Privacy and Traffic Analysis Resistance for Encrypted Protocols

Mike Perry
The Tor Project
Topics and Goals

Topics:
- Quick Tor Overview
- Application layer privacy
- Traffic Analysis Attacks and Defenses

Goals:
- Raise awareness of Tor's threat model
- Spread knowledge of traffic analysis evaluation
- Develop allies and advocates in IETF
Tor Basics

- TCP Overlay Network; Stream abstractions
 - TCP SOCKS Proxy

- ~2 million daily users
 - Not the same users every day!
 - ~1 million users update the browser within 1 week
 - ~5 million Android installs

- Tor is a small non-profit company
 - 20 employees total; $3.5M budget
 - Standards participation is difficult for us
Tor Path Encryption
Terminology Normalization

• “Linkability”
 – The ability to associate one user action with another
 – Types: “PBM”; “3rd party”; “Fingerprinting”

• “Fingerprinting” != “Identifier storage”
 – Identifiers are content-accessible browser state (aka “supercookies”)
 – Fingerprinting is any stateless vector

• “First Party Isolation”
 – Bind all content-accessible browser state to the URL bar domain
 – AKA “Double-Keying”
Abstract Privacy and Anonymity Issues

- Traffic integrity and confidentiality
- Linkability sources
 - State management (supercookies/identifiers)
 - Browser fingerprinting
- Traffic analysis
 - Traffic fingerprinting
 - Correlation
 - Confirmation
 - Route manipulation and analysis
First Party Relationships

www.salon.com

Remove Data and History Del
Clear Site Tracking Data Ctrl+D
Protect Site Data Ctrl+P
Block Tracking Data
Site Permissions...
View Site History...
Inspect Site Data...

Cancel OK
Identifier Storage in HTTP/2

- Alternative-Services Header caching
- ALPN and NPN successes cached to govern initial connection counts
- Server PUSH response caching
Identifier Storage in QUIC

- Superset of HTTP/2, plus:
 - 0-RTT state caching
 - Discovery and Alternate-Protocol state
 - 64bit connection-id (for third parties)
 - Congestion window information?
Tor's View of Fingerprinting

- **Sources of fingerprinting in order of concern:**
 1. End-user configuration details
 2. Device and hardware characteristics
 3. Operating System vendor and version differences
 4. User behavior
 5. Browser vendor and version differences (ignored)

- **Fingerprinting is dependent on user base size**
Fingerprinting examples

- **QUIC**
 - Timestamps in ACK, NONC
 - Local link property inference?
 - Congestion control properties/behavior?

- **HTTP/2**
 - Couldn't find anything other than browser version fingerprinting issues (which we ignore)..
 - (TCP fingerprinting out of scope because Tor terminates TCP)
Traffic Analysis

- Confirmation and Correlation (aka end-to-end)
- VBR audio fingerprinting
 - ~256 bits of padding mitigates many cases
 - CBR is a sure-shot (but not WebRTC default!)
- Website Traffic Fingerprinting
 - TLS: 'Side-Channel Leaks in Web Applications'
 - Padding ~256 bytes mitigates many cases
 - Very sensitive to base rate: More pages → less accuracy and less padding
 - Tor's 512 byte cell size helps
Evaluating Attacks and Defenses

• Effectiveness is a function of the “World Size”
 – Base Rate Fallacy and VC Dimension

• Closed vs Open World
 – Truly closed worlds may not exist
 – Browser cache, AJAX, changing content...

• Valid metrics:
 – Bayesian Detection Rate (aka Precision)
 – Receiver Operating Characteristic AUC
 – P-ROC AUC (sensitive to world-size)
 – Interclass and Intraclass variance
Defenses Tor Has Considered

- Pipeline Randomization
- HTTPPOS
- Traffic Morphing
- Tamaraw
- Walkie-Talkie
- CS-BuFLO
- ALPaCA
- Adaptive Padding
Adaptive Padding State Machines

- Two two-state state machines on each endpoint (one per direction)
- One state specifies histograms for sending padding after non-padding, the other specifies probability of sending successive padding.
Adaptive Padding Token Removal

- Tokens are removed when either padding or non-padding is sent
 - Shapes traffic towards target distribution with minimal overhead
Adaptive Padding Overhead

- 0-60% overhead (tunable). *No latency cost.*
 - Tradeoff “sweet spots” at ~5% and 25%
Citations and Related Work

https://www.freehaven.net/anonbib/cache/morphing09.pdf
https://security.cs.georgetown.edu/~msherr/papers/muffler.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/k-fingerprinting.pdf
Thanks

Mike Perry <mikeperry@torproject.org>

https://www.torproject.org/projects/torbrowser/design/