FECFRAME – extension Adding convolutional FEC codes support to the FEC Framework

Vincent Roca, Inria, France Ali Begen, Networked Media, Turkey <u>https://datatracker.ietf.org/doc/draft-roca-tsvwg-fecframev2/</u>

March 2017, IETF98, Chicago

Note well for FECFRAME-ext + RLC I-Ds

- we, authors, didn't try to patent any of the material included in this presentation/I-D
- we, authors, are not reasonably aware of patents on the subject that may be applied for by our employer
- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know

Reminder: this I-D is about...

an EXTENSION of the FEC Framework (or FECFRAME) / <u>RFC 6363</u>

Ogoal of FECFRAME is to add AL-FEC protection to real-time unicast or multicast flows

FECFRAME already part of 3GPP Multimedia Broadcast/Multicast Service (MBMS) standards

Oeverybody's interested by the same content at the same time at the same place

- FLUTE/ALC \Rightarrow files
- FECFRAME \Rightarrow streaming

Oend-to-end latency DOES matter

Reminder: RFC 6363 is limited to Block codes

Reminder: goal is to extend it to codes based on sliding encoding window

Changes since IETF 97

as discussed during IETF'97, this is an extension

Odoes NOT compromise backward compatibility of FECFRAME
 Odoes NOT remove any capability to FECFRAME
 Odoes NOT obsolete RFC 6363

current I-D

Okeeps the structure of RFC 6363 Oincludes additional text specific to convolutional codes

OI-D is streamlined (18 pages long)...

O... and easier to read ③

No technical substantive change, only form changed!

Random Linear Codes (RLC) FEC Scheme Convolutional FEC codes for FECFRAME

Vincent Roca, Inria, France

https://datatracker.ietf.org/doc/draft-roca-tsvwg-rlc-fec-scheme/

March 2017, IETF98, Chicago

It's a FEC Scheme

• it details:

Othe code specifications: "how do we encode and decode?"

 \Rightarrow pretty simple

Othe signaling: "how do we identify packets?", "how do we synchronize RLC encoder and decoder?"

 \Rightarrow a bit more complex

for lossy networks (e.g., Internet or wireless nets)
 Owe call it an "erasure channel"

based on a sliding encoding window
 Owe call it a "convolutional code"

Understanding RLC encoding in 1 minute

there's a sliding encoding window
 Oit slides over the continuous data flow

Oyou need a repair packet?
Ocompute a linear combination of packets currently in the encoding window

Understanding RLC encoding in 1 minute...

○"R" in RLC stands for Random...

 \Rightarrow coefficients are chosen randomly over a certain Finite Field, using a seed and a PRNG

Send this repair packet plus a signaling header
Oheader is called "FEC Repair Payload ID"

Understanding RLC decoding in 1 minute

• it's all a matter of solving a linear system...

- **Oeach received repair packets adds an "equation"**
- **Osource packets are the "variables"**
 - lost packets are "unknowns", others are summed to the constant terms

Ouse Gaussian elimination (or something else)

$$\begin{array}{cccc} \text{lost pkt} & \text{lost pkt} & \text{added to the constant terms} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & &$$

2 unknowns, 3 equations \Rightarrow high probability to solve the system

A new FEC Scheme with a big inheritance

same manner to specify a FEC Scheme as with block codes for FECFRAME

Osame I-D structure

Oexcept we're not talking about "blocks" anymore

 similar source packet to source symbol mapping
 ONB: I sometimes erroneously used "packet" instead of "symbol" in previous slides for the sake of simplicity

similar signaling

Omain difference: two Encoding Symbol ID spaces, one for source, one for repair, instead of a single one

The key question: Does it work?

Two types of benefits for conv. codes

reduced FEC added latency

intuition:

Orepair packets are quickly produced and they quickly recover an isolated loss

• improved robustness for real-time flows

intuition:

Oencoding windows overlap with one another which better protects against long loss bursts

Obecause of reduced latency, encoding/decoding windows are larger than blocks for block codes

Experimental setup

compare RLC vs. Reed-Solomon codes

sliding window code

ideal block code
(max. loss recovery performance!)

Oevaluation based on true C-language codecs, using an update of http://openfec.org

• only transmissions are simulated

Oassume CBR transmissions

- because 3GPP defines CBR channels
- because it's more realistic (more FEC protection means less source traffic, no congestion control impact)

Ouse 3GPP loss scenarios representative of mobile use-cases^(*)

Experimental setup...

How much repair traffic to achieve the target quality? Determines:

- block or en/decoding window sizes
- maximum source flow bitrate

Experimental setup...

• take CBR packet scheduling into account rep₀ rep₁ rep₂ rep₃ rep₄ rep₅ rep₆ rep₇ rep₈ rep₉ rep₁₀ rep₁₁ rep₁₂ rep₁₃ FEC enc.

. . .

src₀ src₁ src₂

block-BEGINNING 1

2.

 $src_3 \quad src_4 \quad src_5 \quad src_6 \quad src_7 \quad src_8 \quad src_9 \quad src_{10} \quad src_{11} \quad src_{12} \quad src_{13}$

time

Experimental setup...

• take 3GPP mobility scenarios into account

Ovehicle passenger \Rightarrow **losses are "evenly" spread**

4 different average loss rates (1%, 5%, 10%, 20%)

Opedestrian \Rightarrow **loss bursts**

4 different average loss rates (1%, 5%, 10%, 20%)

3 km/h vehicle passenger, 20% average loss rate

Understanding the following figures

for given loss model and latency budget, in order to achieve 10⁻³ quality

Results: min. FEC protection required...

240 ms latency budget for FEC

RLC is **always significantly better**, achieving the desired target quality with significantly less repair traffic!

Results: min. FEC protection required...

480 ms latency budget for FEC \Rightarrow longer block/sliding window sizes

With a double "latency budget", RLC remains significantly better

And in terms of latency?

• we're dealing with multicast/broadcast, so...

Omany receivers with different channels

 \Rightarrow decide the worst channel you want to support and maximum repair traffic overhead you can "tolerate"

- Ouse this repair traffic overhead for the (single) multicast data flow
- Omeasure the experienced latency sufficient for a 10⁻³ residual loss rate for each supported channel

Ocompare...

And in terms of latency...

240 ms latency budget for FEC, and **fixed 50% repair traffic** (code rate=2/3)

more channels are supported by RLC, and the added latency to good receivers is far below the maximum 240 ms latency budget

Running code

(non-public) FECFRAME implementation available

OI did it

Ocompliant to 3GPP MBMS

Osuccessful interoperability tests

 (non-public) FECFRAME-extended implementation almost here

OI'm still working on it

(non-public) RLC implementation

Oleverages on our https://openfec.org

To finish

• our I-Ds are not yet finalized...

O... but reasonably mature

• we already have a use-case

O3GPP standardization activity on Mission Critical Push-To-Talk (audio + video + file)

