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Key Goal

• Transparently logging the software binary code
s (BC) or its digest with their signature to:
– enable anyone to monitor and audit the software pr

ovider activity: misdistribution by illegal software pr
ovider

– notice the distribution of suspect software: tamper
ed software with customized backdoors/drawbacks

– audit the BC logs themselves: inconsistence of soft
ware among different BC logs
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How to Realize

• Extending the Certificate Transparency protocol [I-D.ie
tf-trans-rfc6962-bis]:
– Logging what: software binary codes (BC) or its digest with 

their signature vs TLS server certificates

– Issuing what: Signed Binary Timestamp vs Signed Certificat
e Timestamp

– Log Format Extension: new TransItem, new Merkle Tree lea
ves definition, new SBT definition;

– Log Client Messages’ change: Add log, Retrieve Entries and 
STH from Log

– Others: remain the same  
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New Binary Transparency Log Entries

enum { binary(TBD1), binary_digest(TBD2) } BIN_Signed_Type;

opaque BINARY<1..2^24-1>;

opaque ASN.1Cert<1..2^24-1>;

struct {

BIN_Signed_Type bin_signed_type;

BINARY signed_software; //binary code/SHA-256 digest of s
oftware, signature, other, CMS[RFC5652]

ASN.1Cert certificate_chain<1..2^24-1>;

} BinaryChainEntryV2;
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Extensive TransItem Structure

enum {

           reserved(0),

           x509_entry_v2(1),    precert_entry_
v2(2),

           x509_sct_v2(3), 

         precert_sct_v2(4),

           signed_tree_head_v2(5), consisten
cy_proof_v2(6),

           inclusion_proof_v2(7), x509_sct_wi
th_proof_v2(8),

           precert_sct_with_proof_v2(9), BIN
_entry_v2(TBD3),

           BIN_sbt_v2(TBD4), BIN_sbt_with_p
roof_v2(TBD5),

           (65535)

         } VersionedTransType;
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struct {
           VersionedTransType versioned_type;
           select (versioned_type) {
               case x509_entry_v2: TimestampedCertificateEntryDataV2;
               case precert_entry_v2: TimestampedCertificateEntryDataV2;
               case x509_sct_v2: SignedCertificateTimestampDataV2;
               case precert_sct_v2: SignedCertificateTimestampDataV2;
               case signed_tree_head_v2: SignedTreeHeadDataV2;
               case consistency_proof_v2: ConsistencyProofDataV2;
               case inclusion_proof_v2: InclusionProofDataV2;
               case x509_sct_with_proof_v2: SCTWithProofDataV2;
               case precert_sct_with_proof_v2: SCTWithProofDataV2;
               case BIN_entry_v2: TimestampedBinaryEntryDataV2;
               case BIN_sbt_v2: SignedBinaryTimestampDataV2;
               case BIN_sbt_with_proof_v2: SBTWithProofDataV2;
           } data;
       } TransItem;



New Merkle Tree Leaves

opaque TBSSignedSoftware<1..2^24-1>;

       struct {

                 uint64 timestamp;

                 opaque issuer_key_hash<32..2^8-1>;

                 BIN_Signed_Type bin_signed_type;

                 TBSSignedSoftware tbs_signed_software;   
                    // the DER encoded TBSSignedSoftware from the

                        "signed_software" 

                 SbtExtension sbt_extensions<0..2^16-1>;

              } TimestampedBinaryEntryDataV2;
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New Structure of the Signed Binary Timest
amp

• An SBT is a “TransItem” structure of type “bin_sbt_v2”, which encapsulates a "SignedBinary
TimestampDataV2" structure:

     enum {

              reserved(65535)

     } SbtExtensionType;

     struct {

              SbtExtensionType sbt_extension_type;

              opaque sbt_extension_data<0..2^16-1>;

      } SbtExtension;

     struct {

              LogID log_id;

              uint64 timestamp;

              SbtExtension sbt_extensions<0..2^16-1>;

              digitally-signed struct {

                  TransItem timestamped_entry;

              } signature; // The encoding of the digitally-signed element is defined in [RFC5246].

      } SignedBinaryTimestampDataV2;
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Modified Log Client Messages

• A new message: Add Binary Code a
nd Certificate Chain to Log

POST https://<log server>/ct/v1/add-Binary-chain

Inputs:

    bin_signed_type: binary code or its digest

    software: the binary code (or digest), the signatu
re, and the information encapsulated in CMS[R
FC5652] ;

    chain:  An array of base64-encoded certificates.

Outputs:

    sbt: Signed Binary Timestamp. A base64 encoded 
“TransItem” of type “BIN_sbt_v2”, signed by th
is log, that corresponds to the submitted softw
are.

Error codes:

    Be identical with the according part in Section 5.
1 (Add Chain to Log) of [I-D.ietf-trans-rfc6962-
bis].
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• An extended message: Retrieve 
Entries and STH from Log

GET https://<log server>/ct/v2/get-entries

Inputs:

    start:  0-based index of first entry to retrieve, in 
decimal.

    end:  0-based index of last entry to retrieve, in 
decimal.

Outputs:

    entries:  An array of objects, each consisting of

         leaf_input:  The base64 encoded "TransItem" 
structure of type ... or "BIN_entry_v2”.

         log_entry:  The base64 encoded log entry. ... in 
the case of a "BIN_entry_v2", this is the whole 
"BinaryChainEntryV2".

         sbt:  The base64 encoded "TransItem" of ... or 
"BIN_sbt_v2"corresponding to this log entry.

         sth:  A base64 encoded “TransItem” of type
          “signed_tree_head_v2”, signed by this log.



Discussion

• Comments are welcome!

• Keep on improving...

9



Thanks!

Liang Xia (Frank)
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