gRPC Network Management Interface

draft-openconfig-rtgwg-gnmi-spec-00

Rob Shakir, Anees Shaikh, Paul Borman, Marcus Hines, ] E T E

Carl Lebsack, Chris Morrow (Google) IETE 98
RTGWG



What is gNMI ?

specification of RPCs and behaviors for managing state on a network device

supports state retrieval (via streaming telemetry or snapshots) and state
modification (configuration)

built on the open source gRPC framework (QRPC C gNMI) "GRPC
e gNMI defines a gRPC service using protobuf IDL r?
designed to carry any tree-structured data (not limited to YANG-modeled data)

e addressable via paths
e has well-defined serialization



https://developers.google.com/protocol-buffers/docs/overview
http://www.grpc.io/

Why gNMI ?

provides a single service for state management (streaming telemetry and
configuration)

built on a modern standard, secure transport and open RPC framework with
many language bindings

supports very efficient serialization and data access
e 3x-10x smaller than XML

offers an implemented alternative to NETCONF, RESTCONF, ...
e carly-release implementations on multiple router and transport platforms
e reference tools published by OpenConfig



Disclaimers

draft-openconfig-rtgwg-gnmi-spec is aninformational draft
e normative reference is published in github
e share operational requirements and design considerations with community
e provide awareness of related work outside IETF

is gNMI now the ‘OpenConfig standard’ ?

e NO
e OpenConfig operators use, or plan to use, various RPC frameworks including
gNMI/gRPC, NETCONF, RESTCONF, ...


https://github.com/openconfig/reference/tree/master/rpc/gnmi

The gNMI service

option (gnmi_service) = "0.2.0";

service gNMI {

// Retrieve the set of capabilities supported by the target.

rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);

// Retrieve a snapshot of data from the target.

rpc Get(GetRequest) returns (GetResponse);

// Modify the state of data on the target.

rpc Set(SetRequest) returns (SetResponse);

// Subscribe to a stream of values of particular paths within the data
tree.

rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);

}



Some basic message types

— message Path {
// An element of the path.
repeated string element = 1;
// Label to disambiguate the path. . e .
string origin = 2; gNMI paths use a simplified variant of

d 3 XPATH syntax

paths encoded as an array of path
components

message Value {
bytes value = 1;
Encoding type =

message Update

multiple supported encodings, incl. JSON,
2; JSONL_IETF, PROTO, ASCII, BYTES

L}

message Error {
// Canonical gRPC error code.
uint32 code = 1;

// Human readable error.

string message = 2;

// Optional additional information.
google.protobuf.Any data = 3;

reuse gRPC canonical errors -- spec maps
behaviors onto these error codes



Capabilities RPC

message CapabilityResponse { interrogate device to learn which models and

repeated ModelData supported _models = 1; data encodings are supported
repeated Encoding supported_encodings = 2;

string gNMI_version = 3;

}

message ModelData { model data intended to reference entries in a YANG
string name = 1; catalo
string organization = 2; J
string version = 3; e.g., draft-openconfig-netmod-model-catalog

}



Set RPC

message SetRequest {
Path prefix = 1;
repeated Path delete = 2;
repeated Update replace = 3;
repeated Update update = 4;

message SetResponse {
Path prefix = 1;

repeated UpdateResult response

Error message = 3;

}

requests in a Set RPC are considered part
of a single transaction

response includes results for each element
of the request

top-level error message to indicate overall
success / failure



Subscribe RPC (streaming)

message SubscribeRequest { subscriptions primarily consist of a path and a mode
oneof request { e modes: SAMPLE, ON_CHANGE, TARGET_DEFINED

SubscriptionList subscribe = 1;
e subscribe RPC supports streaming, polling, and get-once
} } operation
message Subscription {
Path path = 1;
SubscriptionMode mode = 2;
uint64 sample_interval = 3

bool suppress_redundant = Z;
uint64 heartbeat_interval = 5;
,ﬁessage SubscribeResponse { targets send streaming notifications (update or delete
oneof response { values)
Notification update = 1; L
bool sync_response = 3; notification includes the path and a timestamp
Error error = 4;

}
} 9



Ongoing / upcoming work on gNMI

current gNMI definition supports only NMS-initiated connections to target devices
e extend to “dial-out” to support target-initiated connections

new services for operational commands
e e.g.ping, traceroute, reboot, clear BGP session, update firmware, ...
e considering as a set of microservices, separate from main gNMI service

native Protobuf value encoding
e avoid type-casting to strings during encoding

10



Additional material



gRPC : an open, multi-platform RPC framework

gRPC is a open source version of Google's microservice communication framework

gRPC leverages standard HTTP/2 as its transport layer
e binary framing, header compression
e Dbidirectional streams, server push support
e connection multiplexing across requests and streams

gRPC features "G R P C-;

e load-balancing, app-level flow control, call-cancellation
e serialization with protobuf (efficient wire encoding) @grpcio
e multi-platform, many supported languages

e open source, under active development

WWW.grpc.1io

see draft-kumar-rtgwg-grpc-protocol-00 for protocol details .


http://www.grpc.io/
https://twitter.com/grpcio
https://twitter.com/grpcio
http://www.grpc.io
http://www.grpc.io

Streaming telemetry and gRPC

Streaming telemetry benefits over SNMP

devices stream data based on a specified frequency or upon state change

data is sent as soon as it is available, reducing the need to buffer

no single large request for all data (unlike SNMP polling)

data sent incrementally, e.g., only for those data items that have changed

ability to distribute the telemetry sources (e.g., directly to linecards)

users issue subscription requests via RPC for data of interest

data exported in a well-structured, common format, e.g., based on YANG models
device and collector communicate over a secure, authenticated, reliable channel

13



