
ALTO WG Q. Xiang
Internet-Draft Tongji/Yale University
Intended status: Informational H. Newman
Expires: January 4, 2018 California Institute of Technology
 G. Bernstein
 Grotto Networking
 H. Du
 Tongji/Yale University
 K. Gao
 Tsinghua University
 A. Mughal
 J. Balcas
 California Institute of Technology
 J. Zhang
 Tongji University
 Y. Yang
 Tongji/Yale University
 July 3, 2017

 Resource Orchestration for Multi-Domain Data Analytics
 draft-xiang-alto-exascale-network-optimization-03.txt

Abstract

 Data-intensive analytics is entering the era of multi-domain,
 geographically-distributed, collaborative computing, where different
 organizations contribute various resources to collaboratively
 collect, share and analyze extremely large amounts of data. Examples
 of this paradigm include the Compact Muon Solenoid (CMS) and A
 Toroidal LHC ApparatuS (ATLAS) experiments of the Large Hadron
 Collider (LHC) program. Massive datasets continue to be acquired,
 simulated, processed and analyzed by globally distributed science
 networks in these collaborations. Applications that manage and
 analyze such massive data volumes can benefit substantially from the
 information about networking, computing and storage resources from
 each member’s site, and more directly from network-resident services
 that optimize and load balance resource usage among multiple data
 transfers and analytics requests, and achieve a better utilization of
 multiple resources in clusters.

 The Application-Layer Traffic Optimization (ALTO) protocol can
 provide via extensions the network information about different
 clusters/sites, to both users and proactive network management
 services where applicable, with the goal of improving both
 application performance and network resource utilization. In this
 document, we propose that it is feasible to use existing ALTO
 services to provides not only network information, but also

Xiang, et al. Expires January 4, 2018 [Page 1]

Internet-Draft ExaScale Network Optimization July 2017

 information about computation and storage resources in data analytics
 networks. We introduce a uniform resource orchestration framework
 (Unicorn), which achieves an efficient multi-resource allocation to
 support low-latency dataset transfer and data intensive analytics for
 collaborative computing. It collects cluster information from
 multiple ALTO services utilizing topology extensions and leverages
 emerging SDN control capabilities to orchestrate the resource
 allocation for dataset transfers and analytics tasks, leading to
 improved transfer and analytics latency as well as more efficient
 utilization of multi-resources in sites.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Xiang, et al. Expires January 4, 2018 [Page 2]

Internet-Draft ExaScale Network Optimization July 2017

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 5
 3. Changes Since Version -02 5
 4. Problem Settings . 6
 4.1. Motivation . 6
 4.2. Challenges . 6
 5. Basic Idea . 7
 5.1. Use ALTO services to provide multi-resource information . 7
 5.2. Example 1: network information impacts data analytics
 scheduling . 8
 5.3. Example 2: encode multi-resources in abstract network
 elements . 9
 6. Key Issues . 10
 7. Unified Resource Orchestration Framework 11
 7.1. Architecture . 11
 7.2. Workflow converter 14
 7.2.1. User API . 14
 7.3. Resource Demand Estimator 15
 7.4. Entity Locator . 15
 7.5. ALTO Client . 15
 7.5.1. Query Mode . 16
 7.6. ALTO Server . 16
 7.7. Resource View Extractor 16
 7.8. Execution Agents . 18
 7.9. Multi-Resource Orchestrator 18
 7.9.1. Orchestration Algorithms 18
 7.9.2. Online, Dynamic Orchestration 18
 7.9.3. Example: A Max-Min Fairness Resource Allocation
 Algorithm . 19
 8. Discussion . 20
 8.1. Deployment . 20
 8.2. Benefiting From ALTO Extension Services 21
 8.3. Limitations of the MFRA Algorithm 21
 9. Security Considerations 22
 10. IANA Considerations . 22
 11. Acknowledgments . 22
 12. References . 22
 12.1. Normative References 22
 12.2. Informative References 22
 Authors’ Addresses . 24

1. Introduction

 As the data volume increases exponentially over time, data intensive
 analytics is transiting from single-domain computing to multi-
 organizational, geographically-distributed, collaborative computing,

Xiang, et al. Expires January 4, 2018 [Page 3]

Internet-Draft ExaScale Network Optimization July 2017

 where different organizations contribute various resources, e.g.,
 computation, storage and networking resources, to collaboratively
 collect, share and analyze extremely large amounts of data. One
 leading example is the Large Hadron Collider (LHC) high energy
 physics (HEP) program, which aims to find new particles and
 interactions in a previously inaccessible range of energies. The
 scientific collaborations that have built and operate large HEP
 experimental facilities at the LHC, such as the Compact Muon Solenoid
 (CMS) and A Toroidal LHC ApparatuS (ATLAS), currently have more than
 300 petabytes of data under management at hundreds of sites around
 the world, and this volume is expected to grow to one exabyte by
 approximately 2018.

 With such an increasing data volume, how to manage the storage and
 analytics of these data in a globally distributed infrastructure has
 become an increasingly challenging issue. Applications such as the
 Production ANd Distributed Analysis system (PanDA) in ATLAS and the
 Physics Experiment Data Export system (PhEDEX) in CMS have been
 developed to manage the data transfers among different cluster sites.
 Given a data transfer request, these applications make data transfer
 decisions based on the availability of dataset replicas at different
 sites and initiate retransmission from a different replica if the
 original transmission fails or is excessively delayed. And HTCondor
 [HTCondor] is deployed to achieve coarse-grained data analytics
 parallelization across these sites. When a data analytics task is
 submitted, HTCondor adopts a match-making process to assign the task
 to a certain set of servers in one site, based on the coarse-grained
 description of resource availability, such as the number of cores,
 the size of memory, the size of hard disk, etc. However, neither
 dataset transfers nor data analytics task parallelization takes fine-
 grained information of cluster resources, such as data locality,
 memory speed, network delay, network bandwidth, etc., into account,
 leading to high data transfer and analytics latency and
 underutilization of cluster resources.

 The Application-Layer Traffic Optimization (ALTO) services defined in
 [RFC7285] provide network information with the goal of improving the
 network resource utilization while maintaining or improving
 application performance. Though ALTO is not designed to provide
 information about other resources, such as computing and storage
 resources in cluster networks, in this document we propose that
 exascale science networks can leverage existing ALTO services defined
 in [RFC7285] and ALTO topology extension services defined in network
 graph [DRAFT-NETGRAPH], path vector [DRAFT-PV], routing state
 abstraction[DRAFT-RSA], multi-cost [DRAFT-MC] and cost-calendar
 [DRAFT-CC] and etc. to encode information about multiple types of
 resources in science networks, such as memory I/O speed, CPU
 utilization, network bandwidth, and provide such information to

Xiang, et al. Expires January 4, 2018 [Page 4]

Internet-Draft ExaScale Network Optimization July 2017

 orchestration applications to improve the performance of dataset
 transfer and data analytics tasks, including throughput, latency,
 etc.

 This document introduces a unified resource orchestration framework
 (Unicorn), which provides efficient multi-resource allocation to
 support low-latency, multi-domain, geo-distributed data analytics.
 Unicorn provides a set of simple APIs for authorized users to submit,
 update and delete dataset transfer requests and data intensive
 analytics requests. One important proposal we make in this document
 is that it is feasible to use ALTO services to provide not only
 network information, but also information on other resources in
 multi-domain, geo-distributed analytics networks including computing
 and storage.

 A prototype of Unicorn with the dataset transfer scheduling component
 has been implemented on a single-domain Caltech SDN development
 testbed, where the ALTO OpenDaylight controller is used to collect
 topology information. We are currently designing the resource
 orchestration components to achieve low-latency data-intensive
 analytics.

 This document is organized as follows: Section 3 summarizes the
 change of this document since version -01. Section 4 elaborates on
 the motivation and challenges for coordinating storage, computing and
 network resources in a globally distributed science network
 infrastructure. Section 5 discusses the basic idea of encoding
 multi-resource information into ALTO path vector and abstraction
 services and gives an example. Section 6 lists several key issues to
 address in order to realize the proposal of providing multi-resource
 information by ALTO topology services. Section 7 gives the details
 of Unicorn architecture for multi-domain, geo-distributed data
 analytics. Section 8 discusses current development progress of
 Unicorn and next steps.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Changes Since Version -02

 o Add an example in Section 7 to show the importance of network
 information in resource allocation for data analytics.

Xiang, et al. Expires January 4, 2018 [Page 5]

Internet-Draft ExaScale Network Optimization July 2017

 o Update the architecture of Unicorn in Section 7, i.e., add the
 entity locator and rename ANE aggregator to resource view
 extractor.

 o Add detailed description of how the entity locator and the
 resource view extractor work.

 o Minor changes in abstract and discussion sections.

4. Problem Settings

4.1. Motivation

 Multi-domain, geo-distributed data analytics usually involves the
 participation of countries and sites all over the world. Science
 programs such as the CMS experiment and the ATLAS experiment at CERN
 are typical examples. The site located at the LHC laboratory is
 called a Tier-0 site, which processes the data selected and stored
 locally by the online systems that select and record the data in
 real-time as it comes off the particle detector, archives it and
 transfers it to over 10 Tier-1 sites around the globe. Raw datasets
 and processed datasets from Tier-1 sites are then transferred to over
 160 Tier-2 sites around the world based on users’ requests.
 Different sites have different resources and belong to different
 administration domains. With the exponentially increasing data
 volume in the CMS experiment, the management of large data transfers
 and data intensive analytics in such a global multi-domain science
 network has become an increasingly challenging issue. Allocating
 resources in different clusters to fulfill different users’ dataset
 transfer requests and data analytics requests require careful
 orchestrating as different requests are competing for limited
 storage, computation and network resources.

4.2. Challenges

 Orchestrating exascale dataset transfers and analytics in a globally
 distributed science network is non-trivial as it needs to cope with
 two challenges.

 o Different sites in this network belong to different administration
 domains. Sharing raw site/cluster information would violate
 sites’ privacy constraints. Orchestrating data transfers and
 analytics requests based on highly abstracted, non-real-time
 network information may lead to suboptimal scheduling decisions.
 Hence the orchestrating framework must be able to collect
 sufficient resource information about different clusters/sites in
 real-time as well as over the longer term, to allow reasonably

Xiang, et al. Expires January 4, 2018 [Page 6]

Internet-Draft ExaScale Network Optimization July 2017

 optimized network resource utilization without violating sites’
 privacy requirements.

 o Different science programs tend to adopt different software
 infrastructures for managing dataset transfers and analytics, and
 may place different requirements. Hence the orchestrating
 framework must be modular so that it can support different dataset
 management systems and different orchestrating algorithms.

 The orchestrating framework must support the interaction between the
 multi-resource orchestration module, the dataset transfer module, and
 the data analytics execution module. The key information to be
 exchanged between modules includes dataset information, the resource
 state of different clusters and sites, the transfer and analytic
 requests in progress, as well as trends and network-segment and site
 performance from the network point of view. Such interaction ensures
 that (1) the various programs can adopt their own data transfer and
 analytics systems to be multi-resource-aware, and more efficient in
 achieving their goals; and (2) the various orchestrating algorithms
 can achieve a reasonably optimized utilization on not only the
 network resource but also the computing and storage resources.

5. Basic Idea

5.1. Use ALTO services to provide multi-resource information

 The ALTO protocol is designed to provide network information to
 applications so that applications can achieve better performance and
 the network more efficient use of resources. Different ALTO topology
 services including path vector, routing state abstraction, multi-
 cost, cost calendar, etc., have been proposed to provide fine-grained
 network information to applications. In this document, we propose
 that not only can ALTO provide network information of different
 cluster sites, it can also provide information of multiple resources,
 including computing and storage resources. To this end, the basic
 "one-big-switch" abstraction provided by the base ALTO protocol is
 not sufficient. Several examples have already been given in
 [DRAFT-PV] and [DRAFT-RSA] to demonstrate that. There has been a
 similar proposal before about using ALTO to provide resource
 information for data centers [DRAFT-DC]. However, that proposal
 requires a new information model for clusters or data centers, which
 may affect the compatibility of ALTO. The solution of this proposal
 is simpler. Its basic idea is that each computer node and storage
 node can be seen as an "abstract network element" defined in ALTO-
 path-vector [DRAFT-PV]. In this way, Unicorn can fully reuse all
 existing ALTO services by introducing only one cost-mode (pv) and two
 cost-metrics (ne and ane), instead of introducing a new information
 model.

Xiang, et al. Expires January 4, 2018 [Page 7]

Internet-Draft ExaScale Network Optimization July 2017

5.2. Example 1: network information impacts data analytics scheduling

 .-----------. .-----------.
 | .-----. | | .-----. | | | | |
 | | eh1 | | | | eh3 | |
 | ’-----’ | | ’-----’ |
 | | | |
 | | | |
 | | | |
 | | | |
 | .-----. | | .-----. |
 | | eh2 | | | | eh4 | |
 | ’-----’ | | ’-----’ |
 ’-----------’ ’-----------’
 Site 1 Site 2
 distance(eh1, eh2) = 2 distance(eh1, eh2) = 2

 Figure 1: An Example for Data Locality Information.

 We first use the example in Figure 1 to show that only network
 information itself has a huge impact on resource allocation for data
 analytics. In this scenario, a MapReduce task needs to be executed.
 The input data has two copies at end hosts eh1 and eh3, respectively.
 And the end hosts eh2 and eh4 will be the computation nodes with the
 same computation power, correspondingly. Using the common data
 analytics resource management framework such as Hadoop it can be
 revealed that both allocation options, i.e., eh1->eh2 and eh3->eh4,
 have a storage-computation distance of 2, i.e., they have the same
 data locality from Hadoop’s view. As a result, it appears that both
 options would provide the same performance for this task.

 However, assume that the bandwidth between eh1 and eh2 is 100Mb/s
 while that between eh3 and eh4 is 1Gb/s. These significant different
 data accessing speeds decide that these options have very different
 performances for the same task and the only optimal allocation option
 is to allocate this task to eh3->eh4. This example demonstrates the
 imperativeness of network information in making efficient resource
 allocation decisions. Such information is not provided in Hadoop or
 other similar or related projects such as Mesos. On the contrary, if
 ALTO servers are deployed at these sites, applications can retrieve
 such information via ALTO queries.

Xiang, et al. Expires January 4, 2018 [Page 8]

Internet-Draft ExaScale Network Optimization July 2017

5.3. Example 2: encode multi-resources in abstract network elements

 We use the same dumbbell topology in [DRAFT-RSA] as an example to
 show the feasibility of using ALTO topology service to provide multi-
 resource information. In this topology, we assume the bandwidth of
 each network cable is 1Gbps, including the cables connecting end
 hosts to switches. Consider a dataset transfer request which needs
 to schedule the traffic among a set of end host source-destination
 pairs, say eh1 -> eh2, and eh3 -> eh4. Assume that the transfer
 application receives information from the ALTO Cost Map service that
 both eh1 -> eh2 and eh3 -> eh4 have bandwidth 1Gbps. In [DRAFT-RSA],
 it is shown that whether each of the two traffic flows can receive
 1Gbps bandwidth depends on whether the routes of two flows share a
 bottleneck link. Path vector and routing state abstraction services
 provide additional information about network state encoded in
 abstract network elements. If the returned state is ane1 + ane2 <=
 1Gbps, it means two flows cannot each get 1Gbps bandwidth at the same
 time. If the returned state is ane1 <= 1Gbps and ane2 <= 1Gbps, it
 means two flows each can get 1Gbps bandwidth.

 +------+
 | |
 --+ sw6 +--
 / | | \
 PID1 +-----+ / +------+ \ +-----+ PID2
 eh1__| |_ / \ ____| |__eh2
 | sw1 | \ +--+---+ +---+--+ / | sw2 |
 +-----+ \ | | | |/ +-----+
 _| sw5 +---------+ sw7 |
 PID3 +-----+ / | | | |\ +-----+ PID4
 eh3__| |__/ +------+ +------+ ____| |__eh4
 | sw3 | | sw4 |
 +-----+ +-----+

 Figure 2: A Dumbbell Network Topology

 Other than network resource, assume in this topology eh1 and eh3 are
 equipped with commodity hard disk drives (HDD) while eh2 and eh4 are
 equipped with SSDs. Because the bandwidth of an HDD is typically
 0.8Gbps and that of SSD is typically 3Gbps. Even if the returned
 routing state is ane1 <= 1Gbps and ane2 <=1Gbps, the actual
 bottleneck of each traffic flow is the storage I/O bandwidth at
 source host. As a result, the total bandwidth of both traffic flows
 can only reach 1.6Gbps.

Xiang, et al. Expires January 4, 2018 [Page 9]

Internet-Draft ExaScale Network Optimization July 2017

 It has been verified in the CMS experiment, and also several studies
 on commercial data centers that network resource are not always the
 bottleneck of large dataset transfers and data analytics. Many have
 reported that storage resources and computing resources become the
 bottleneck in a fairly large percentage of dataset transfers and data
 analytics tasks in science networks and commercial data centers.

 In this example, if we look at the end hosts as abstract network
 elements, the storage I/O bandwidth of each host can also be encoded
 as an abstract element into the path-vector. And under the storage
 and route settings above, the returned cluster state would be ane1
 <=0.8Gbps and ane2 <=0.8Gbps, which provides a more accurate capacity
 region for the requested traffic flows.

6. Key Issues

 The last section described the basic idea of using ALTO topology
 services to provide multi-resource information and gives an example
 to demonstrate its feasibility. Next we list and discuss several key
 issues to address in this proposal.

 o Can ALTO topology services provide data locality information?
 Existing ALTO topology services do not provide such information.
 Many studies have pointed out that such information plays a vital
 role in reducing the latency of data-intensive analytics. If ALTO
 topology services can encode such information together with
 information of other resources together, data-intensive
 applications can benefit a great deal in terms of information
 aggregation and communication overhead.

 o How to quickly map applications’ resource allocation decision on
 abstract multi-resource view back to the physical multi-resource
 view of clusters/sites? Fine-grained resource information can be
 encoded into abstract network elements to reduce overhead and
 provide certain privacy protection of clusters. Such information
 can be highly compressed (see the dumbbell example used in this
 document as well as in [DRAFT-PV] and [DRAFT-RSA]). In
 preliminary evaluations on RSA, the network element compression
 ratio can be as high as 80 percent. This ratio is expected to be
 even higher in large-scale data center or cluster setting, e.g. a
 fat-tree topology with k=48. Therefore a fast mapping from the
 resource orchestration decisions based on the abstract view back
 to the physical view is needed to satisfy the stringent latency
 requirement of large dataset transfers and data-intensive
 analytics.

 o How much privacy, including key resource configurations, raw
 topology, intra-cluster scheduling policy, etc., will be exposed?

Xiang, et al. Expires January 4, 2018 [Page 10]

Internet-Draft ExaScale Network Optimization July 2017

 Compared with the "one-big-switch" abstraction, other ALTO
 topology services such as path vector [DRAFT-PV] and routing state
 abstraction [DRAFT-RSA] provide fine-grained resource information
 to applications. Even if such information can be encoded into
 abstract network elements, it still risks exposing private
 information of different clusters/sites. Current internet drafts
 of these services did not provide any formal privacy analysis or
 performance measurement. This would be one of the key issues this
 document plans to investigate in the future.

 o How does current ALTO services such as path-vector and RSA scale
 when they are used to provide abstract information concerning
 multiple resources in clusters? Another issue along this line is
 how to balance the liveness of fine-grained resource information
 and the corresponding information delivery overhead? Although
 encoding information of network elements into abstract network
 elements can achieve a very competitive information compression
 ratio, large dataset transfers and analytics applications always
 involve many network elements in multiple clusters/sites and the
 absolute number of involved network elements keep increasing as
 the scale of clusters increase. In addition, when resource
 information in a cluster changes, the ALTO services need to inform
 all related applications. In either cases, delivering fine-
 grained resource information would cause high communication
 overhead. There still lacks of an analytics or experimental
 understanding on the scalability of path-vector and RSA services.

7. Unified Resource Orchestration Framework

7.1. Architecture

 This section describes the design details of key components of the
 Unicorn framework: the workflow converter, the resource demand
 estimator, the ALTO clients, the ALTO servers, the resource view
 extractor, the multi-resource orchestrator and the execution agents.
 Figure 3 shows the architecture of Unicorn. The overall process is
 as follows.

Xiang, et al. Expires January 4, 2018 [Page 11]

Internet-Draft ExaScale Network Optimization July 2017

 .---------.
 | Users |
 ’---------’
 | 1
 .- - - - - - - - - - - - - - -|- - - - - - - - - - - - - - - -.
 | .--------------------. |
 | Unicorn | Workflow Converter | |
 | ’--------------------’ |
 | | 2 |
 | .-----------------------------. |
 | | Resource Demand Estimator | |
 | ’-----------------------------’ |
 | | 3 |
 | .-----------------------------. |
 | | Multi-Resource Orchestrator | |
 | ’-----------------------------’ |
 | / | | 10 | \ | | | | | | |
 | 9 / | 4 | 4 | \ 9 |
 | .-------------. .-------. | .-------. .-------------. |
 | |Resource View| |Entity | | |Entity | |Resource View| |
 | | Extractor | |Locator| | |Locator| | Extractor | |
 | ’-------------’ ’-------’ | ’-------’ ’-------------’ |
 | | 8 | 5 | 5 | | 8 |
 | .----------------. .-----------. .----------------. |
 | | ALTO Client(s) | .-| Execution | | ALTO Client(s) | |
 | ’----------------’ | | Agents | ’----------------’ |
 | | 6 | ’-----------’ | 6 |
 | .----------------. ’-----------’ .----------------. |
 | | ALTO Server(s) | / \ | ALTO Server(s) | |
 | ’----------------’ / \ ’----------------’ |
 | | 7 / 11 11 \ | 7 |
 | .----------------. / \ .----------------. |
 | | Site 1 | . . . | Site N | |
 | ’----------------’ ’----------------’ |
 ’- -’

 Figure 3: Architecture of Unicorn.

 o STEP 1 Authorized users submit high-level data analytics workflows
 to Unicorn through a set of simple APIs.

 o STEP 2 The workflow converter transforms the high-level data
 analytics workflows into low-level task workflows, i.e., a set of
 analytics tasks with precedence encoded in a directed acyclic
 graph (DAG).

Xiang, et al. Expires January 4, 2018 [Page 12]

Internet-Draft ExaScale Network Optimization July 2017

 o STEP 3 The resource demand estimator automatically finds the
 optimal configuration (resource demand) of each task, i.e., the
 number of CPUs, the size of memory and disk, I/O bandwidth, etc.

 o STEP 4 The multi-resource orchestrator receives the resource
 demand of a set of tasks and sends them to the entity locator at
 each site.

 o STEP 5 The entity locator at each site retrieves the entity
 addresses of the end hosts that would be allocated for the tasks
 to be scheduled, and passes these addresses to the ALTO clients,
 and asks the ALTO clients to collect information about these end
 hosts, i.e., properties of corresponding computing, storage and
 networking resources.

 o STEP 6 The ALTO clients issue ALTO queries defined in the base
 ALTO protocol [RFC7285], e.g., EPS, ECS, Network Map, etc. and
 ALTO extension services, e.g., routing state abstraction (RSA)
 [DRAFT-RSA], path vector [DRAFT-PV], network graph
 [DRAFT-NETGRAPH], multi-cost [DRAFT-MC], cost-calendar [DRAFT-CC]
 and property map [DRAFT-PM], to collect resource information.

 o STEP 7 The ALTO servers at each site accept the queries from the
 ALTO client, collect resource information from the residing site
 and send back to the ALTO clients.

 o STEP 8 The ALTO clients send the response from ALTO servers to the
 resource view extractor.

 o STEP 9 The extractor uses a lightweight, optimal algorithm to
 compress the raw resource information provided by ALTO servers
 into a minimal, equivalent view of resources and sends back to the
 multi-resource orchestrator.

 o STEP 10 The orchestrator makes resource allocation decisions,
 e.g., dataset transfer scheduling and analytics task placement,
 based on the resource demand of analytics tasks and the resource
 supply sent back from the resource view extractor. Decisions are
 then sent to the execution agents deployed in corresponding sites.

 o STEP 11 The execution agents receive and execute instructions from
 the multi-resource orchestrator. They also monitor the status of
 different tasks and send the updated status to the multi-resource
 orchestrator.

 Unicorn provides a unified, automatic solution for multi-domain, geo-
 distributed data analytics. In particular, its benefits include:

Xiang, et al. Expires January 4, 2018 [Page 13]

Internet-Draft ExaScale Network Optimization July 2017

 o On the resource demand side, it provides a set of simple APIs for
 authorized users to submit and manage data analytics requests and
 enables real-time requests’ status monitoring. And it
 automatically converts high-level analytics workflow into low-
 level task workflows and finds the optimal configuration for each
 task.

 o On the resource supply side, it collects the resource information
 of different sites through a common, REST based interface
 specified by the ALTO protocol, encodes such information into
 different entity abstractions and computes a minimal, yet accurate
 view on resource supply dynamic.

 o It provides a scalable multi-resource orchestrator that makes
 efficient resource allocation decisions to achieve high resource
 utilization and low-latency data analytics.

 o The architecture of Unicorn is modular to support different
 resource orchestration algorithms and the deployment of different
 ALTO servers.

7.2. Workflow converter

 The converter is the front end of Unicorn. It is responsible for
 collecting high-level data analytics workflows from users and
 transforming them into low-level task workflows, e.g., HTCondor
 ClassAds. It provides a set of simple APIs for users to submit and
 manage requests, and to track the status of requests in real-time.

7.2.1. User API

 o submitReq(request, [options])

 This API allows users to submit a request and specify
 corresponding options. The request can be a data transfer request
 or a data analytics request. Request options include priority,
 delay, etc. It returns a request identifier reqID that allows
 users to update, delete this request or track its status. The
 additional options may or may not be approved, and the relative
 priorities may be modified by the resource orchestrator depending
 on the role of users (regular users or administrators at different
 levels), the resource availability and the status of other ongoing
 requests.

 o updateReq(requestID, [options])

 This API allows users to update the options of requests. It will
 return a SUCCESS if the new options are received by the request

Xiang, et al. Expires January 4, 2018 [Page 14]

Internet-Draft ExaScale Network Optimization July 2017

 parser. But these new options may or may not be approved, and may
 be modified by the resource orchestrator depending on the role of
 users (regular users or administrators), the resource availability
 and the status of other ongoing requests.

 o deleteReq(requestID)

 This API allows users to delete a request by passing the
 corresponding requestID. A completed request cannot be deleted.
 An ongoing request will be stopped and the output data will be
 deleted.

 o getReqStatus(requestID)

 This API allows users to query the status of a request by
 specifying the corresponding requestID. The returned status
 information includes whether the request has started, the assigned
 priority, the percentage of finished sub-requests, transmission
 statistics, the expected remaining time to finish, etc.

7.3. Resource Demand Estimator

 The estimator leverages the fact that low-level tasks are typically
 repetitive or have very high similarities. It uses reinforcement
 learning to predict the optimal configuration for each task and
 passes the resource demand to the multi-resource orchestrator for
 further processing.

7.4. Entity Locator

 The task configurations computed by the demand estimator has no
 knowledge on the underlying structure of topology of each site, i.e.,
 the addresses of end hosts and network devices. Hence they cannot be
 directly used by the ALTO clients for querying resource information.
 The entity locator retrieves the entity addresses of the end hosts
 that would be allocated for the tasks to be scheduled, and passes
 these addresses to the ALTO clients, and asks the ALTO clients to
 collect information about these end hosts, i.e., properties of
 corresponding computing, storage and networking resources.

7.5. ALTO Client

 The ALTO client is in the back end of Unicorn and is responsible for
 retrieving resource information through querying ALTO servers
 deployed at different sites. The resource information needed in
 Unicorn includes the topology, link bandwidth, computing node memory
 I/O speed, computing node CPU utilization, etc. The base ALTO
 protocol [RFC7285] provides an extreme single-node abstraction for

Xiang, et al. Expires January 4, 2018 [Page 15]

Internet-Draft ExaScale Network Optimization July 2017

 this information, which only allows the multi-resource orchestrator
 to make coarse-grained resource allocation decisions. To enable
 fine-grained multi-resource orchestration for dataset transfer and
 data analytics in cluster networks, ALTO topology extension services
 such as routing state abstraction (RSA) [DRAFT-RSA], path vector
 [DRAFT-PV], network graph [DRAFT-NETGRAPH], multi-cost [DRAFT-MC] and
 cost-calendar [DRAFT-CC] are needed to provide fine-grained
 information about different types of resources in clusters.

7.5.1. Query Mode

 The ALTO client should operate in different query modes depending on
 the implementation of ALTO servers. If an ALTO server does not
 support incremental updates using server-sent events (SSE)
 [DRAFT-SSE], the ALTO client sends queries to this server
 periodically to get the latest resource information. If the cluster
 state changes after one query, the ALTO client will not be aware of
 the change until next query. If an ALTO server supports SSE, the
 ALTO client only sends one query to the ALTO server to get the
 initial cluster information. When the resource state changes, the
 ALTO client will be notified by the ALTO server through SSE.

7.6. ALTO Server

 ALTO servers are deployed at different sites around the world, and at
 strategic locations in the network itself, to provide information
 about different types of resources in the cluster networks in
 response to queries from the ALTO client. Such information include
 topology, link bandwidth, memory I/O speed and CPU utilization at
 computing nodes, storage constraints in storage nodes and etc. Each
 ALTO server must provide basic information services as specified in
 [RFC7285] such as network map, cost map, endpoint cost service (ECS),
 etc. To support the fine-grained multi-resource allocation in
 Unicorn, each ALTO server should also provide more fine-grained
 information about different resources in clusters through ALTO
 extension services such as the routing state abstraction [DRAFT-RSA],
 path vector [DRAFT-PV], network graph [DRAFT-NETGRAPH], multi-cost
 [DRAFT-MC] and cost-calendar [DRAFT-CC] services.

7.7. Resource View Extractor

 In each site, the resource information collected by the ALTO clients
 is not directly sent back to the orchestrator. Instead, we design a
 resource view extractor to compress the resource information provided
 by the ALTO servers into a minimal, equivalent view of all the
 resources, i.e., computing, storage and networking resources, that
 would be allocated to a set of tasks. The extractor works in the
 following steps.

Xiang, et al. Expires January 4, 2018 [Page 16]

Internet-Draft ExaScale Network Optimization July 2017

 o Resource-Task Matrix

 Depending on specific services provided by the ALTO servers, the
 responses collected by ALTO clients may include information of
 different entities, e.g., endpoints, PIDs, ane, etc. Each entity
 possesses a set of resources available for tasks to be scheduled.
 For each entity property p in the responses, such as bandwidth,
 delay, etc., the extractor composes an entity-task matrix M(p).
 Each row of this M(p) represents an entity in the responses
 provides information about property p and each column represents a
 task to be scheduled. The element m(i, j) of M(p) is a variable
 representing the amount of property p of entity i that task j can
 get.

 o Resource-Task Constraints

 For each property p, the extractor composes a series of resource-
 task constraints. The first set of constraints is sum m(i, j) =
 r(p, j) for each task j. These constraints calculate r(p, j), the
 total amount of property p provided to j by all the entities. The
 exact rule of summation depends on the property p. For instance,
 if p is latency, the summation is through common addition
 operations, but if p is bandwidth, the summation is a minimum
 function.

 The second set of constraints is sum m(i, j) <= r(p, i) for each
 entity i. These constraints represent the usage of resource i on
 property p for all the tasks cannot exceed the capacity of
 resource i on this property. The exact rule of summation also
 depends on the property p. For instance, if p is bandwidth, the
 summation is through common addition operations, but if p is
 latency, the constraints become m(i,j) = r(p, i) for each each
 entity i and each task j. This means that entity i provides the
 same delay property for each task.

 o Resource View Compression

 The whole set of resource-task constraints are linear, and express
 the view of resources that are available for the tasks to be
 scheduled. The extractor uses a lightweight, optimal algorithm to
 compress them into a minimal, equivalent view of resources, i.e.,
 a minimal set of linear constraints that represent the same
 feasible region as the original constraints. The basic idea of
 this algorithm is described in [DRAFT-RSA].

Xiang, et al. Expires January 4, 2018 [Page 17]

Internet-Draft ExaScale Network Optimization July 2017

7.8. Execution Agents

 Execution agents are deployed at each site and are responsible for
 the following functions:

 o Receive and process instructions from the multi-resource
 orchestrator, e.g. dataset transfer scheduling, data analytics
 task placement and execution, task update and abortion, etc.

 o Monitor the status of data analytics tasks and send the updated
 status to the multi-resource orchestrator.

 Depending on the supporting data analytics frameworks, different
 request execution agents may be deployed in each site. For instance,
 in the CMS experiment at CERN, both MPI and Hadoop execution agents
 are deployed.

7.9. Multi-Resource Orchestrator

 The multi-resource orchestrator receives the resource demand
 information, i.e., a set of low-level task workflows and their
 configurations, from the resource demand estimator. It then asks the
 entity locator in each site to get the addresses of end hosts that
 would be allocated for the tasks to be scheduled and ALTO clients to
 query properties related to these end hosts. When the resource view
 extractor sends the response back, the orchestrator makes resource
 allocation decisions, e.g., dataset transfer scheduling and analytics
 task execution, based on both resource demand dynamic and resource
 supply dynamic. The dataset transfer scheduling decisions include
 dataset replica selection, path selection, and bandwidth allocation,
 etc. The analytics task execution decisions include which cluster
 should allocate how much resources to execute which tasks. These
 decisions are sent to the execution agents at different sites for
 execution.

7.9.1. Orchestration Algorithms

 The modular design of Unicorn allows the adoption of different
 orchestration algorithms and methodologies, depending on the specific
 performance requirements. In Section 7.8.3, a max-min fairness
 resource allocation algorithm for dataset transfer is described as an
 example.

7.9.2. Online, Dynamic Orchestration

 The multi-resource orchestrator should adjust the resource allocation
 decisions based on the progress of ongoing requests, the utilization
 and dynamics of cluster resources. In normal cases, the multi-

Xiang, et al. Expires January 4, 2018 [Page 18]

Internet-Draft ExaScale Network Optimization July 2017

 resource orchestrator periodically collects such information and
 executes the orchestration algorithm. When it is notified of events
 such as request status update, cluster state update and etc., the
 orchestrator will also execute the orchestration algorithm to adjust
 resource allocations.

7.9.3. Example: A Max-Min Fairness Resource Allocation Algorithm

 In this section, we describe a max-min fair resource allocation
 (MFRA) scheduling algorithm which aims to minimize the maximal time
 to complete a dataset transfer subject to a set of constraints. To
 make resource allocation decisions, MFRA requires sufficient network
 information including topology, link bandwidth and recent historical
 information in some cases. In a small-scale single-domain network,
 an SDN controller can provide the raw complete topology information
 for the MFRA algorithm. However, in a large-scale multi-domain
 science network such as CMS, providing the raw network topology is
 infeasible because (1) it would incur significant communication
 overhead; and (2) it would violate the privacy constraints of some
 sites. Several ALTO extension topology services including Abstract
 Path Vector [DRAFT-PV], Network Graphs [DRAFT-NETGRAPH] and RSA
 [DRAFT-RSA] can provide the fine-grained yet aggregated/abstract
 topology information for MFRA to efficiently utilize bandwidth
 resources in the network.

 Ongoing pre-production deployment efforts of Unicorn in the CMS
 network involve the implementation of the RSA service. Other than
 topology information, the additional input of the MFRA algorithm is
 the priority of each class of flows, expressed in terms of upper and
 lower limits on the allocated bandwidth between the source and the
 destination for each data transfer requests.

 The basic idea of the MFRA algorithm is to iteratively maximize the
 volume of data that can be transferred subject to the constraints.
 It works in quantized time intervals such that it schedules network
 paths and data volumes to be transferred in each time slot. When the
 DTR scheduler is notified of events such as the cancellation of a
 DTR, the completion of a DTR or network state changes, the MFRA
 algorithm will also be invoked to make updated network path and
 bandwidth allocation decisions.

 In each execution cycle, MFRA first marks all transfers as
 unsaturated. Then it solves a linear programming model to find the
 common minimum transfer satisfaction rate (i.e., the ratio of
 transferred data volume in a time interval over the whole data volume
 of this request) that is satisfied by all transfer requests. With
 this common rate found, MFRA then randomly selects an unsaturated
 request in each iteration, increases its transfer rate as much as

Xiang, et al. Expires January 4, 2018 [Page 19]

Internet-Draft ExaScale Network Optimization July 2017

 possible by finding residual paths available in the network, or by
 increasing the allocated bandwidth along an existing path, until it
 reaches its upper limit or can otherwise not be increased further, so
 it is saturated. At each iteration, newly saturated requests are
 removed from the subsequent process by fixing their corresponding
 rate value, and completed transfers are removed from further
 consideration. After all the data transfer rates are saturated in
 the given time slot, then a feasible set of data transfer volumes
 scheduled to be transferred in the slot across each link in the
 network can be derived.

 The MFRA algorithm yields a full utilization of limited network
 resources such as bandwidth so that all DTR can be completed in a
 timely manner. It allocates network resources fairly so that no DTR
 suffers starvation. It also achieves load balance among the sites
 and the network paths crossing a complex network topology so that no
 site and no network link is oversubscribed. Moreover, MFRA can
 handle the case where particular routing constraints are specified,
 e.g., where all routes are fixed ahead of time, or where each
 transfer request only uses one single path in each time slot, by
 introducing an additional set of linear constraints.

8. Discussion

8.1. Deployment

 The Unicorn framework is the first step towards a new class of
 intelligent, SDN-driven global systems for multi-domain, geo-
 distributed data analytics involving a worldwide ensemble of sites
 and networks, such as CMS and ATLAS. Unicorn relies heavily on the
 ALTO services for collecting and expressing abstract, real-time
 resource information from different sites, and the SDN centralized
 control capability to orchestrate data analytics workflows. It aims
 to provide a new operational paradigm in which science programs can
 use complex network and computing infrastructures with high
 throughput, while allowing for coexistence with other network
 traffic.

 A prototype case study implementation of Unicorn has been
 demonstrated on the Caltech/StarLight/Michigan/Fermilab SDN
 development testbed. Because this testbed is a single-domain
 network, the current Unicorn prototype leverages the ALTO
 OpenDaylight controller, to collect topology information. The CMS
 experiment is currently exploring pre-production deployments of
 Unicorn, looking towards future widespread production use. To
 achieve this goal, it is imperative to collect sufficient resource
 information from the various sites in the multi-domain CMS network,
 without causing any privacy leak. To this end, the ALTO RSA service

Xiang, et al. Expires January 4, 2018 [Page 20]

Internet-Draft ExaScale Network Optimization July 2017

 [DRAFT-RSA] is under development. Furthermore, as will be discussed
 next, other ALTO topology extension services can also substantially
 improve the performance of Unicorn.

8.2. Benefiting From ALTO Extension Services

 The current ALTO base protocol [RFC7285] exposes network topology and
 endpoint properties using the extreme "my-Internet-view"
 representation, which abstracts a whole network as a single node that
 has a set of access ports, with each port connects to a set of end
 hosts called endpoints. Such an extreme abstraction leads to
 significant information loss on network topology [DRAFT-PV], which is
 the key information for Unicorn to make dynamic scheduling and
 resource allocation decisions. Though Unicorn can still allocate
 resource for data transfer and analytics requests on this abstract
 view, the resource allocation decisions are suboptimal.
 Alternatively, feeding the raw, complete network topology of each
 site to Unicorn is not desirable, either. First, this would violate
 privacy constraints of different sites. Secondly, a raw network
 topology would significantly increase the problem space and the
 solution space of the orchestrating algorithm, leading to a long
 computation time. Hence, Unicorn desires an ALTO topology service
 that is able to provide only enough fine-grained topology
 information.

 Several ALTO topology extension services including Path Vector
 [DRAFT-PV], Network Graphs [DRAFT-NETGRAPH] and RSA [DRAFT-RSA],
 [DRAFT-PM] are potential candidates for providing fine-grained
 abstract network formation to Unicorn. In addition, we propose that
 these services can also be used to provide information about
 computing and storage resources of different cluster/sites by viewing
 each computing node and storage node as a network element or abstract
 network element. For instance, the path vector service supports the
 capacity region query, which accepts multiple concurrent data flows
 as the input and returns the information of bottleneck resources,
 which could be a set of links, computing devices or storage devices,
 for the given set of concurrent flows. This information can be
 interpreted as a set of linear constraints for the multi-resource
 orchestrator, which can help data transfer and analytics requests
 better utilize multiple types of resources in different clusters.

8.3. Limitations of the MFRA Algorithm

 The first limitation of the MFRA algorithm is computation overhead.
 The execution of MFRA involves solving linear programming problems
 repeatedly at every time slot. The overhead of computation time is
 acceptable for small sets of dataset transfer requests, but may
 increase significantly when handling large sets of requests, e.g.,

Xiang, et al. Expires January 4, 2018 [Page 21]

Internet-Draft ExaScale Network Optimization July 2017

 hundreds of transfer requests. Current efforts towards addressing
 this issue include exploring the feasibility of incremental
 computation of scheduling policies, and reducing the problem scale by
 finding the minimal equivalent set of constraints of the linear
 programming model. The latter approach can benefit substantially
 from the ALTO RSA service [DRAFT-RSA].

 The second limitation is that the current version of MFRA does not
 involve dataset replica selection. Simply denoting the replica
 selection as a set of binary constraint will significantly increases
 the computation complexity of the scheduling process. Current
 efforts focus on finding efficient algorithms to make dataset replica
 selection.

9. Security Considerations

 This document does not introduce any privacy or security issue not
 already present in the ALTO protocol.

10. IANA Considerations

 This document does not define any new media type or introduce any new
 IANA consideration.

11. Acknowledgments

 The authors thank discussions with Shenshen Chen, Linghe Kong, Xiao
 Lin and Xin Wang.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [DRAFT-CC]
 Randriamasy, S., Yang, R., Wu, Q., Deng, L., and N.
 Schwan, "ALTO Cost Calendar", 2017,
 <https://datatracker.ietf.org/doc/draft-ietf-alto-cost-
 calendar>.

Xiang, et al. Expires January 4, 2018 [Page 22]

Internet-Draft ExaScale Network Optimization July 2017

 [DRAFT-DC]
 Lee, Y., Bernstein, G., Dhody, D., and T. Choi, "ALTO
 Extensions for Collecting Data Center Resource
 Information", 2014, <https://datatracker.ietf.org/doc/
 draft-lee-alto-ext-dc-resource/>.

 [DRAFT-MC]
 Randriamasy, S., Roome, W., and N. Schwan, "Multi-Cost
 ALTO", 2017, <https://datatracker.ietf.org/doc/draft-ietf-
 alto-multi-cost/>.

 [DRAFT-NETGRAPH]
 Bernstein, G., Lee, Y., Roome, W., Scharf, M., and Y.
 Yang, "ALTO Topology Extensions: Node-Link Graphs", 2015,
 <https://tools.ietf.org/html/draft-yang-alto-topology-06>.

 [DRAFT-PM]
 Roome, W. and Y. Yang, "Extensible Property Maps for the
 ALTO Protocol", 2015, <https://datatracker.ietf.org/doc/
 draft-roome-alto-unified-props-new/>.

 [DRAFT-PV]
 Bernstein, G., Lee, Y., Roome, W., Scharf, M., and Y.
 Yang, "ALTO Extension: Abstract Path Vector as a Cost
 Mode", 2015, <https://tools.ietf.org/html/draft-yang-alto-
 path-vector-01>.

 [DRAFT-RSA]
 Gao, K., Wang, X., Yang, Y., and G. Chen, "ALTO Extension:
 A Routing State Abstraction Service Using Declarative
 Equivalence", 2015, <https://datatracker.ietf.org/doc/
 draft-gao-alto-routing-state-abstraction/>.

 [DRAFT-SSE]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", 2015,
 <https://datatracker.ietf.org/doc/draft-ietf-alto-incr-
 update-sse/>.

 [HTCondor]
 Thain, D., Tannenbaum, T., and M. Livny, "Distributed
 computing in practice: the Condor experience", 2005,
 <http://dl.acm.org/citation.cfm?id=1064336>.

Xiang, et al. Expires January 4, 2018 [Page 23]

Internet-Draft ExaScale Network Optimization July 2017

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <http://www.rfc-editor.org/info/rfc7285>.

Authors’ Addresses

 Qiao Xiang
 Tongji/Yale University
 51 Prospect Street
 New Haven, CT
 USA

 Email: qiao.xiang@cs.yale.edu

 Harvey Newman
 California Institute of Technology
 1200 California Blvd.
 Pasadena, CA
 USA

 Email: newman@hep.caltech.edu

 Greg Bernstein
 Grotto Networking
 Fremont, CA
 USA

 Email: gregb@grotto-networking.com

 Haizhou Du
 Tongji/Yale University
 51 Prospect Street
 New Haven, CT
 USA

 Email: duhaizhou@gmail.com

Xiang, et al. Expires January 4, 2018 [Page 24]

Internet-Draft ExaScale Network Optimization July 2017

 Kai Gao
 Tsinghua University
 30 Shuangqinglu Street
 Beijing
 China

 Email: gaok12@mails.tsinghua.edu.cn

 Azher Mughal
 California Institute of Technology
 1200 California Blvd.
 Pasadena, CA
 USA

 Email: azher@hep.caltech.edu

 Justas Balcas
 California Institute of Technology
 1200 California Blvd.
 Pasadena, CA
 USA

 Email: justas.balcas@cern.ch

 Jingxuan Jensen Zhang
 Tongji University
 4800 Cao’an Hwy
 Shanghai 201804
 China

 Email: jingxuan.n.zhang@gmail.com

 Y. Richard Yang
 Tongji/Yale University
 51 Prospect Street
 New Haven, CT
 USA

 Email: yry@cs.yale.edu

Xiang, et al. Expires January 4, 2018 [Page 25]

