
ALTO WG                                                         Q. Xiang
Internet-Draft                                    Tongji/Yale University
Intended status: Informational                                 H. Newman
Expires: January 4, 2018              California Institute of Technology
                                                            G. Bernstein
                                                       Grotto Networking
                                                                   H. Du
                                                  Tongji/Yale University
                                                                  K. Gao
                                                     Tsinghua University
                                                               A. Mughal
                                                               J. Balcas
                                      California Institute of Technology
                                                                J. Zhang
                                                       Tongji University
                                                                 Y. Yang
                                                  Tongji/Yale University
                                                            July 3, 2017

         Resource Orchestration for Multi-Domain Data Analytics
         draft-xiang-alto-exascale-network-optimization-03.txt

Abstract

   Data-intensive analytics is entering the era of multi-domain,
   geographically-distributed, collaborative computing, where different
   organizations contribute various resources to collaboratively
   collect, share and analyze extremely large amounts of data.  Examples
   of this paradigm include the Compact Muon Solenoid (CMS) and A
   Toroidal LHC ApparatuS (ATLAS) experiments of the Large Hadron
   Collider (LHC) program.  Massive datasets continue to be acquired,
   simulated, processed and analyzed by globally distributed science
   networks in these collaborations.  Applications that manage and
   analyze such massive data volumes can benefit substantially from the
   information about networking, computing and storage resources from
   each member’s site, and more directly from network-resident services
   that optimize and load balance resource usage among multiple data
   transfers and analytics requests, and achieve a better utilization of
   multiple resources in clusters.

   The Application-Layer Traffic Optimization (ALTO) protocol can
   provide via extensions the network information about different
   clusters/sites, to both users and proactive network management
   services where applicable, with the goal of improving both
   application performance and network resource utilization.  In this
   document, we propose that it is feasible to use existing ALTO
   services to provides not only network information, but also

Xiang, et al.            Expires January 4, 2018                [Page 1]



Internet-Draft        ExaScale Network Optimization            July 2017

   information about computation and storage resources in data analytics
   networks.  We introduce a uniform resource orchestration framework
   (Unicorn), which achieves an efficient multi-resource allocation to
   support low-latency dataset transfer and data intensive analytics for
   collaborative computing.  It collects cluster information from
   multiple ALTO services utilizing topology extensions and leverages
   emerging SDN control capabilities to orchestrate the resource
   allocation for dataset transfers and analytics tasks, leading to
   improved transfer and analytics latency as well as more efficient
   utilization of multi-resources in sites.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 4, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   As the data volume increases exponentially over time, data intensive
   analytics is transiting from single-domain computing to multi-
   organizational, geographically-distributed, collaborative computing,
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   where different organizations contribute various resources, e.g.,
   computation, storage and networking resources, to collaboratively
   collect, share and analyze extremely large amounts of data.  One
   leading example is the Large Hadron Collider (LHC) high energy
   physics (HEP) program, which aims to find new particles and
   interactions in a previously inaccessible range of energies.  The
   scientific collaborations that have built and operate large HEP
   experimental facilities at the LHC, such as the Compact Muon Solenoid
   (CMS) and A Toroidal LHC ApparatuS (ATLAS), currently have more than
   300 petabytes of data under management at hundreds of sites around
   the world, and this volume is expected to grow to one exabyte by
   approximately 2018.

   With such an increasing data volume, how to manage the storage and
   analytics of these data in a globally distributed infrastructure has
   become an increasingly challenging issue.  Applications such as the
   Production ANd Distributed Analysis system (PanDA) in ATLAS and the
   Physics Experiment Data Export system (PhEDEX) in CMS have been
   developed to manage the data transfers among different cluster sites.
   Given a data transfer request, these applications make data transfer
   decisions based on the availability of dataset replicas at different
   sites and initiate retransmission from a different replica if the
   original transmission fails or is excessively delayed.  And HTCondor
   [HTCondor] is deployed to achieve coarse-grained data analytics
   parallelization across these sites.  When a data analytics task is
   submitted, HTCondor adopts a match-making process to assign the task
   to a certain set of servers in one site, based on the coarse-grained
   description of resource availability, such as the number of cores,
   the size of memory, the size of hard disk, etc.  However, neither
   dataset transfers nor data analytics task parallelization takes fine-
   grained information of cluster resources, such as data locality,
   memory speed, network delay, network bandwidth, etc., into account,
   leading to high data transfer and analytics latency and
   underutilization of cluster resources.

   The Application-Layer Traffic Optimization (ALTO) services defined in
   [RFC7285] provide network information with the goal of improving the
   network resource utilization while maintaining or improving
   application performance.  Though ALTO is not designed to provide
   information about other resources, such as computing and storage
   resources in cluster networks, in this document we propose that
   exascale science networks can leverage existing ALTO services defined
   in [RFC7285] and ALTO topology extension services defined in network
   graph [DRAFT-NETGRAPH], path vector [DRAFT-PV], routing state
   abstraction[DRAFT-RSA], multi-cost [DRAFT-MC] and cost-calendar
   [DRAFT-CC] and etc. to encode information about multiple types of
   resources in science networks, such as memory I/O speed, CPU
   utilization, network bandwidth, and provide such information to
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   orchestration applications to improve the performance of dataset
   transfer and data analytics tasks, including throughput, latency,
   etc.

   This document introduces a unified resource orchestration framework
   (Unicorn), which provides efficient multi-resource allocation to
   support low-latency, multi-domain, geo-distributed data analytics.
   Unicorn provides a set of simple APIs for authorized users to submit,
   update and delete dataset transfer requests and data intensive
   analytics requests.  One important proposal we make in this document
   is that it is feasible to use ALTO services to provide not only
   network information, but also information on other resources in
   multi-domain, geo-distributed analytics networks including computing
   and storage.

   A prototype of Unicorn with the dataset transfer scheduling component
   has been implemented on a single-domain Caltech SDN development
   testbed, where the ALTO OpenDaylight controller is used to collect
   topology information.  We are currently designing the resource
   orchestration components to achieve low-latency data-intensive
   analytics.

   This document is organized as follows: Section 3 summarizes the
   change of this document since version -01.  Section 4 elaborates on
   the motivation and challenges for coordinating storage, computing and
   network resources in a globally distributed science network
   infrastructure.  Section 5 discusses the basic idea of encoding
   multi-resource information into ALTO path vector and abstraction
   services and gives an example.  Section 6 lists several key issues to
   address in order to realize the proposal of providing multi-resource
   information by ALTO topology services.  Section 7 gives the details
   of Unicorn architecture for multi-domain, geo-distributed data
   analytics.  Section 8 discusses current development progress of
   Unicorn and next steps.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Changes Since Version -02

   o  Add an example in Section 7 to show the importance of network
      information in resource allocation for data analytics.
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   o  Update the architecture of Unicorn in Section 7, i.e., add the
      entity locator and rename ANE aggregator to resource view
      extractor.

   o  Add detailed description of how the entity locator and the
      resource view extractor work.

   o  Minor changes in abstract and discussion sections.

4.  Problem Settings

4.1.  Motivation

   Multi-domain, geo-distributed data analytics usually involves the
   participation of countries and sites all over the world.  Science
   programs such as the CMS experiment and the ATLAS experiment at CERN
   are typical examples.  The site located at the LHC laboratory is
   called a Tier-0 site, which processes the data selected and stored
   locally by the online systems that select and record the data in
   real-time as it comes off the particle detector, archives it and
   transfers it to over 10 Tier-1 sites around the globe.  Raw datasets
   and processed datasets from Tier-1 sites are then transferred to over
   160 Tier-2 sites around the world based on users’ requests.
   Different sites have different resources and belong to different
   administration domains.  With the exponentially increasing data
   volume in the CMS experiment, the management of large data transfers
   and data intensive analytics in such a global multi-domain science
   network has become an increasingly challenging issue.  Allocating
   resources in different clusters to fulfill different users’ dataset
   transfer requests and data analytics requests require careful
   orchestrating as different requests are competing for limited
   storage, computation and network resources.

4.2.  Challenges

   Orchestrating exascale dataset transfers and analytics in a globally
   distributed science network is non-trivial as it needs to cope with
   two challenges.

   o  Different sites in this network belong to different administration
      domains.  Sharing raw site/cluster information would violate
      sites’ privacy constraints.  Orchestrating data transfers and
      analytics requests based on highly abstracted, non-real-time
      network information may lead to suboptimal scheduling decisions.
      Hence the orchestrating framework must be able to collect
      sufficient resource information about different clusters/sites in
      real-time as well as over the longer term, to allow reasonably
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      optimized network resource utilization without violating sites’
      privacy requirements.

   o  Different science programs tend to adopt different software
      infrastructures for managing dataset transfers and analytics, and
      may place different requirements.  Hence the orchestrating
      framework must be modular so that it can support different dataset
      management systems and different orchestrating algorithms.

   The orchestrating framework must support the interaction between the
   multi-resource orchestration module, the dataset transfer module, and
   the data analytics execution module.  The key information to be
   exchanged between modules includes dataset information, the resource
   state of different clusters and sites, the transfer and analytic
   requests in progress, as well as trends and network-segment and site
   performance from the network point of view.  Such interaction ensures
   that (1) the various programs can adopt their own data transfer and
   analytics systems to be multi-resource-aware, and more efficient in
   achieving their goals; and (2) the various orchestrating algorithms
   can achieve a reasonably optimized utilization on not only the
   network resource but also the computing and storage resources.

5.  Basic Idea

5.1.  Use ALTO services to provide multi-resource information

   The ALTO protocol is designed to provide network information to
   applications so that applications can achieve better performance and
   the network more efficient use of resources.  Different ALTO topology
   services including path vector, routing state abstraction, multi-
   cost, cost calendar, etc., have been proposed to provide fine-grained
   network information to applications.  In this document, we propose
   that not only can ALTO provide network information of different
   cluster sites, it can also provide information of multiple resources,
   including computing and storage resources.  To this end, the basic
   "one-big-switch" abstraction provided by the base ALTO protocol is
   not sufficient.  Several examples have already been given in
   [DRAFT-PV] and [DRAFT-RSA] to demonstrate that.  There has been a
   similar proposal before about using ALTO to provide resource
   information for data centers [DRAFT-DC].  However, that proposal
   requires a new information model for clusters or data centers, which
   may affect the compatibility of ALTO.  The solution of this proposal
   is simpler.  Its basic idea is that each computer node and storage
   node can be seen as an "abstract network element" defined in ALTO-
   path-vector [DRAFT-PV].  In this way, Unicorn can fully reuse all
   existing ALTO services by introducing only one cost-mode (pv) and two
   cost-metrics (ne and ane), instead of introducing a new information
   model.
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5.2.  Example 1: network information impacts data analytics scheduling

            .-----------.             .-----------.
            |  .-----.  |             |  .-----.  |
            |  | eh1 |  |             |  | eh3 |  |
            |  ’-----’  |             |  ’-----’  |
            |           |             |           |
            |           |             |           |
            |           |             |           |
            |           |             |           |
            |  .-----.  |             |  .-----.  |
            |  | eh2 |  |             |  | eh4 |  |
            |  ’-----’  |             |  ’-----’  |
            ’-----------’             ’-----------’
               Site 1                    Site 2
        distance(eh1, eh2) = 2    distance(eh1, eh2) = 2

            Figure 1: An Example for Data Locality Information.

   We first use the example in Figure 1 to show that only network
   information itself has a huge impact on resource allocation for data
   analytics.  In this scenario, a MapReduce task needs to be executed.
   The input data has two copies at end hosts eh1 and eh3, respectively.
   And the end hosts eh2 and eh4 will be the computation nodes with the
   same computation power, correspondingly.  Using the common data
   analytics resource management framework such as Hadoop it can be
   revealed that both allocation options, i.e., eh1->eh2 and eh3->eh4,
   have a storage-computation distance of 2, i.e., they have the same
   data locality from Hadoop’s view.  As a result, it appears that both
   options would provide the same performance for this task.

   However, assume that the bandwidth between eh1 and eh2 is 100Mb/s
   while that between eh3 and eh4 is 1Gb/s.  These significant different
   data accessing speeds decide that these options have very different
   performances for the same task and the only optimal allocation option
   is to allocate this task to eh3->eh4.  This example demonstrates the
   imperativeness of network information in making efficient resource
   allocation decisions.  Such information is not provided in Hadoop or
   other similar or related projects such as Mesos.  On the contrary, if
   ALTO servers are deployed at these sites, applications can retrieve
   such information via ALTO queries.
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5.3.  Example 2: encode multi-resources in abstract network elements

   We use the same dumbbell topology in [DRAFT-RSA] as an example to
   show the feasibility of using ALTO topology service to provide multi-
   resource information.  In this topology, we assume the bandwidth of
   each network cable is 1Gbps, including the cables connecting end
   hosts to switches.  Consider a dataset transfer request which needs
   to schedule the traffic among a set of end host source-destination
   pairs, say eh1 -> eh2, and eh3 -> eh4.  Assume that the transfer
   application receives information from the ALTO Cost Map service that
   both eh1 -> eh2 and eh3 -> eh4 have bandwidth 1Gbps.  In [DRAFT-RSA],
   it is shown that whether each of the two traffic flows can receive
   1Gbps bandwidth depends on whether the routes of two flows share a
   bottleneck link.  Path vector and routing state abstraction services
   provide additional information about network state encoded in
   abstract network elements.  If the returned state is ane1 + ane2 <=
   1Gbps, it means two flows cannot each get 1Gbps bandwidth at the same
   time.  If the returned state is ane1 <= 1Gbps and ane2 <= 1Gbps, it
   means two flows each can get 1Gbps bandwidth.

                             +------+
                             |      |
                           --+ sw6  +--
                         /   |      |  \
   PID1 +-----+         /    +------+   \          +-----+  PID2
   eh1__|     |_       /                 \     ____|     |__eh2
        | sw1 | \   +--+---+         +---+--+ /    | sw2 |
        +-----+  \  |      |         |      |/     +-----+
                  \_| sw5  +---------+ sw7  |
   PID3 +-----+   / |      |         |      |\     +-----+  PID4
   eh3__|     |__/  +------+         +------+ \____|     |__eh4
        | sw3 |                                    | sw4 |
        +-----+                                    +-----+

                   Figure 2: A Dumbbell Network Topology

   Other than network resource, assume in this topology eh1 and eh3 are
   equipped with commodity hard disk drives (HDD) while eh2 and eh4 are
   equipped with SSDs.  Because the bandwidth of an HDD is typically
   0.8Gbps and that of SSD is typically 3Gbps.  Even if the returned
   routing state is ane1 <= 1Gbps and ane2 <=1Gbps, the actual
   bottleneck of each traffic flow is the storage I/O bandwidth at
   source host.  As a result, the total bandwidth of both traffic flows
   can only reach 1.6Gbps.
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   It has been verified in the CMS experiment, and also several studies
   on commercial data centers that network resource are not always the
   bottleneck of large dataset transfers and data analytics.  Many have
   reported that storage resources and computing resources become the
   bottleneck in a fairly large percentage of dataset transfers and data
   analytics tasks in science networks and commercial data centers.

   In this example, if we look at the end hosts as abstract network
   elements, the storage I/O bandwidth of each host can also be encoded
   as an abstract element into the path-vector.  And under the storage
   and route settings above, the returned cluster state would be ane1
   <=0.8Gbps and ane2 <=0.8Gbps, which provides a more accurate capacity
   region for the requested traffic flows.

6.  Key Issues

   The last section described the basic idea of using ALTO topology
   services to provide multi-resource information and gives an example
   to demonstrate its feasibility.  Next we list and discuss several key
   issues to address in this proposal.

   o  Can ALTO topology services provide data locality information?
      Existing ALTO topology services do not provide such information.
      Many studies have pointed out that such information plays a vital
      role in reducing the latency of data-intensive analytics.  If ALTO
      topology services can encode such information together with
      information of other resources together, data-intensive
      applications can benefit a great deal in terms of information
      aggregation and communication overhead.

   o  How to quickly map applications’ resource allocation decision on
      abstract multi-resource view back to the physical multi-resource
      view of clusters/sites?  Fine-grained resource information can be
      encoded into abstract network elements to reduce overhead and
      provide certain privacy protection of clusters.  Such information
      can be highly compressed (see the dumbbell example used in this
      document as well as in [DRAFT-PV] and [DRAFT-RSA]).  In
      preliminary evaluations on RSA, the network element compression
      ratio can be as high as 80 percent.  This ratio is expected to be
      even higher in large-scale data center or cluster setting, e.g. a
      fat-tree topology with k=48.  Therefore a fast mapping from the
      resource orchestration decisions based on the abstract view back
      to the physical view is needed to satisfy the stringent latency
      requirement of large dataset transfers and data-intensive
      analytics.

   o  How much privacy, including key resource configurations, raw
      topology, intra-cluster scheduling policy, etc., will be exposed?
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      Compared with the "one-big-switch" abstraction, other ALTO
      topology services such as path vector [DRAFT-PV] and routing state
      abstraction [DRAFT-RSA] provide fine-grained resource information
      to applications.  Even if such information can be encoded into
      abstract network elements, it still risks exposing private
      information of different clusters/sites.  Current internet drafts
      of these services did not provide any formal privacy analysis or
      performance measurement.  This would be one of the key issues this
      document plans to investigate in the future.

   o  How does current ALTO services such as path-vector and RSA scale
      when they are used to provide abstract information concerning
      multiple resources in clusters?  Another issue along this line is
      how to balance the liveness of fine-grained resource information
      and the corresponding information delivery overhead?  Although
      encoding information of network elements into abstract network
      elements can achieve a very competitive information compression
      ratio, large dataset transfers and analytics applications always
      involve many network elements in multiple clusters/sites and the
      absolute number of involved network elements keep increasing as
      the scale of clusters increase.  In addition, when resource
      information in a cluster changes, the ALTO services need to inform
      all related applications.  In either cases, delivering fine-
      grained resource information would cause high communication
      overhead.  There still lacks of an analytics or experimental
      understanding on the scalability of path-vector and RSA services.

7.  Unified Resource Orchestration Framework

7.1.  Architecture

   This section describes the design details of key components of the
   Unicorn framework: the workflow converter, the resource demand
   estimator, the ALTO clients, the ALTO servers, the resource view
   extractor, the multi-resource orchestrator and the execution agents.
   Figure 3 shows the architecture of Unicorn.  The overall process is
   as follows.
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                              .---------.
                              |  Users  |
                              ’---------’
                                   | 1
     .- - - - - - - - - - - - - - -|- - - - - - - - - - - - - - - -.
     |                   .--------------------.                    |
     |   Unicorn         | Workflow Converter |                    |
     |                   ’--------------------’                    |
     |                             | 2                             |
     |              .-----------------------------.                |
     |              |  Resource Demand Estimator  |                |
     |              ’-----------------------------’                |
     |                             | 3                             |
     |              .-----------------------------.                |
     |              | Multi-Resource Orchestrator |                |
     |              ’-----------------------------’                |
     |             /     |         | 10        |   \               |
     |          9 /      | 4       |         4 |    \ 9            |
     | .-------------. .-------.   |     .-------. .-------------. |
     | |Resource View| |Entity |   |     |Entity | |Resource View| |
     | |  Extractor  | |Locator|   |     |Locator| |  Extractor  | |
     | ’-------------’ ’-------’   |     ’-------’ ’-------------’ |
     |        | 8        | 5       |         5 |          | 8      |
     |    .----------------.   .-----------. .----------------.    |
     |    | ALTO Client(s) | .-| Execution | | ALTO Client(s) |    |
     |    ’----------------’ | |  Agents   | ’----------------’    |
     |          | 6          | ’-----------’         | 6           |
     |  .----------------.   ’-----------’    .----------------.   |
     |  | ALTO Server(s) |    /         \    | ALTO Server(s) |    |
     |  ’----------------’   /           \   ’----------------’    |
     |          | 7         / 11       11 \          | 7           |
     |  .----------------. /               \ .----------------.    |
     |  |     Site 1     |       . . .       |     Site N     |    |
     |  ’----------------’                   ’----------------’    |
     ’- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -’

                    Figure 3: Architecture of Unicorn.

   o  STEP 1 Authorized users submit high-level data analytics workflows
      to Unicorn through a set of simple APIs.

   o  STEP 2 The workflow converter transforms the high-level data
      analytics workflows into low-level task workflows, i.e., a set of
      analytics tasks with precedence encoded in a directed acyclic
      graph (DAG).
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   o  STEP 3 The resource demand estimator automatically finds the
      optimal configuration (resource demand) of each task, i.e., the
      number of CPUs, the size of memory and disk, I/O bandwidth, etc.

   o  STEP 4 The multi-resource orchestrator receives the resource
      demand of a set of tasks and sends them to the entity locator at
      each site.

   o  STEP 5 The entity locator at each site retrieves the entity
      addresses of the end hosts that would be allocated for the tasks
      to be scheduled, and passes these addresses to the ALTO clients,
      and asks the ALTO clients to collect information about these end
      hosts, i.e., properties of corresponding computing, storage and
      networking resources.

   o  STEP 6 The ALTO clients issue ALTO queries defined in the base
      ALTO protocol [RFC7285], e.g., EPS, ECS, Network Map, etc. and
      ALTO extension services, e.g., routing state abstraction (RSA)
      [DRAFT-RSA], path vector [DRAFT-PV], network graph
      [DRAFT-NETGRAPH], multi-cost [DRAFT-MC], cost-calendar [DRAFT-CC]
      and property map [DRAFT-PM], to collect resource information.

   o  STEP 7 The ALTO servers at each site accept the queries from the
      ALTO client, collect resource information from the residing site
      and send back to the ALTO clients.

   o  STEP 8 The ALTO clients send the response from ALTO servers to the
      resource view extractor.

   o  STEP 9 The extractor uses a lightweight, optimal algorithm to
      compress the raw resource information provided by ALTO servers
      into a minimal, equivalent view of resources and sends back to the
      multi-resource orchestrator.

   o  STEP 10 The orchestrator makes resource allocation decisions,
      e.g., dataset transfer scheduling and analytics task placement,
      based on the resource demand of analytics tasks and the resource
      supply sent back from the resource view extractor.  Decisions are
      then sent to the execution agents deployed in corresponding sites.

   o  STEP 11 The execution agents receive and execute instructions from
      the multi-resource orchestrator.  They also monitor the status of
      different tasks and send the updated status to the multi-resource
      orchestrator.

   Unicorn provides a unified, automatic solution for multi-domain, geo-
   distributed data analytics.  In particular, its benefits include:
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   o  On the resource demand side, it provides a set of simple APIs for
      authorized users to submit and manage data analytics requests and
      enables real-time requests’ status monitoring.  And it
      automatically converts high-level analytics workflow into low-
      level task workflows and finds the optimal configuration for each
      task.

   o  On the resource supply side, it collects the resource information
      of different sites through a common, REST based interface
      specified by the ALTO protocol, encodes such information into
      different entity abstractions and computes a minimal, yet accurate
      view on resource supply dynamic.

   o  It provides a scalable multi-resource orchestrator that makes
      efficient resource allocation decisions to achieve high resource
      utilization and low-latency data analytics.

   o  The architecture of Unicorn is modular to support different
      resource orchestration algorithms and the deployment of different
      ALTO servers.

7.2.  Workflow converter

   The converter is the front end of Unicorn.  It is responsible for
   collecting high-level data analytics workflows from users and
   transforming them into low-level task workflows, e.g., HTCondor
   ClassAds.  It provides a set of simple APIs for users to submit and
   manage requests, and to track the status of requests in real-time.

7.2.1.  User API

   o  submitReq(request, [options])

      This API allows users to submit a request and specify
      corresponding options.  The request can be a data transfer request
      or a data analytics request.  Request options include priority,
      delay, etc.  It returns a request identifier reqID that allows
      users to update, delete this request or track its status.  The
      additional options may or may not be approved, and the relative
      priorities may be modified by the resource orchestrator depending
      on the role of users (regular users or administrators at different
      levels), the resource availability and the status of other ongoing
      requests.

   o  updateReq(requestID, [options])

      This API allows users to update the options of requests.  It will
      return a SUCCESS if the new options are received by the request
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      parser.  But these new options may or may not be approved, and may
      be modified by the resource orchestrator depending on the role of
      users (regular users or administrators), the resource availability
      and the status of other ongoing requests.

   o  deleteReq(requestID)

      This API allows users to delete a request by passing the
      corresponding requestID.  A completed request cannot be deleted.
      An ongoing request will be stopped and the output data will be
      deleted.

   o  getReqStatus(requestID)

      This API allows users to query the status of a request by
      specifying the corresponding requestID.  The returned status
      information includes whether the request has started, the assigned
      priority, the percentage of finished sub-requests, transmission
      statistics, the expected remaining time to finish, etc.

7.3.  Resource Demand Estimator

   The estimator leverages the fact that low-level tasks are typically
   repetitive or have very high similarities.  It uses reinforcement
   learning to predict the optimal configuration for each task and
   passes the resource demand to the multi-resource orchestrator for
   further processing.

7.4.  Entity Locator

   The task configurations computed by the demand estimator has no
   knowledge on the underlying structure of topology of each site, i.e.,
   the addresses of end hosts and network devices.  Hence they cannot be
   directly used by the ALTO clients for querying resource information.
   The entity locator retrieves the entity addresses of the end hosts
   that would be allocated for the tasks to be scheduled, and passes
   these addresses to the ALTO clients, and asks the ALTO clients to
   collect information about these end hosts, i.e., properties of
   corresponding computing, storage and networking resources.

7.5.  ALTO Client

   The ALTO client is in the back end of Unicorn and is responsible for
   retrieving resource information through querying ALTO servers
   deployed at different sites.  The resource information needed in
   Unicorn includes the topology, link bandwidth, computing node memory
   I/O speed, computing node CPU utilization, etc.  The base ALTO
   protocol [RFC7285] provides an extreme single-node abstraction for
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   this information, which only allows the multi-resource orchestrator
   to make coarse-grained resource allocation decisions.  To enable
   fine-grained multi-resource orchestration for dataset transfer and
   data analytics in cluster networks, ALTO topology extension services
   such as routing state abstraction (RSA) [DRAFT-RSA], path vector
   [DRAFT-PV], network graph [DRAFT-NETGRAPH], multi-cost [DRAFT-MC] and
   cost-calendar [DRAFT-CC] are needed to provide fine-grained
   information about different types of resources in clusters.

7.5.1.  Query Mode

   The ALTO client should operate in different query modes depending on
   the implementation of ALTO servers.  If an ALTO server does not
   support incremental updates using server-sent events (SSE)
   [DRAFT-SSE], the ALTO client sends queries to this server
   periodically to get the latest resource information.  If the cluster
   state changes after one query, the ALTO client will not be aware of
   the change until next query.  If an ALTO server supports SSE, the
   ALTO client only sends one query to the ALTO server to get the
   initial cluster information.  When the resource state changes, the
   ALTO client will be notified by the ALTO server through SSE.

7.6.  ALTO Server

   ALTO servers are deployed at different sites around the world, and at
   strategic locations in the network itself, to provide information
   about different types of resources in the cluster networks in
   response to queries from the ALTO client.  Such information include
   topology, link bandwidth, memory I/O speed and CPU utilization at
   computing nodes, storage constraints in storage nodes and etc.  Each
   ALTO server must provide basic information services as specified in
   [RFC7285] such as network map, cost map, endpoint cost service (ECS),
   etc.  To support the fine-grained multi-resource allocation in
   Unicorn, each ALTO server should also provide more fine-grained
   information about different resources in clusters through ALTO
   extension services such as the routing state abstraction [DRAFT-RSA],
   path vector [DRAFT-PV], network graph [DRAFT-NETGRAPH], multi-cost
   [DRAFT-MC] and cost-calendar [DRAFT-CC] services.

7.7.  Resource View Extractor

   In each site, the resource information collected by the ALTO clients
   is not directly sent back to the orchestrator.  Instead, we design a
   resource view extractor to compress the resource information provided
   by the ALTO servers into a minimal, equivalent view of all the
   resources, i.e., computing, storage and networking resources, that
   would be allocated to a set of tasks.  The extractor works in the
   following steps.
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   o  Resource-Task Matrix

      Depending on specific services provided by the ALTO servers, the
      responses collected by ALTO clients may include information of
      different entities, e.g., endpoints, PIDs, ane, etc.  Each entity
      possesses a set of resources available for tasks to be scheduled.
      For each entity property p in the responses, such as bandwidth,
      delay, etc., the extractor composes an entity-task matrix M(p).
      Each row of this M(p) represents an entity in the responses
      provides information about property p and each column represents a
      task to be scheduled.  The element m(i, j) of M(p) is a variable
      representing the amount of property p of entity i that task j can
      get.

   o  Resource-Task Constraints

      For each property p, the extractor composes a series of resource-
      task constraints.  The first set of constraints is sum m(i, j) =
      r(p, j) for each task j.  These constraints calculate r(p, j), the
      total amount of property p provided to j by all the entities.  The
      exact rule of summation depends on the property p.  For instance,
      if p is latency, the summation is through common addition
      operations, but if p is bandwidth, the summation is a minimum
      function.

      The second set of constraints is sum m(i, j) <= r(p, i) for each
      entity i.  These constraints represent the usage of resource i on
      property p for all the tasks cannot exceed the capacity of
      resource i on this property.  The exact rule of summation also
      depends on the property p.  For instance, if p is bandwidth, the
      summation is through common addition operations, but if p is
      latency, the constraints become m(i,j) = r(p, i) for each each
      entity i and each task j.  This means that entity i provides the
      same delay property for each task.

   o  Resource View Compression

      The whole set of resource-task constraints are linear, and express
      the view of resources that are available for the tasks to be
      scheduled.  The extractor uses a lightweight, optimal algorithm to
      compress them into a minimal, equivalent view of resources, i.e.,
      a minimal set of linear constraints that represent the same
      feasible region as the original constraints.  The basic idea of
      this algorithm is described in [DRAFT-RSA].
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7.8.  Execution Agents

   Execution agents are deployed at each site and are responsible for
   the following functions:

   o  Receive and process instructions from the multi-resource
      orchestrator, e.g. dataset transfer scheduling, data analytics
      task placement and execution, task update and abortion, etc.

   o  Monitor the status of data analytics tasks and send the updated
      status to the multi-resource orchestrator.

   Depending on the supporting data analytics frameworks, different
   request execution agents may be deployed in each site.  For instance,
   in the CMS experiment at CERN, both MPI and Hadoop execution agents
   are deployed.

7.9.  Multi-Resource Orchestrator

   The multi-resource orchestrator receives the resource demand
   information, i.e., a set of low-level task workflows and their
   configurations, from the resource demand estimator.  It then asks the
   entity locator in each site to get the addresses of end hosts that
   would be allocated for the tasks to be scheduled and ALTO clients to
   query properties related to these end hosts.  When the resource view
   extractor sends the response back, the orchestrator makes resource
   allocation decisions, e.g., dataset transfer scheduling and analytics
   task execution, based on both resource demand dynamic and resource
   supply dynamic.  The dataset transfer scheduling decisions include
   dataset replica selection, path selection, and bandwidth allocation,
   etc.  The analytics task execution decisions include which cluster
   should allocate how much resources to execute which tasks.  These
   decisions are sent to the execution agents at different sites for
   execution.

7.9.1.  Orchestration Algorithms

   The modular design of Unicorn allows the adoption of different
   orchestration algorithms and methodologies, depending on the specific
   performance requirements.  In Section 7.8.3, a max-min fairness
   resource allocation algorithm for dataset transfer is described as an
   example.

7.9.2.  Online, Dynamic Orchestration

   The multi-resource orchestrator should adjust the resource allocation
   decisions based on the progress of ongoing requests, the utilization
   and dynamics of cluster resources.  In normal cases, the multi-
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   resource orchestrator periodically collects such information and
   executes the orchestration algorithm.  When it is notified of events
   such as request status update, cluster state update and etc., the
   orchestrator will also execute the orchestration algorithm to adjust
   resource allocations.

7.9.3.  Example: A Max-Min Fairness Resource Allocation Algorithm

   In this section, we describe a max-min fair resource allocation
   (MFRA) scheduling algorithm which aims to minimize the maximal time
   to complete a dataset transfer subject to a set of constraints.  To
   make resource allocation decisions, MFRA requires sufficient network
   information including topology, link bandwidth and recent historical
   information in some cases.  In a small-scale single-domain network,
   an SDN controller can provide the raw complete topology information
   for the MFRA algorithm.  However, in a large-scale multi-domain
   science network such as CMS, providing the raw network topology is
   infeasible because (1) it would incur significant communication
   overhead; and (2) it would violate the privacy constraints of some
   sites.  Several ALTO extension topology services including Abstract
   Path Vector [DRAFT-PV], Network Graphs [DRAFT-NETGRAPH] and RSA
   [DRAFT-RSA] can provide the fine-grained yet aggregated/abstract
   topology information for MFRA to efficiently utilize bandwidth
   resources in the network.

   Ongoing pre-production deployment efforts of Unicorn in the CMS
   network involve the implementation of the RSA service.  Other than
   topology information, the additional input of the MFRA algorithm is
   the priority of each class of flows, expressed in terms of upper and
   lower limits on the allocated bandwidth between the source and the
   destination for each data transfer requests.

   The basic idea of the MFRA algorithm is to iteratively maximize the
   volume of data that can be transferred subject to the constraints.
   It works in quantized time intervals such that it schedules network
   paths and data volumes to be transferred in each time slot.  When the
   DTR scheduler is notified of events such as the cancellation of a
   DTR, the completion of a DTR or network state changes, the MFRA
   algorithm will also be invoked to make updated network path and
   bandwidth allocation decisions.

   In each execution cycle, MFRA first marks all transfers as
   unsaturated.  Then it solves a linear programming model to find the
   common minimum transfer satisfaction rate (i.e., the ratio of
   transferred data volume in a time interval over the whole data volume
   of this request) that is satisfied by all transfer requests.  With
   this common rate found, MFRA then randomly selects an unsaturated
   request in each iteration, increases its transfer rate as much as
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   possible by finding residual paths available in the network, or by
   increasing the allocated bandwidth along an existing path, until it
   reaches its upper limit or can otherwise not be increased further, so
   it is saturated.  At each iteration, newly saturated requests are
   removed from the subsequent process by fixing their corresponding
   rate value, and completed transfers are removed from further
   consideration.  After all the data transfer rates are saturated in
   the given time slot, then a feasible set of data transfer volumes
   scheduled to be transferred in the slot across each link in the
   network can be derived.

   The MFRA algorithm yields a full utilization of limited network
   resources such as bandwidth so that all DTR can be completed in a
   timely manner.  It allocates network resources fairly so that no DTR
   suffers starvation.  It also achieves load balance among the sites
   and the network paths crossing a complex network topology so that no
   site and no network link is oversubscribed.  Moreover, MFRA can
   handle the case where particular routing constraints are specified,
   e.g., where all routes are fixed ahead of time, or where each
   transfer request only uses one single path in each time slot, by
   introducing an additional set of linear constraints.

8.  Discussion

8.1.  Deployment

   The Unicorn framework is the first step towards a new class of
   intelligent, SDN-driven global systems for multi-domain, geo-
   distributed data analytics involving a worldwide ensemble of sites
   and networks, such as CMS and ATLAS.  Unicorn relies heavily on the
   ALTO services for collecting and expressing abstract, real-time
   resource information from different sites, and the SDN centralized
   control capability to orchestrate data analytics workflows.  It aims
   to provide a new operational paradigm in which science programs can
   use complex network and computing infrastructures with high
   throughput, while allowing for coexistence with other network
   traffic.

   A prototype case study implementation of Unicorn has been
   demonstrated on the Caltech/StarLight/Michigan/Fermilab SDN
   development testbed.  Because this testbed is a single-domain
   network, the current Unicorn prototype leverages the ALTO
   OpenDaylight controller, to collect topology information.  The CMS
   experiment is currently exploring pre-production deployments of
   Unicorn, looking towards future widespread production use.  To
   achieve this goal, it is imperative to collect sufficient resource
   information from the various sites in the multi-domain CMS network,
   without causing any privacy leak.  To this end, the ALTO RSA service
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   [DRAFT-RSA] is under development.  Furthermore, as will be discussed
   next, other ALTO topology extension services can also substantially
   improve the performance of Unicorn.

8.2.  Benefiting From ALTO Extension Services

   The current ALTO base protocol [RFC7285] exposes network topology and
   endpoint properties using the extreme "my-Internet-view"
   representation, which abstracts a whole network as a single node that
   has a set of access ports, with each port connects to a set of end
   hosts called endpoints.  Such an extreme abstraction leads to
   significant information loss on network topology [DRAFT-PV], which is
   the key information for Unicorn to make dynamic scheduling and
   resource allocation decisions.  Though Unicorn can still allocate
   resource for data transfer and analytics requests on this abstract
   view, the resource allocation decisions are suboptimal.
   Alternatively, feeding the raw, complete network topology of each
   site to Unicorn is not desirable, either.  First, this would violate
   privacy constraints of different sites.  Secondly, a raw network
   topology would significantly increase the problem space and the
   solution space of the orchestrating algorithm, leading to a long
   computation time.  Hence, Unicorn desires an ALTO topology service
   that is able to provide only enough fine-grained topology
   information.

   Several ALTO topology extension services including Path Vector
   [DRAFT-PV], Network Graphs [DRAFT-NETGRAPH] and RSA [DRAFT-RSA],
   [DRAFT-PM] are potential candidates for providing fine-grained
   abstract network formation to Unicorn.  In addition, we propose that
   these services can also be used to provide information about
   computing and storage resources of different cluster/sites by viewing
   each computing node and storage node as a network element or abstract
   network element.  For instance, the path vector service supports the
   capacity region query, which accepts multiple concurrent data flows
   as the input and returns the information of bottleneck resources,
   which could be a set of links, computing devices or storage devices,
   for the given set of concurrent flows.  This information can be
   interpreted as a set of linear constraints for the multi-resource
   orchestrator, which can help data transfer and analytics requests
   better utilize multiple types of resources in different clusters.

8.3.  Limitations of the MFRA Algorithm

   The first limitation of the MFRA algorithm is computation overhead.
   The execution of MFRA involves solving linear programming problems
   repeatedly at every time slot.  The overhead of computation time is
   acceptable for small sets of dataset transfer requests, but may
   increase significantly when handling large sets of requests, e.g.,
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   hundreds of transfer requests.  Current efforts towards addressing
   this issue include exploring the feasibility of incremental
   computation of scheduling policies, and reducing the problem scale by
   finding the minimal equivalent set of constraints of the linear
   programming model.  The latter approach can benefit substantially
   from the ALTO RSA service [DRAFT-RSA].

   The second limitation is that the current version of MFRA does not
   involve dataset replica selection.  Simply denoting the replica
   selection as a set of binary constraint will significantly increases
   the computation complexity of the scheduling process.  Current
   efforts focus on finding efficient algorithms to make dataset replica
   selection.

9.  Security Considerations

   This document does not introduce any privacy or security issue not
   already present in the ALTO protocol.

10.  IANA Considerations

   This document does not define any new media type or introduce any new
   IANA consideration.
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