
DTLS 1.3

draft-rescorla-tls-dtls13-01

Eric Rescorla Hannes Tschofenig Nagendra Modadugu

Mozilla ARM Google

IETF 98 TLS 1

Overview

• DTLS version of TLS 1.3

• Still presented as a delta from TLS 1.3

• Some improvements/cleanup

• Partly informed by early implementation experience

IETF 98 TLS 2

Document Status

• Individual submission

• Currently in call for acceptance

• Here to talk about the draft...

IETF 98 TLS 3

Issue#2: ACKs

• DTLS historically used an implicit ACK

– Receiving the start of the next flight means the flight was

received

• Simple (but also simpleminded)

– Slightly tricky to implement

– Gives limited congestion feedback

– Handles single-packet loss badly

• Interacts badly with some TLS 1.3 features (like NST)

• Solution: introduce an explicit ACK

IETF 98 TLS 4

Where should we ACK?

• Every flight

• Just at the end of things that aren’t explicitly acknowledged

– Client Finished

– NewSessionTicket

• Proposal: allow ACKs at any time

– This allows partial retransmit of flights (if we SACK)

– Also just means one trigger for state machine evolution

IETF 98 TLS 5

Strawman ACK format (not what’s in the draft)

struct AcknowledgedMessage {

uint16 message_seq;

uint32 timestamp;

};

struct {

AcknowledgedMessage messages<2..2^16-2>;

} DtlsAck;

• This is a compromise between “lots of data” and “convenient”

• We could also include the DTLS records for more path feedback

IETF 98 TLS 6

What epoch should ACKs be encrypted under?

• Issue here is key transitions

• E.g., ACK of the client Finished

– Natural to match the epoch of what you’re ACKing

– But this may mean you have two keys

IETF 98 TLS 7

Key Update

• Key Update in TLS 1.3 is unreliable

– This means new epoch records may appear before KeyUpdate

• Current draft just omits KeyUpdate

– KeyUpdate from one side triggers another

– Only one unacknowledged KeyUpdate allowed outstanding

– Can’t unilaterally update

• Potential alternative design

– Send KeyUpdate (using the ACK for reliability)

– Still have to process out-of-order records

IETF 98 TLS 8

Shrinking the Packet Header

• DTLS packet header is very large

struct {

ContentType opaque_type = 23; /* application_data */

ProtocolVersion legacy_record_version = {254,253); // DTLSv1.2

uint16 epoch; // DTLS-related field

uint48 sequence_number; // DTLS-related field

uint16 length;

...

• Would be nice to make it smaller

– Give us room for connection ID...

IETF 98 TLS 9

A shorter header (due to MT)

001eesss ssssssss

Where ee = epoch modulo 4 and ss..ss = sequence number modulo 2048

• Why two bits for the epoch?

• What about long header/short header as in QUIC draft?

IETF 98 TLS 10

Connection ID: Problem and Solution

• Demultiplexing based on 5 tuple

• If NAT binding expires server cannot find security context.

• Happens if IoT devices enter a sleep cycle.

• Solution: Add additional identifier to record layer header.

IETF 98 TLS 11

Connection ID: Design Decisions

• Should there be a negotation?

• What messages should use it?

– Everything except ClientHello (for backwards compatibility)?

– Messages protected using keys derived from a

handshake traffic secret

• Unlinkability property desirable to some: possible approaches

– Static identifier similar to IPsec SPI

– Hash chain/Counter-based approach

– Token bucket with receiver-side refresh

• Somehow you need to demux these

– Either outside DTLS

– Or change the stack somehow

IETF 98 TLS 12

Hash chains

• Peers exchange Ku

– Packet i uses conn id E(Ku, i) (or trunc(Hi(K))

• Expensive to process with reordering

– Either precompute a bunch of values (memory cost)

– Or you have to compute packet i for all Ku when you get an

out-of-order packet

IETF 98 TLS 13

Token Buckets

• Server has a single static key K

• Server gives client n tokens T0, T1, ...Tn

– Ti = E(K,u||i)

• Client uses a fresh token for each packet

• Server replenishes tokens in response to packets

• Consumes a lot of bandwidth

– Each token is sent twice

– Tokens have a minimum size

IETF 98 TLS 14

Handshake Message Transcript

• The TLS and DTLS transcripts are different

• Both include the message header

– But headers are different

– DTLS includes a (synthetic) DTLhandshake message header

• We could just do the TLS message header

– Cross-version consistency between cross-protocol consistency

IETF 98 TLS 15

Other issues?

IETF 98 TLS 16

