BGP Signaled Multicast

draft-zzhang-bess-bgp-multicast-01

Zhaohui (Jeffrey) Zhang, Juniper
Keyur Patel, Arrcus
IJsbrand Wijnands, Cisco
Arkadiy Gulko, Thomson Reuters

98th IETF, Chicago
Multicast: fear/dislike & necessity

• Many operators, especially DC ones, do not want to burden their infrastructure with multicast trees
 • They can live with ingress replication for multicast traffic
 • They do not like the following aspects of multicast trees
 • Per-tree state
 • PIM soft-state refresh overhead
 • PIM-ASM complexity due to shared-to-source tree switch
 • Yet another protocol to set up the trees

• Nonetheless, some operators have a lot of mission-critical multicast traffic, and still need the efficiency gains of having multicast trees in the infrastructure
 • at least until BIER arrives \(^\wedge\)
BGP Signaled Multicast: What & Why

- Use BGP to signal multicast
 - Use as a replacement for PIM
 - \((s,g)/(*,g)\) unidirectional/bidirectional trees
 - Optionally with MPLS data plane
 - Use as a replacement for mLDP
 - Use mLDP FEC \(<\text{root, opaque}_\text{value}>\) to identify tree

- Why?
 - Remove PIM-ASM complexities & soft state
 - PIM-Port only removed soft state and deployment has been limited
 - PIM-SSM removes ASM complexities but requires good source discovery methods
 - Consolidate to BGP signaling
 - Single, scalable protocol for unicast/multicast, labeled/unlabeled
How to signal tree/tunnel using BGP

- Use receiver-initiated “joins” - Leaf A-D routes in C-MCAST SAFI
 - Propagated over hop by hop EBGP/IBGP sessions or through RRs
- Each node determines upstream hop by using same RPF procedure as PIM/mLDP
- Leaf A-D routes serve the purpose of PIM Join or mLDP P2MP label mapping
 - NLRI encodes (s,g)/(*,g) or mLDP FEC
 - Route Target identifies Upstream node
 - Routes processed by upstream node and not propagated further
 - A new route with different NLRI is originated for the next node in the tree
 - Tunnel Encapsulation Attribute carries forwarding information
 - In case of labeled tree/tunnel, or
 - If downstream/upstream are not directly connected
- For MP2MP labeled tunnels, S-PMSI/Leaf A-D routes serve the purpose of mLDP MP2MP-U/MP2MP-D label mappings
- For ASM, source specific trees are set up after source discovery via Source Active (SA) A-D routes, avoiding RP/shared-trees
Signal mLDP Tunnels

• Signal entire or part of an mLDP tunnel using BGP
 • Transition from an existing mLDP deployment w/o changing anything else
 • Reuse mLDP tunnel identification
• Where a P2MP Label Mapping or an MP2MP-D Label Mapping would be sent, a Leaf A-D route is sent instead
 • Unsolicited, but as if an S-PMSI had been received
• Where an MP2MP-U Label Mapping would be sent, an S-PMSI A-D route is sent instead
 • Only MP2MP-D FEC is used
 • Route Targets correspond to the set of downstream neighbors
Signal (s,g)/(*,g) Trees

• Where a PIM join would be sent, a Leaf A-D route is sent instead
 • Unsolicited, but as if an S-PMSI had been received

• In case of labeled bidirectional trees, an S-PMSI A-D route is sent to signal the label for upstream path

• (*.g) unidirectional tree allowed when sources can send traffic to root of the tree w/o intersecting the tree
 • Source tree is not used in this case
Source Discovery for ASM

• First Hop Routers (FHRs) advertise SA routes
 • Upon receiving locally originated traffic
• Last Hop Routers (LHRs) receive SA routes and join source specific trees
• Similar to MSDP method, but:
 • Extended from among RPs to among FHRs and LHRs
 • With BGP advantages:
 • No periodical refreshing
 • No RPF checks for SA propagation
 • RRs and Route Target Constrain (RTC) can be used to avoid flooding SA routes
 • FHRs attach a RT that encodes the group address and advertise to RRs
 • LHRs advertise RT Membership NLRIs that encode the above mentioned RT for groups that they’re interested in
 • SAs are only advertised to interested LHRs due to the RTC mechanism
Incremental Transition

• For mLDP or PIM-SSM replacement, transition can independently happen at any node
 • If the upstream neighbor can support BGP multicast signaling, then use it
• For PIM-ASM replacement, first upgrade the RPs so that they can advertise SA routes. After that each node can independently transition
 • If an upgraded node receives (*,g) PIM join, and its upstream supports BGP multicast signaling, it behaves as if it were a LHR
 • Terminate (*,g) join
 • Send RT Membership NRLI corresponding to the group
 • Establish source trees after receiving corresponding SA routes.
Next steps

• Add details like handling of neighbors not directly connected
• Seek comments and feedback