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From draft-gjessing-taps-minset-04

• Transport features that require app knowledge + allow fall-back to TCP

• Sending
– Reliably transfer data, with congestion control

– Reliably transfer a message, with congestion control

– Unreliably transfer a message

– Configurable Message Reliability

– Choice between unordered (potentially faster) or ordered delivery of messages

– Request not to bundle messages

– Specifying a key id to be used to authenticate a message

– Request not to delay the acknowledgement (SACK) of a message

• Receiving
– Receive data (with no message delineation)

– Information about partial message arrival
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Makes no sense when we 
don’t get messages. 



Sending messages, receiving a bytestream

• Can we make this combination work?
– Be compatible to TCP but still benefit from messages?

• Alternative not very attractive: always telling an application “sorry, 
you only get a stream here” is not much different than saying 
“sorry, use TCP instead”
– Let’s minimize # hoops an app developer has to jump through

• Message-oriented TCP apps already frame their data
– Unnecessary to repeat this in transport layer

– Requirement to tell receiver app “here is your complete message” creates a 
major limitation and is often unnecessary
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Application-Framed (AFra-)Bytestream

• Normal TCP-like bytestream API
– Optional: some additional information provided by sender app

• Sender app: hands over a stream of bytes, informs transport about frame 
boundaries and requirements (order, reliability, ..)
– Delimited frames stay intact, in order

– More relaxed rules possible between frames

– Delimiters assumed to be known by application

• Receiver app: receives stream of bytes
– App-level delimiters turn it into messages

• TCP = special case: no delimiters used
– Can talk to “normal” TCP applications on both sides
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Unordered message delivery: SCTP
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Unordered message delivery: TCP
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Unreliable unordered msg delivery: SCTP
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Unreliable unordered msg delivery: TCP
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Unreliable message delivery:
SCTP, large messages
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Unreliable message delivery:
SCTP, large messages
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Questions, comments?
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From draft-gjessing-taps-minset-04

Transport features that require app knowledge + allow fall-back to 
TCP

1. Hand over a message to transfer (possibly multiple times) before 
connection establishment
– This is TCP (TFO)

2. Hand over a message to transfer during connection establishment
– This is SCTP sending data together with Cookie-Echo, or TCP sending 

data on SYN without TFO

– no duplication
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Proposal in draft-gjessing-taps-minset-04

• Flow is created before connecting or listening
– Allows for some early configuration

– At this stage, deal with early data

• App can...
1. hand over a message

2. say whether it prefers “before” (case 1) or “during” (case 2) 
establishment

3. query for the maximum amount of data that it can possibly 
expect to have transmitted before or during connection 
establishment
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Questions, comments?
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