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The Problem
• Lots and lots of state-keeping devices on path… 

• … that assume TCP semantics 
• … won’t work with non-TCP transports 

• UDP-based transports need: 
• frequent keepalives 
• explicit directional rules, port mapping 
• other nasty hacks 
• or fall back to TCP 

• These devices will do something with UDP transports anyway 
• Let’s define something sane for them to do. 



TCP state modeling  
at middleboxes
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A generic state machine
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One-way flows &  
one-sided devices
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Ensure intent  
& return-routeability
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Two-way stop
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The draft
• As input to protocol design: consider which signals 

are made publicly available by your protocol, and how 
these will be used to maintain transport state on-path. 

• As guidance for middlebox design: separate the 
extraction of signals from headers from the semantic 
treatment of those signals for state maintenance. 

• Next steps?


