
CT for Binary Codes 
 draft-zhang-trans-ct-binary-codes-04 

Liang Xia                 Huawei    

DaCheng Zhang               Huawei

 Daniel Kahn Gillmor          CMRG

Behcet Sarikaya               Huawei

March 2017     Chicago



Key Goal

• Transparently logging the software binary code
s (BC) or its digest with their signature to:
– enable anyone to monitor and audit the software pr

ovider activity: misdistribution by illegal software pr
ovider

– notice the distribution of suspect software: tamper
ed software with customized backdoors/drawbacks

– audit the BC logs themselves: inconsistence of soft
ware among different BC logs

2



How to Realize

• Extending the Certificate Transparency protocol [I-D.ie
tf-trans-rfc6962-bis]:
– Logging what: software binary codes (BC) or its digest with 

their signature vs TLS server certificates

– Issuing what: Signed Binary Timestamp vs Signed Certificat
e Timestamp

– Log Format Extension: new TransItem, new Merkle Tree lea
ves definition, new SBT definition;

– Log Client Messages’ change: Add log, Retrieve Entries and 
STH from Log

– Others: remain the same  

3



New Binary Transparency Log Entries

enum { binary(TBD1), binary_digest(TBD2) } BIN_Signed_Type;

opaque BINARY<1..2^24-1>;

opaque ASN.1Cert<1..2^24-1>;

struct {

BIN_Signed_Type bin_signed_type;

BINARY signed_software; //binary code/SHA-256 digest of s
oftware, signature, other, CMS[RFC5652]

ASN.1Cert certificate_chain<1..2^24-1>;

} BinaryChainEntryV2;

4



Extensive TransItem Structure

enum {

           reserved(0),

           x509_entry_v2(1),    precert_entry_
v2(2),

           x509_sct_v2(3), 

         precert_sct_v2(4),

           signed_tree_head_v2(5), consisten
cy_proof_v2(6),

           inclusion_proof_v2(7), x509_sct_wi
th_proof_v2(8),

           precert_sct_with_proof_v2(9), BIN
_entry_v2(TBD3),

           BIN_sbt_v2(TBD4), BIN_sbt_with_p
roof_v2(TBD5),

           (65535)

         } VersionedTransType;

5

struct {
           VersionedTransType versioned_type;
           select (versioned_type) {
               case x509_entry_v2: TimestampedCertificateEntryDataV2;
               case precert_entry_v2: TimestampedCertificateEntryDataV2;
               case x509_sct_v2: SignedCertificateTimestampDataV2;
               case precert_sct_v2: SignedCertificateTimestampDataV2;
               case signed_tree_head_v2: SignedTreeHeadDataV2;
               case consistency_proof_v2: ConsistencyProofDataV2;
               case inclusion_proof_v2: InclusionProofDataV2;
               case x509_sct_with_proof_v2: SCTWithProofDataV2;
               case precert_sct_with_proof_v2: SCTWithProofDataV2;
               case BIN_entry_v2: TimestampedBinaryEntryDataV2;
               case BIN_sbt_v2: SignedBinaryTimestampDataV2;
               case BIN_sbt_with_proof_v2: SBTWithProofDataV2;
           } data;
       } TransItem;



New Merkle Tree Leaves

opaque TBSSignedSoftware<1..2^24-1>;

       struct {

                 uint64 timestamp;

                 opaque issuer_key_hash<32..2^8-1>;

                 BIN_Signed_Type bin_signed_type;

                 TBSSignedSoftware tbs_signed_software;   
                    // the DER encoded TBSSignedSoftware from the

                        "signed_software" 

                 SbtExtension sbt_extensions<0..2^16-1>;

              } TimestampedBinaryEntryDataV2;

6



New Structure of the Signed Binary Timest
amp

• An SBT is a “TransItem” structure of type “bin_sbt_v2”, which encapsulates a "SignedBinary
TimestampDataV2" structure:

     enum {

              reserved(65535)

     } SbtExtensionType;

     struct {

              SbtExtensionType sbt_extension_type;

              opaque sbt_extension_data<0..2^16-1>;

      } SbtExtension;

     struct {

              LogID log_id;

              uint64 timestamp;

              SbtExtension sbt_extensions<0..2^16-1>;

              digitally-signed struct {

                  TransItem timestamped_entry;

              } signature; // The encoding of the digitally-signed element is defined in [RFC5246].

      } SignedBinaryTimestampDataV2;

7



Modified Log Client Messages

• A new message: Add Binary Code a
nd Certificate Chain to Log

POST https://<log server>/ct/v1/add-Binary-chain

Inputs:

    bin_signed_type: binary code or its digest

    software: the binary code (or digest), the signatu
re, and the information encapsulated in CMS[R
FC5652] ;

    chain:  An array of base64-encoded certificates.

Outputs:

    sbt: Signed Binary Timestamp. A base64 encoded 
“TransItem” of type “BIN_sbt_v2”, signed by th
is log, that corresponds to the submitted softw
are.

Error codes:

    Be identical with the according part in Section 5.
1 (Add Chain to Log) of [I-D.ietf-trans-rfc6962-
bis].

8

• An extended message: Retrieve 
Entries and STH from Log

GET https://<log server>/ct/v2/get-entries

Inputs:

    start:  0-based index of first entry to retrieve, in 
decimal.

    end:  0-based index of last entry to retrieve, in 
decimal.

Outputs:

    entries:  An array of objects, each consisting of

         leaf_input:  The base64 encoded "TransItem" 
structure of type ... or "BIN_entry_v2”.

         log_entry:  The base64 encoded log entry. ... in 
the case of a "BIN_entry_v2", this is the whole 
"BinaryChainEntryV2".

         sbt:  The base64 encoded "TransItem" of ... or 
"BIN_sbt_v2"corresponding to this log entry.

         sth:  A base64 encoded “TransItem” of type
          “signed_tree_head_v2”, signed by this log.



Discussion

• Comments are welcome!

• Keep on improving...

9



Thanks!

Liang Xia (Frank)

10


	Slide 1
	Key Goal
	How to Realize
	New Binary Transparency Log Entries
	Extensive TransItem Structure
	New Merkle Tree Leaves
	New Structure of the Signed Binary Timestamp
	Modified Log Client Messages
	Discussion
	Slide 10

