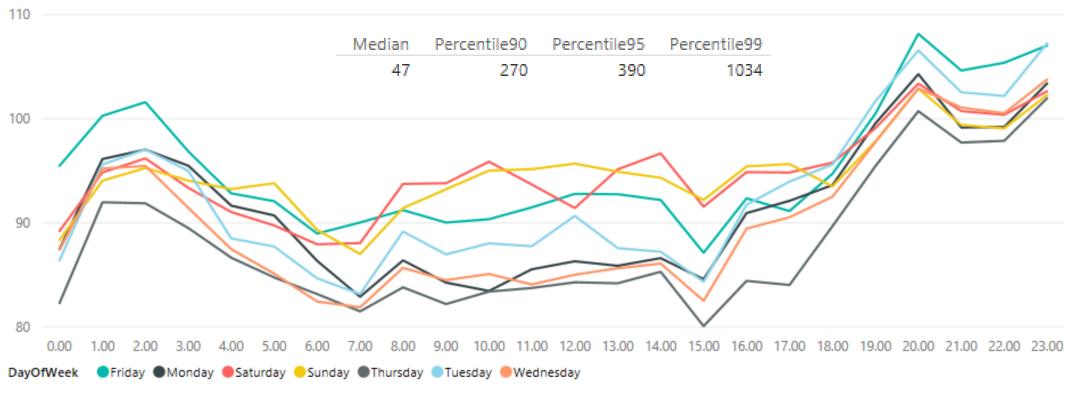

Reflections on Congestion Control


Praveen Balasubramanian pravb@microsoft.com

State of the Union

- Congestion control defaults in major device platforms
 - Android, ChromeOS: CUBIC
 - iOS, macOS: CUBIC
 - Windows: CTCP
- Datacenter congestion control
 - DCTCP, DCQCN and variants
 - BBR, Timely
- Academia proposals
 - PCC (performance oriented congestion control)
 - Sprout, Remy
- Trends
 - AQM
 - QUIC, User mode transports
 - laaS

Bufferbloat - RTT inflation during peak load times

Average SRTT information from sampled TCP connections for Windows Desktop and Xbox consoles

Food for thought

- With a multitude of congestion control algorithms sharing bottleneck links, how do we ensure fairness and good performance?
 - How do we deal with user mode transports which may accelerate the variety of congestion control algorithms?
 - Is the onus on each individual developer to test all the various permutations? Will this scale?
- How can we prevent congestion control from becoming an arms race?
 - Can we define a minimum spec for all congestion control to adhere to in the presence and absence of explicit congestion signaling?
 - What does "TCP friendly" mean now?
- What is the role of the IETF here?
 - Is standardization or establishing best practices possible?
 - Is publishing informational RFCs for individual algorithms sufficient?