RIFT: A NOVEL DC FABRIC ROUTING Protocol

DRAFT-PRZYGIENDA-RIFT

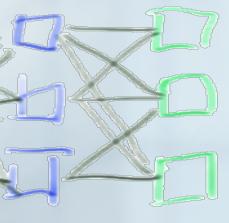
IETF '98

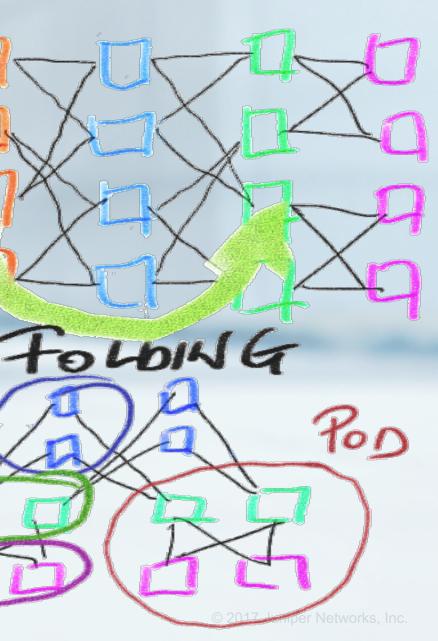
JUNPER

- DC FABRIC ROUTING IS A SPECIALIZED PROBLEM
- RIFT: A NOVEL ROUTING ALGORITHM FOR DC FABRIC UNDERLAY

/I Fabric

DC FABRIC ROUTING: A SPECIALIZED PROBLEM


- CLOS/FAT-TREE TOPOLOGY VARIATIONS
- CURRENT STATE OF DYNAMIC DC ROUTING
- DYNAMIC DC ROUTING REQUIREMENTS MATRIX



CLOS VARIATION TOPOLOGIES

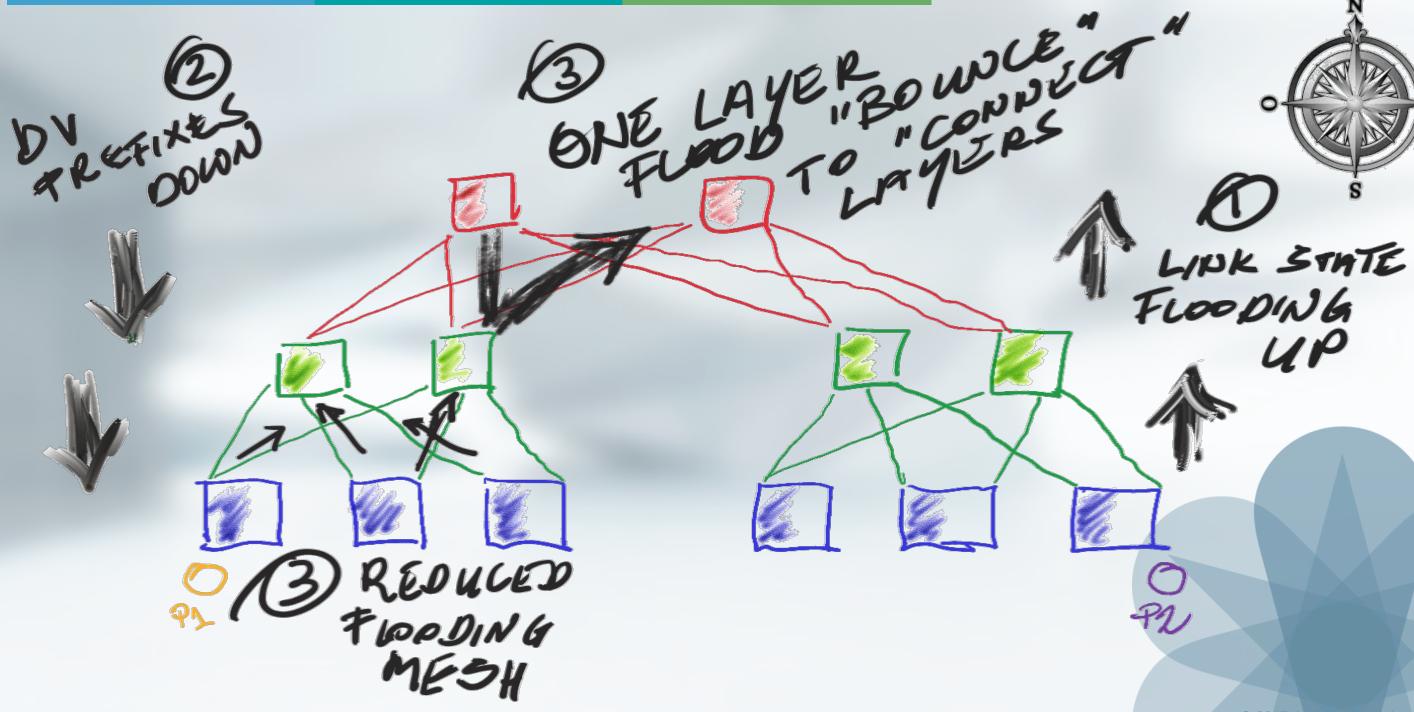
- CLOS OFFERS WELL-UNDERSTOOD
 BLOCKING PROBABILITIES
- WORK DONE AT AT&T (BELL SYSTEMS) IN 1950s FOR CROSSBAR SCALING
- FULLY CONNECTED CLOS IS DENSE AND EXPENSIVE
- DATA CENTERS TODAY TEND TO BE
 VARIATIONS OF "FOLDED FAT-TREE", I.E. Spine
 INPUT STAGES ARE SAME AS OUTPUT
 STAGES AND CLOS IS "PARTIAL"
 MCGR

KOGE

CURRENT STATE OF AFFAIRS

- SEVERAL OF LARGE DC FABRICS USE E-BGP WITH BAND-AIDS AS IGP (RFC7938)
 - "LOOPING PATHS" (ALLOW-AS)
 - "RELAXED MULTI-PATH ECMP"
 - AS NUMBERING SCHEMES TO CONTROL "PATH HUNTING" VIA POLICIES
 - ADD PATHS TO SUPPORT MULTI-HOMING, ECMP ON EBGP
 - EFFORTS TO GET AROUND 65K ASES AND LIMITED PRIVATE AS SPACE
 - PROPRIETARY PROVISIONING AND CONFIGURATION SOLUTIONS, LLDP EXTENSIONS
 - "VIOLATIONS" OF FSM LIKE RESTART TIMERS AND MINIMUM-ROUTE-ADVERTISEMENT TIMERS
- OTHERS RUN IGP (ISIS)
- YET OTHERS RUN BGP OVER IGP (TRADITIONAL ROUTING ARCHITECTURE)
- Less Than More Successful Attempts @ Prefix Summarization, Micro- and Black-Holing
 - Works Better for Single-Tenant Fabrics Without LAN Stretch or VM Mobility

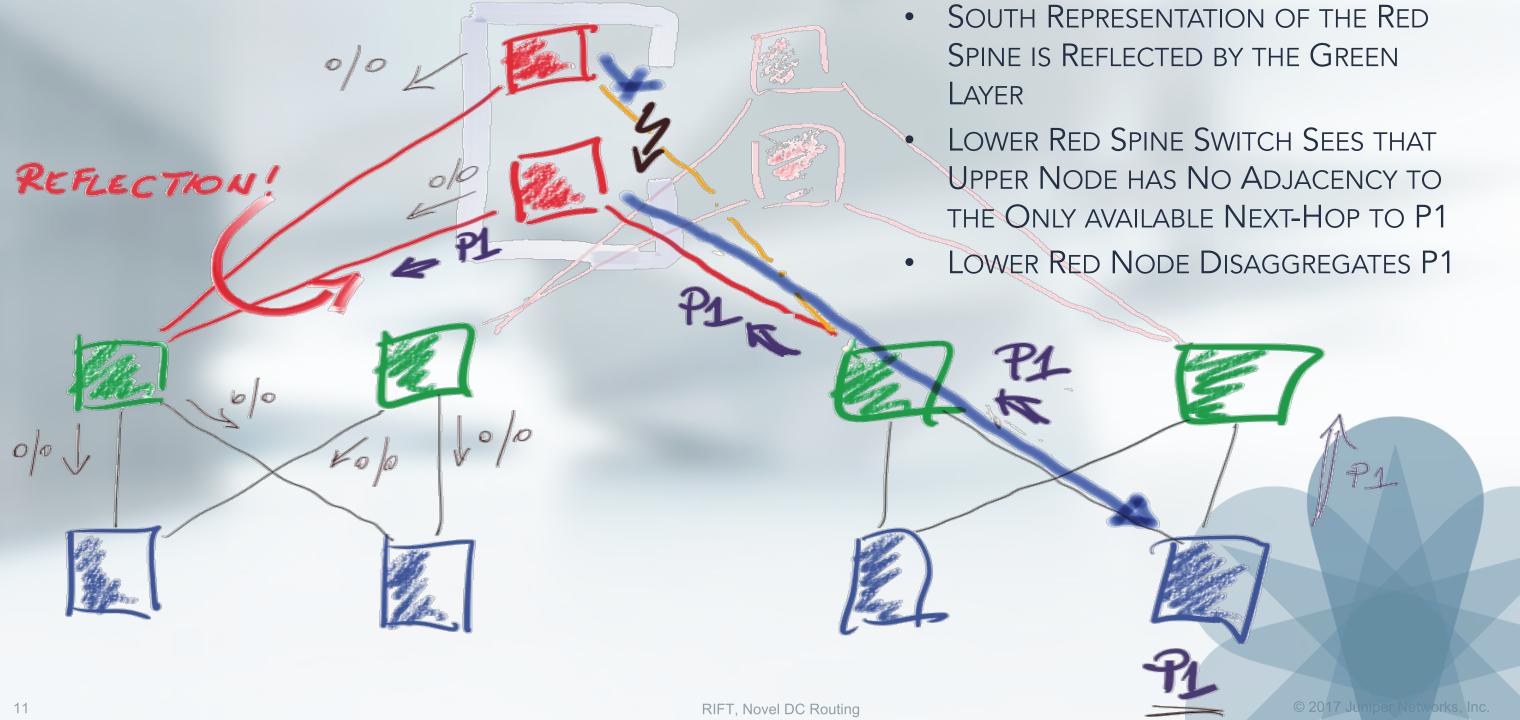
DYNAMIC DC ROUTING REQUIREMENTS BREAKDOWN (RFC7938+)


Problem / Attempted Solution	BGP modified for DC (all kind of "mods")	ISIS modi (RFC7356
Link Discovery/Automatic Forming of Trees/Preventing Cabling Violations	<u>.</u>	
Minimal Amount of Routes/Information on ToRs	1	4
High Degree of ECMP (BGP needs lots knobs, memory, own-AS-path violations) and ideally NEC and LFA	<u>.</u>	
Traffic Engineering by Next-Hops, Prefix Modifications	 ✓ 	
See All Links in Topology to Support PCE/SR	<u>.</u>	
Carry Opaque Configuration Data (Key-Value) Efficiently	×	4
Take a Node out of Production Quickly and Without Disruption	×	
Automatic Disaggregation on Failures to Prevent Black-Holing and Back-Hauling	×	
Minimal Blast Radius on Failures (On Failure Smallest Possible Part of the Network "Shakes")	×	
Fastest Possible Convergence on Failures	×	
Simplest Initial Implementation		

RIFT: NOVEL DYNAMIC ROUTING ALGORITHM FOR CLOS UNDERLAY

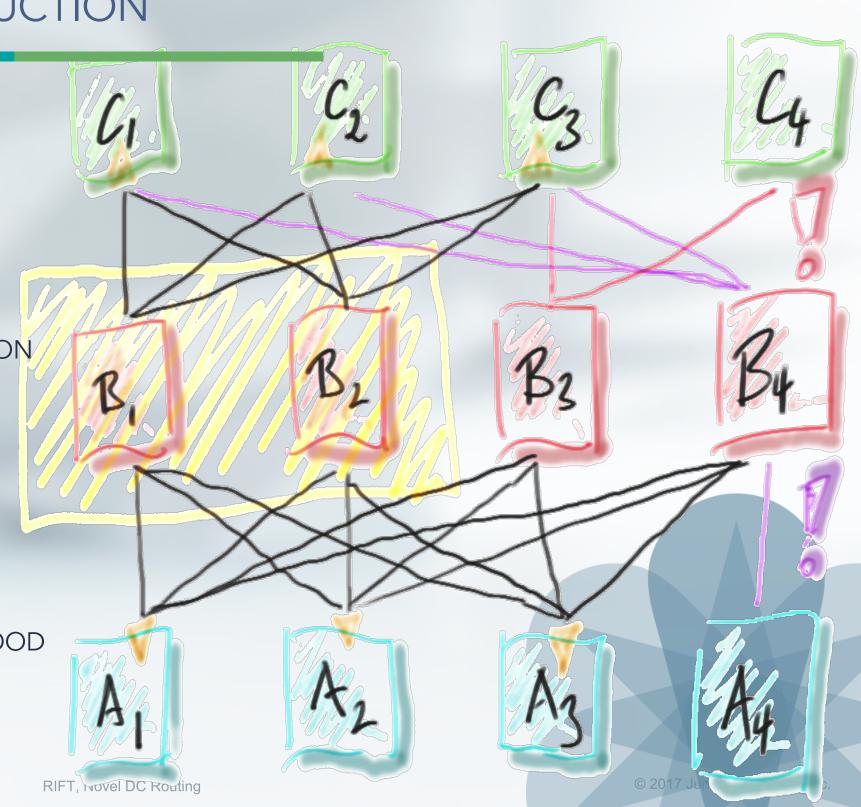
- GENERAL CONCEPT
- AUTOMATIC CABLING CONSTRAINTS
- AUTOMATIC DISAGGREGATION ON FAILURES
- AUTOMATIC FLOODING REDUCTION
- More Goodies

IN ONE PICTURE: DIRECTION, LINK-STATE UP, DISTANCE VECTOR DOWN & A BOUNCE



AUTOMATIC TOPOLOGY CONSTRAINTS

- LEVEL 0 = LEAF
- POD 0 = ANY POD
- AUTOMATIC REJECTION OF
 ADJACENCIES BASED ON MINIMUM
 CONFIGURATION
- A1 TO B1 FORBIDDEN DUE TO POD MISMATCH
- A0 TO B1 FORBIDDEN DUE TO POD MISMATCH (A0 ALREADY FORMED A0-A1 EVEN IF POD NOT CONFIGURED ON A0)
- BO TO CO FORBIDDEN BASED ON LEVEL MISMATCH
- COULD FORM OTHER TOPOLOGY
 VARIATIONS AS WELL



AUTOMATIC DE-AGGREGATION

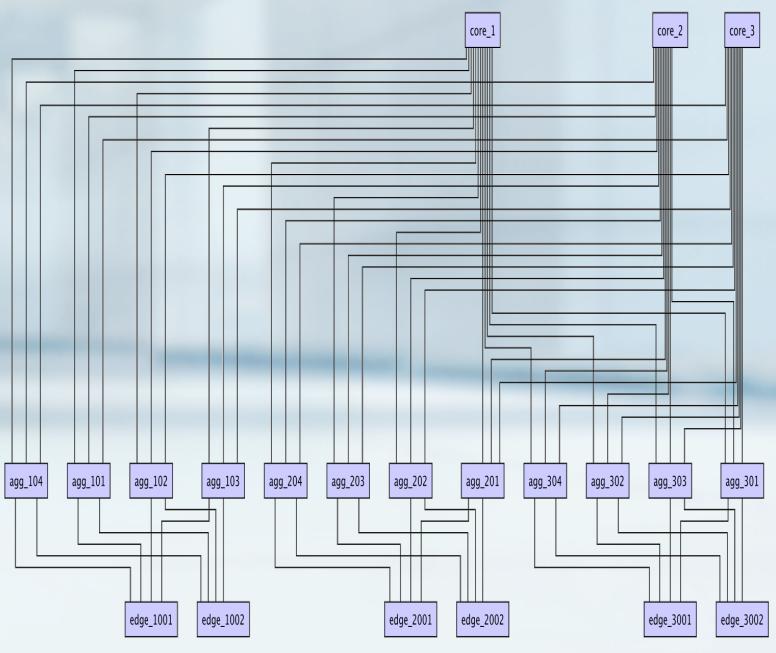
AUTOMATIC FLOODING REDUCTION

- EACH "B" NODE COMPUTES FROM REFLECTED SOUTH REPRESENTATION OF OTHER "B" NODES
 - SET OF SOUTH NEIGHBORS
 - SET OF NORTH NEIGHBORS
- NODES HAVING BOTH SETS MATCHING CONSIDER THEMSELVES "FLOOD REDUCTION GROUP" AND LOAD-BALANCE FLOODING
- FULLY DISTRIBUTED, UNSYNCHRONIZED ELECTION
- IN THIS EXAMPLE CASE B1 & B2
- EACH NODE CHOOSES BASED ON HASH COMPUTATION WHICH OTHER NODES' INFORMATION IT FORWARDS ON *FIRST* FLOOD ATTEMPT
- SIMILAR TO DF ELECTION IN EVPN BUT MUCH FASTER

POLICY GUIDED PREFIXES (PGP)

- SOUTH AND NORTH VARIANT SINCE THE "PROPAGATION DIRECTION" IS FIXED
 - AVOIDS THE "COLLIDING DIFFUSED COMPUTATION FRONTS" PROBLEMS
- PROPAGATE LIKE DISTANCE VECTOR BUT BASED ON FLOODING - NO NECESSITY TO BUILD SPECIALIZED UPDATES "PER PEER"
- INGRESS POLICIES CAN BE APPLIED ON PGPS
 - NO NEED FOR "REFRESHES" ON POLICY CHANGES
- USES
 - TRAFFIC ENGINEERING LIKE SR

- TRAFFIC ENGINEERING, SR IS INCLUDED VIA PGP
- PACKET FORMATS ARE COMPLETELY MODEL BASED
- CHANNEL AGNOSTIC DELIVERY, COULD BE QUICK, TCP, UDP, UDT
- PREFIXES ARE MAPPED TO FLOODING ELEMENT BASED ON LOCAL HASH FUNCTIONS
 - ONE EXTREME POINT IS A PREFIX PER FLOODED ELEMENT = BGP UPDATE
- PURGING (GIVEN COMPLEXITY) IS OMITTED
- KEY-VALUE STORE IS SUPPORTED (E.G. SERVICE CONFIGURATION DURING FLOODING) INCLUDING POLICIES AND "BEST COPY TIE-BREAKING"


SUMMARY OF RIFT ADVANTAGES

- Advantages of Link-State and DISTANCE VECTOR
 - FASTEST POSSIBLE CONVERGENCE
 - AUTOMATIC DETECTION OF TOPOLOGY
 - MINIMAL ROUTES ON TORS
 - EASY TO ACHIEVE HIGH DEGREE OF ECMP/N-ECMP
 - MINIMAL BLAST RADIUS ON FAILURES
 - FAST DE-COMMISIONING OF NODES

- NO DISADVANTAGES OF LINK-STATE OR DISTANCE VECTOR
 - REDUCED FLOODING
 - AUTOMATIC NEIGHBOR DETECTION
- AND SOME NEITHER CAN DO
 - AUTOMATIC DISAGGREGATION ON FAILURES
 - SCOPE CONTROLLED KEY-VALUE STORE

SAMPLE COMPARISON TO IGP

- 21 NODES
- 60 LINKS
- 600 PREFIXES
- All Run on a Single 4 cores Low End I7
- COMPARISON RIFT TO EQUIVALENT IGP
 - AVG. NODE CPU USE: 3X BETTER
 - CONVERGENCE (RIB): 4x FASTER
 - FLOODING: 4x LESS TRANSMISSIONS

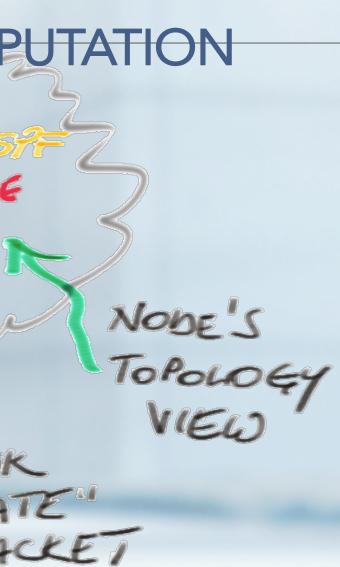
RIFT 2017, Juniper Confidential

THANK YOU ...

JUNPE

Backup Material

JUNPE


BLITZ OVERVIEW OF TODAY'S ROUTING

- LINK STATE & SPF
- DISTANCE/PATH VECTOR

LINK STATE AND SPF = DISTRIBUTED COMPUTATION

- TOPOLOGY ELEMENTS
 - Nodes
 - Links
 - PREFIXES
- EACH NODE ORIGINATES PACKETS WITH ITS ELEMENTS
- PACKETS ARE "FLOODED"
- "NEWEST" VERSION WINS
- EACH NODE "SEES" WHOLE TOPOLOGY
- EACH NODE "COMPUTES" REACHABILITY TO EVERYWHERE
- CONVERSION IS VERY FAST
- EVERY LINK FAILURE SHAKES WHOLE
 NETWORK
- FLOODING GENERATES EXCESSIVE LOAD FOR LARGE AVERAGE CONNECTIVITY
- Periodic Refreshes

DISTANCE/PATH VECTOR = DIFFUSED COMPUTATION

- PREFIXES "GATHER" METRIC WHEN PASSED
 ALONG LINKS
- EACH SINK COMPUTES "BEST" RESULT AND PASSES IT ON (ADD-PATH CHANGED THAT)
- A SINK KEEPS ALL COPIES, OTHERWISE IT WOULD HAVE TO TRIGGER "RE-DIFFUSION"
- LOOP PREVENTION IS EASY ON STRICTLY
 UNIFORMLY INCREASING METRIC
- IDEAL FOR "POLICY" RATHER THAN "REACHABILITY"
- Scales When Properly Implemented to Much Higher # of Routes Than Link State

