Trill Parent node shift,
Mitigation.
IETF 98, Chicago.

https://datatracker.ietf.org/doc/draft-rp-trill-parent-
selection-03

R. Parameswaran,
Brocade Communications Inc.,
parameswaran.r7@gmail.com.



Problem Statement/Summary

* The parent selection rules, standardized in Trill’s
tree construction process, can lead to un-necessary
shifts in parent-child relationships, in some
situations.

* Aware of this impacting latency requirements for
some customers.

* The draft presented here proposes two distinct
solutions which can be used to address the
problem.



Problem statement

e What is the issue with Trill’s standard tree construction
method?

* Let’s see how Trill defines parent selection during tree
construction.

[RFC6325]:

* "When building the tree number j, remember all possible
equal cost parents for node N. After calculating the entire
'tree’ (actually, directed graph), for each node N, if N has 'p'
parents, then order the parents in ascending order
according to the 7-octet IS-IS ID considered as an unsigned
integer, and number them starting at zero. For tree j, choose
N's parent as choice j mod p."



Problem statement (contd).

* There is an additional correction posted to this in
[RFC7780]:

e [RFC7780], Section 3.4:

“This is changed so that the selected parent MUST be
(j-1) mod p. As a result, in the case above, tree 1 will
select parent O, and tree 2 will select parent 1. This
change is not backward compatible with[RFC6325]. If
all RBridges in a campus do not determine distribution
trees in the same way, then for most topologies, the
RPFC will drop many multi-destination packets before
they have been properly delivered."



Problem Statement (Depiction) O Q e

n@mo o o

Before Node 1 goes down the

Ordered list is:
2 3 [1 (@ index0),2 (@ index 1), 3]

Parent selection for nodes B, C,
Is mandated by Trill as the node at

Consider tree 2, and say
node A is the tree root.

Now, consider what index:
happens if Node 1 (Tree num — 1) mod num_parents
=(2-1) mod 3

goes down?
c =1, which corresponds to the index of
Node 2.

Assume that nodes 1, 2, 3 are in sorted order, sorted by ascending order of ISIS 7 octet ID.



[2 (@ index 0), 3 (@ index 1)]
Node 1 = (2-1) mod 2

Parent selection for nodes B, C,
goes down? =1, which corresponds to the index of

Problem Statement (contd) O O e
Is mandated by Trill as the node at
index:

B and C’s parent shifted from node 2 to node 3 — this is unnecessary, since 2 never went
down. Similar problems can happen with other tree numbers, and this can happen at each

Ordered list of parents for B,C now is
Consider what happens if (Tree num — 1) mod num_parents
parent/child relationship in the tree.



Solution (Approach 1).

* How can this be solved?

 Affinity sub-TLV (It’s a sub-TLV of the Router capability TLV).

e Other drafts/RFCs now use affinity sub-TLV in other scenarios.
e Affinity TLV basically dictates parent-child mappings.

* Is published by the parent, identifying the list of children it
wants to bind to, and the specific tree on which this is to be
done.

e Powerful sub-TLV which needs to be used within certain guide-
lines.

* Applicability to this case, operator pins stickiness to children
on a specific (parent) node, using a CLI. Operator takes
responsibility of configuring CLI on only one of a set of possible
parent nodes (should not be configured on more than one
sibling, and should not be configured on the root of the tree).



Solution (Approach 1) Contd.

* Operator configures parent stickiness on a particular parent (designated parent),
for particular tree number.

* The designated parent runs through a tree calculation, ignores the default Trill
parent selection rule, and asserts its right to be a parent, if during tree
computation it finds itself to be a potential parent of one or more child nodes.

* Once the tree computation completes %yit.h an additional stabilization timer), the
designated parent node publishes an Affinity sub-TLV, identifying the child nodes
and the tree number.

* This is also repeated in any subsequent tree computations.

* Other nodes in the network blindly honor the affinity sub-TLV sent by the
designated parent, if any.

* Note that tree structure will change as links and nodes go down or come up in
the network. The designated parent will either publish unchanged, or change, or
retract affinity sub-TLV as network events change the tree, depending on
whether it has children or not in the new tree order (designated parent makes a
best-effort to try and preserve its existing child relationships, tree structure
permitting, disregarding the default Trill tree construction rule, and ignoring its
own affinity TLV in its own tree calculation).

* In the event of a retraction of the affinity sub-TLV, other nodes in the network
fall back to the default Trill tree construction rules.



Solution, Approach 1: QO O e
© © ©

ﬁ * Once 2 publishes an affinity sub-TLV,

all other nodes in the network factor

it, in their tree construction, using

Node 2 as the parent for B,C in tree
2’s construction.

* Node 2 does not blindly honor Trill’s

default parent selection rules (and

ignores its own affinity sub-TLV) and

instead, tries to assert/preserve its
parent relationship to its children to
the extent possible, and publishes or

Consider what happens if Node 1 updates the affinity sub-TLV after its
goes down? Node 2 publishes an affinity sub-TLV before Node ownh tree construction of tree 2.

1 goes down, preventing the problem of B and C’s parent-
shift.

Affinity sub-TLV, Tree = 2,
Child = B,C (Originated by 2)
after operator config, before
Node 1 goes down.




Solution (Approach 2).

* Use a modified version of SPF which inserts a policy driven
selector for the choice of parent when multiple parents can
pull a child node into the SPF tree at the same optimal cost.

* Make the policy function choose based on a previous stable
snap-shot of the same tree.

* Hence for a given child node, it will pick the same parent that
it had in the previous stable snap-shot of the tree, before the
network churn event happened. The very first tree calculation
uses the default Trill parent selection rules.

* This determination happens in a distributed fashion at each
node in the network.

* Hence, nodes in the network had better agree on what the
previous stable snap-shot of the tree looked like.



Solution (Approach 2) Contd:

* This is relatively difficult to do, but we can leverage the
fact that by the time routes/result of the tree
computation was downloaded to the RIB, all the nodes in
the network agreed on the previous stable version of the
tree, so use this as trigger to collect the snapshot.

* May need additional dampening, at the RIB trigger.
* Works best in small to mid-size networks.

» Special handling needed for link flaps, other events
where the parent child relationship inverts etc..



Solution, Approach 2

N

Nodes latch to their previous
stable tree computation and
use that to guide tree
construction.

A is tree root, Node 1 went
down.

3

/
oY : Fa

BAH N

© 00
© 6 ©

Consider tree 2, and say node A is

the tree root. Now, consider what

happens if Node 1 goes down?
During tree calculation, because the
prior tree calculation used Node 2 as

the parent, the policy selection step

continues to select Node 2 as the
parent in new tree calculations.

Initial tree computation uses the Trill default rules. Subsequent tree computations use the
previous stable snap-shot to drive parent selection.

12



Other Considerations:

* Between the two approaches, approach A is
preferable, since affinity sub-TLV makes the
network behavior more predictable, unless there
are IPR considerations.

* No IPR on either of these approaches at Brocade
Communications, Inc.



Status/Advancement:

* Requesting adoption as WG document, aware of customers looking for a way to
prevent unnecessary parent shifts.

* Afew logical inconsistencies in approach B, clarification in Approach A, fixed in a
private copy of the draft, will upload after IETF98.

* Might remove or tweak approach B from the draft in subsequent uploads.

* Approach B as proposed here may not be feasible and/or can be tweaked , but
the policy driven SPF tree computation proposed in approach B might have
some value if there is interest in pursuing network wide alternative default
parent selection rules.

* Approach A can be enhanced to add node redundancy for the sticky/designated
parent.

* Planning to change the draft to Informational, assuming approach A remains
feasible.



