
RACK: a time-based fast loss recovery
draft-ietf-tcpm-rack-02

Yuchung Cheng
Neal Cardwell

Nandita Dukkipati

Google

IETF98: Chicago, March 2017

https://tools.ietf.org/html/draft-ietf-tcpm-rack-02
https://tools.ietf.org/html/draft-ietf-tcpm-rack-02
https://tools.ietf.org/html/draft-ietf-tcpm-rack-02
https://tools.ietf.org/html/draft-ietf-tcpm-rack-02

What’s RACK (Recent ACK)?

Key Idea: time-based loss inferences (not packet or
sequence counting)

● If a packet is delivered out of order, then packets
sent chronologically before it are either lost or
reordered

● Wait RTT/4 before retransmitting in case the
unacked packet is just delayed. RTT/4 is empirically
determined (more later on making it adaptive)

● Conceptually RACK arms a (virtual) timer on every
packet sent. The timers are updated by the latest
RTT measurement.

P1

P2

Retransmit P1

Expect ACK of P1
by then … wait
RTT/4 in case P1
was reordered

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

Tail Loss Probe (TLP)
● Problem

○ Tail drops are common on request/response
traffic

○ Tail drops lead to timeouts, which are often 10x
longer than fast recovery

○ 70% of losses on Google.com recovered via
timeouts

● Goal:
○ Reduce tail latency of request/response

transactions

● Approach
○ Convert RTOs to fast recovery
○ Solicit a DUPACK by retransmitting the last

packet in 2 SRTTs
○ Requires RACK to trigger fast recovery

P1

P2

Retransmit P1

After 2 SRTTs...
send TLP to
get SACK to start
RACK recovery
of a tail loss

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

TLP: P2

3

P0

ACK

What’s new since last IETF in Nov.

1. Fully implemented in Linux 4.10
a. On by default
b. Reduced number of loss recovery heuristics from 9 to 4:

RACK, TLP, F-RTO, DupThresh (RFC6675), FACK, Early Retransmit (RFC5827), Thin-Dupack, NCR
(RFC4653), Forward Retransmit

c. Deployed in Google TCP

2. -02 draft
a. New experiments on reordering window length and removing DupThresh
b. New text on interacting with congestion control

Exp: RACK+TLP vs DupACK threshold

4-way experiment at one Google DC in Europe for a week in 2017. ~1.5B flows sampled

- RFC6675-only retransmit rate is 1.3%
- RACK + TLP reduces recovery latency by 24% and may replace DupThresh approach

5

Diffs compared to RFC6675 (DupThresh)

RACK RACK + TLP RACK + TLP + RFC6675 (Linux)

Time in loss
recovery

-0.5% -24.0% -24.1%

%RTO reduced -5.4% -25.8% -23.7%

Retrans. Rate
(including TLP)

1.3% 1.5% 1.5%

How RACK interacts with congestion control
RACK influences congestion control indirectly

- Congestion control (Reno/RFC5681)
- On fast recovery cwnd is reduced to ssthresh
- On RTO cwnd resets to 1

- By reducing RTOs, RACK + TLP speeds up fast recovery and avoids cwnd resets
- Rationale: cwnd should only reset if the entire flight is lost and the ack clock is also lost

6

Example: Reno C.C. w/ cwnd=20. Send 10 packets, which are all dropped.

Events Recovery Time cwnd upon recovery ends

Standard RTO then slow start RTO + 4*RTT 1*2*2 = 4

RACK + TLP Fast recovery
(PRR slow start)

2*RTT + 4*RTT 20/2 = 10

Next: smarter reordering window

Current window is max(1ms, min_RTT/4)

- Too low: high spurious retransmit if reordering exceeds the window
- Too high: 1ms is too high inside a data-center (RTT < 100us)

- But <1ms timer has high cost

- WIP: adaptive reordering window
- Measure reordering degree in time

- reor_deg = (last_out_of_order_delivery_time - last_inorder_delivery_time)
- reo_wnd = K * reordering_degree

- Reduce K if recovery finished w/o signs of reordering
- Increase K if DSACKs or timestamps indicate reo_wnd was too small
- Stress test on low-latency (<100us) and high-reordering (multi-path) environments

BBR/RACK on emulated 1Gbps, 53ms RTT and random packet delay jitter [0, 10ms]

RACK may cause excessive spurious retransmits if reordering > RACK.reo_wnd

Next: one loss recovery (RACK)
Linux still uses both RACK and RFC6675 (DupThresh)

- Runs both algorithms on each ACK
- Recovery starts when either algorithm marks a packet lost

Goal: RACK + TLP as the omnipotent recovery

- a/b experiment disabling RFC6675 on Google
- Experiment w/ DupThresh-triggered start to fast recovery

- reo_wnd = 0 if not in recovery and #DupAcks >= DupThresh
- Progressively phase out DupThresh approach

Conclusion

Vision: making TCP resilient and efficient to reordering and loss with one algorithm

- Better load-balancing (e.g. multi-paths, flowlets)
- Faster forwarding (e.g. parallel forwarding, wireless link layer optimization)
- Simpler transport with time-based approach

RACK is now the key loss recovery in Linux

Work-in-progress

1. Optimize reordering window for high reordering and/or low RTT
2. Pure time-based recovery by completely retiring DupThresh approach

