
Transport-Independent
Path Layer

State Management

Brian Trammell
TSV Area Meeting - IETF 98 Chicago - 27 March 2017

The Problem
• Lots and lots of state-keeping devices on path…

• … that assume TCP semantics
• … won’t work with non-TCP transports

• UDP-based transports need:
• frequent keepalives
• explicit directional rules, port mapping
• other nasty hacks
• or fall back to TCP

• These devices will do something with UDP transports anyway
• Let’s define something sane for them to do.

TCP state modeling
at middleboxes

closed

SYN→

→SYN/ACK

FIN→ACK

SYN/ACK

established

SYN

ACK→
half-
closed

ACK→FIN

RST

A generic state machine

zero

stopping

a→b

associate
b→a

toidle

to
associated

tostop

stop
x→y

associating

associated

uniflow

confirm
a→b

stop-wait

stop-confirm
y→x

One-way flows &
one-sided devices

zero

stopping

a→b

associate
b→a

toidle

to
associated

tostop

stop
x→y

associating

associated

uniflow

confirm
a→b

stop-wait

stop-confirm
y→x

Ensure intent
& return-routeability

zero

stopping

a→b

associate
b→a

toidle

to
associated

tostop

stop
x→y

associating

associated

uniflow

confirm
a→b

stop-wait

stop-confirm
y→x

Two-way stop

zero

stopping

a→b

associate
b→a

toidle

to
associated

tostop

stop
x→y

associating

associated

uniflow

confirm
a→b

stop-wait

stop-confirm
y→x

The draft
• As input to protocol design: consider which signals

are made publicly available by your protocol, and how
these will be used to maintain transport state on-path.

• As guidance for middlebox design: separate the
extraction of signals from headers from the semantic
treatment of those signals for state maintenance.

• Next steps?

