed offer)

8. XHR POST /sign (offer)

7. 200

6. GET /.well-known/idp-proxy/default

5. createOffer();

4. setIdentity(id2);

3. new PC();

2. 200 OK (with app)

1. GET /perc/room-identifier

10. The PC then returns
the signed offer to the
conferencing web
app.

11. The conferencing
web app sends the
signed offer to the
HTTP server to begin
establishing the
media connection.

25

4.1.7 Conference Processes
Participant Offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

1. offer

26

4.1.8 Participant Processes Answer

Participant
PeerConnection

Participant
Browser

HTTP
Server

Identity
Service

IdP validates signature with public key from Identity Service

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. setRemoteDescription(answer)

1. 200 (signed answer)

27

4.1.9 Participant sets up media
connection

Participant
PeerConnection

MDDKD

3. Double encrypted media

2. Tunnel(DTLS setup)

1. DTLS setup

28

NEW STUFF WE NEED

29

New DOM API (not for this WG)

30

New Tunnel Messages
	
	
	
struct	 {	
	 	 opaque	 offer<1..2^24-‐1>;	 	
	 	 opaque	 answer<1..2^24-‐1>;	
}	 SignAnswer;	

	
	
	
struct	 {	
	 	 opaque	 answer<1..2^24-‐1>;	 	
}	 SignAnswerAck;	

31

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

MDHTTP
ServerKDIdentity

Service

10. signed answer

9. signed answer, KD identity

8. 200 (signed MD answer)

7. XHR POST /sign (MD answer)

6. 200

5. GET /.well-known/idp-proxy/default

4. 200 (with public key)

3. GET /.well-known/idp-proxy/default

2. sign(offer, answer)

Creates answer, does not yet send it

1. signed offer

Next Steps
•  Sanity checking approach, information flow
•  Is this all we need?
–  I don’t think we need anything special in the

SDP – support for PERC can be inferred from
double crypto suites.

•  Probably need a co-author to help, if we
plan to progress this work

32

