
Discussion:
Messaging

Michael Welzl

TAPS @ IETF 98
Chicago, 28.3.2017

1



From draft-gjessing-taps-minset-04

• Transport features that require app knowledge + allow fall-back to TCP

• Sending
– Reliably transfer data, with congestion control

– Reliably transfer a message, with congestion control

– Unreliably transfer a message

– Configurable Message Reliability

– Choice between unordered (potentially faster) or ordered delivery of messages

– Request not to bundle messages

– Specifying a key id to be used to authenticate a message

– Request not to delay the acknowledgement (SACK) of a message

• Receiving
– Receive data (with no message delineation)

– Information about partial message arrival

2

Makes no sense when we 
don’t get messages. 



Sending messages, receiving a bytestream

• Can we make this combination work?
– Be compatible to TCP but still benefit from messages?

• Alternative not very attractive: always telling an application “sorry, 
you only get a stream here” is not much different than saying 
“sorry, use TCP instead”
– Let’s minimize # hoops an app developer has to jump through

• Message-oriented TCP apps already frame their data
– Unnecessary to repeat this in transport layer

– Requirement to tell receiver app “here is your complete message” creates a 
major limitation and is often unnecessary

3



Application-Framed (AFra-)Bytestream

• Normal TCP-like bytestream API
– Optional: some additional information provided by sender app

• Sender app: hands over a stream of bytes, informs transport about frame 
boundaries and requirements (order, reliability, ..)
– Delimited frames stay intact, in order

– More relaxed rules possible between frames

– Delimiters assumed to be known by application

• Receiver app: receives stream of bytes
– App-level delimiters turn it into messages

• TCP = special case: no delimiters used
– Can talk to “normal” TCP applications on both sides

4



Unordered message delivery: SCTP

5

APIAPI APIAPI

Msg 3

Msg 2

Msg 1

Sender app
Msg 1

Msg 3

Msg 2

Receiver app

• Inform where frame begins
• Configure: “unordered”

Block 1Block 3 Block 2

App-defined header. 
Could also be e.g. implicit 

knowledge about size

Just a byte
stream!

App knows how
to identify messages

Block 1Block 2 Block 3

• Inform where frame ends



Unordered message delivery: TCP

6

APIAPI APIAPI

Msg 3

Msg 2

Msg 1

Sender app
Msg 1

Msg 2

Msg 3

Receiver app

• Inform where frame begins
• Configure: “unordered”

… TCP just ignores this!

Block 1Block 3 Block 2

Just a byte
stream!

App knows how
to identify messages

Block 1Block 2 Block 3

• Inform where frame ends



Unreliable unordered msg delivery: SCTP

7

APIAPI APIAPI

Msg 3

Msg 2

Msg 1

Sender app
Msg 3

Msg 2

Receiver app

• Inform where frame begins
• Configure: “unreliable, unordered”

Block 1Block 3 Block 2

Just a byte
stream!

App knows how
to identify messages

Block 2 Block 3

• Inform where frame ends



Unreliable unordered msg delivery: TCP

8

APIAPI APIAPI

Msg 3

Msg 2

Msg 1

Sender app
Msg 1

Msg 2

Receiver app

• Inform where frame begins
• Configure: “unreliable, unordered”

 … TCP just ignores this!

Block 1Block 3 Block 2

Just a byte
stream!

App knows how
to identify messages

Block 2 Block 3

Block 1

Msg 3

• Inform where frame ends



Unreliable message delivery:
SCTP, large messages

9

APIAPI APIAPI

Msg 3

Msg 2

Msg 1

Sender app Receiver app

• Inform where block begins
• Configure: “Unreliable”

Block 1Block 3 Block 2

Packets

• Inform where frame ends



Unreliable message delivery:
SCTP, large messages

10

APIAPI APIAPI

Sender app
Msg 2

Receiver app

Just a byte
stream!

App knows how
to identify messages

Block 1Block 3 Block 2

Packets

SCTP



Questions, comments?

11



Discussion:
Early data transmission

Michael Welzl

TAPS @ IETF 98
Chicago, 28.3.2017

12



From draft-gjessing-taps-minset-04

Transport features that require app knowledge + allow fall-back to 
TCP

1. Hand over a message to transfer (possibly multiple times) before 
connection establishment
– This is TCP (TFO)

2. Hand over a message to transfer during connection establishment
– This is SCTP sending data together with Cookie-Echo, or TCP sending 

data on SYN without TFO

– no duplication

13



Proposal in draft-gjessing-taps-minset-04

• Flow is created before connecting or listening
– Allows for some early configuration

– At this stage, deal with early data

• App can...
1. hand over a message

2. say whether it prefers “before” (case 1) or “during” (case 2) 
establishment

3. query for the maximum amount of data that it can possibly 
expect to have transmitted before or during connection 
establishment

14



Questions, comments?

15


	Slide 1
	From draft-gjessing-taps-minset-04
	Sending messages, receiving a bytestream
	Application-Framed (AFra-)Bytestream
	Unordered message delivery: SCTP
	Unordered message delivery: TCP
	Unreliable unordered msg delivery: SCTP
	Unreliable unordered msg delivery: TCP
	Unreliable message delivery: SCTP, large messages
	Unreliable message delivery: SCTP, large messages
	Questions, comments?
	Slide 12
	From draft-gjessing-taps-minset-04
	Proposal in draft-gjessing-taps-minset-04
	Questions, comments?

