
HTTP S. Bingler, Ed.
Internet-Draft M. West, Ed.
Obsoletes: 6265 (if approved) Google LLC
Intended status: Standards Track J. Wilander, Ed.
Expires: 18 May 2024 Apple, Inc
 15 November 2023

 Cookies: HTTP State Management Mechanism
 draft-ietf-httpbis-rfc6265bis-13

Abstract

 This document defines the HTTP Cookie and Set-Cookie header fields.
 These header fields can be used by HTTP servers to store state
 (called cookies) at HTTP user agents, letting the servers maintain a
 stateful session over the mostly stateless HTTP protocol. Although
 cookies have many historical infelicities that degrade their security
 and privacy, the Cookie and Set-Cookie header fields are widely used
 on the Internet. This document obsoletes RFC 6265.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/.

 Discussion of this document takes place on the HTTP Working Group
 mailing list (mailto:ietf-http-wg@w3.org), which is archived at
 https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group
 information can be found at https://httpwg.org/.

 Source for this draft and an issue tracker can be found at
 https://github.com/httpwg/http-extensions/labels/6265bis.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Bingler, et al. Expires 18 May 2024 [Page 1]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 18 May 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 2. Conventions . 5
 2.1. Conformance Criteria 5
 2.2. Syntax Notation . 6
 2.3. Terminology . 6
 3. Overview . 7
 3.1. Examples . 8
 3.2. Which Requirements to Implement 10
 3.2.1. Cookie Producing Implementations 10
 3.2.2. Cookie Consuming Implementations 10
 4. Server Requirements . 11
 4.1. Set-Cookie . 11
 4.1.1. Syntax . 11

Bingler, et al. Expires 18 May 2024 [Page 2]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 4.1.2. Semantics (Non-Normative) 13
 4.1.3. Cookie Name Prefixes 17
 4.2. Cookie . 18
 4.2.1. Syntax . 18
 4.2.2. Semantics . 18
 5. User Agent Requirements 19
 5.1. Subcomponent Algorithms 19
 5.1.1. Dates . 19
 5.1.2. Canonicalized Host Names 21
 5.1.3. Domain Matching 22
 5.1.4. Paths and Path-Match 22
 5.2. "Same-site" and "cross-site" Requests 23
 5.2.1. Document-based requests 23
 5.2.2. Worker-based requests 24
 5.3. Ignoring Set-Cookie Header Fields 25
 5.4. Cookie Name Prefixes 26
 5.5. The Set-Cookie Header Field 27
 5.5.1. The Expires Attribute 30
 5.5.2. The Max-Age Attribute 30
 5.5.3. The Domain Attribute 31
 5.5.4. The Path Attribute 31
 5.5.5. The Secure Attribute 31
 5.5.6. The HttpOnly Attribute 32
 5.5.7. The SameSite Attribute 32
 5.6. Storage Model . 34
 5.7. Retrieval Model . 40
 5.7.1. The Cookie Header Field 40
 5.7.2. Non-HTTP APIs . 40
 5.7.3. Retrieval Algorithm 41
 6. Implementation Considerations 42
 6.1. Limits . 42
 6.2. Application Programming Interfaces 43
 6.3. IDNA Dependency and Migration 43
 7. Privacy Considerations 44
 7.1. Third-Party Cookies 45
 7.2. Cookie Policy . 45
 7.3. User Controls . 46
 7.4. Expiration Dates . 46
 8. Security Considerations 47
 8.1. Overview . 47
 8.2. Ambient Authority . 47
 8.3. Clear Text . 48
 8.4. Session Identifiers 48
 8.5. Weak Confidentiality 49
 8.6. Weak Integrity . 50
 8.7. Reliance on DNS . 51
 8.8. SameSite Cookies . 51
 8.8.1. Defense in depth 51

Bingler, et al. Expires 18 May 2024 [Page 3]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 8.8.2. Top-level Navigations 51
 8.8.3. Mashups and Widgets 52
 8.8.4. Server-controlled 52
 8.8.5. Reload navigations 52
 8.8.6. Top-level requests with "unsafe" methods 53
 9. IANA Considerations . 54
 9.1. Cookie . 54
 9.2. Set-Cookie . 54
 9.3. Cookie Attribute Registry 54
 9.3.1. Procedure . 55
 9.3.2. Registration . 55
 10. References . 55
 10.1. Normative References 55
 10.2. Informative References 57
 Appendix A. Changes . 59
 A.1. draft-ietf-httpbis-rfc6265bis-00 59
 A.2. draft-ietf-httpbis-rfc6265bis-01 59
 A.3. draft-ietf-httpbis-rfc6265bis-02 60
 A.4. draft-ietf-httpbis-rfc6265bis-03 60
 A.5. draft-ietf-httpbis-rfc6265bis-04 61
 A.6. draft-ietf-httpbis-rfc6265bis-05 61
 A.7. draft-ietf-httpbis-rfc6265bis-06 61
 A.8. draft-ietf-httpbis-rfc6265bis-07 62
 A.9. draft-ietf-httpbis-rfc6265bis-08 62
 A.10. draft-ietf-httpbis-rfc6265bis-09 63
 A.11. draft-ietf-httpbis-rfc6265bis-10 63
 A.12. draft-ietf-httpbis-rfc6265bis-11 64
 A.13. draft-ietf-httpbis-rfc6265bis-12 65
 Acknowledgements . 65
 Authors’ Addresses . 65

1. Introduction

 This document defines the HTTP Cookie and Set-Cookie header fields.
 Using the Set-Cookie header field, an HTTP server can pass name/value
 pairs and associated metadata (called cookies) to a user agent. When
 the user agent makes subsequent requests to the server, the user
 agent uses the metadata and other information to determine whether to
 return the name/value pairs in the Cookie header field.

 Although simple on their surface, cookies have a number of
 complexities. For example, the server indicates a scope for each
 cookie when sending it to the user agent. The scope indicates the
 maximum amount of time in which the user agent should return the
 cookie, the servers to which the user agent should return the cookie,
 and the URI schemes for which the cookie is applicable.

Bingler, et al. Expires 18 May 2024 [Page 4]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 For historical reasons, cookies contain a number of security and
 privacy infelicities. For example, a server can indicate that a
 given cookie is intended for "secure" connections, but the Secure
 attribute does not provide integrity in the presence of an active
 network attacker. Similarly, cookies for a given host are shared
 across all the ports on that host, even though the usual "same-origin
 policy" used by web browsers isolates content retrieved via different
 ports.

 There are two audiences for this specification: developers of cookie-
 generating servers and developers of cookie-consuming user agents.

 To maximize interoperability with user agents, servers SHOULD limit
 themselves to the well-behaved profile defined in Section 4 when
 generating cookies.

 User agents MUST implement the more liberal processing rules defined
 in Section 5, in order to maximize interoperability with existing
 servers that do not conform to the well-behaved profile defined in
 Section 4.

 This document specifies the syntax and semantics of these header
 fields as they are actually used on the Internet. In particular,
 this document does not create new syntax or semantics beyond those in
 use today. The recommendations for cookie generation provided in
 Section 4 represent a preferred subset of current server behavior,
 and even the more liberal cookie processing algorithm provided in
 Section 5 does not recommend all of the syntactic and semantic
 variations in use today. Where some existing software differs from
 the recommended protocol in significant ways, the document contains a
 note explaining the difference.

 This document obsoletes [RFC6265].

2. Conventions

2.1. Conformance Criteria

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

Bingler, et al. Expires 18 May 2024 [Page 5]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Conformance requirements phrased as algorithms or specific steps can
 be implemented in any manner, so long as the end result is
 equivalent. In particular, the algorithms defined in this
 specification are intended to be easy to understand and are not
 intended to be performant.

2.2. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 The following core rules are included by reference, as defined in
 [RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
 (CR LF), CTLs (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), NUL (null octet),
 OCTET (any 8-bit sequence of data except NUL), SP (space), HTAB
 (horizontal tab), CHAR (any [USASCII] character), VCHAR (any visible
 [USASCII] character), and WSP (whitespace).

 The OWS (optional whitespace) and BWS (bad whitespace) rules are
 defined in Section 5.6.3 of [HTTPSEM].

2.3. Terminology

 The terms "user agent", "client", "server", "proxy", and "origin
 server" have the same meaning as in the HTTP/1.1 specification
 ([HTTPSEM], Section 3).

 The request-host is the name of the host, as known by the user agent,
 to which the user agent is sending an HTTP request or from which it
 is receiving an HTTP response (i.e., the name of the host to which it
 sent the corresponding HTTP request).

 The term request-uri refers to "target URI" as defined in Section 7.1
 of [HTTPSEM].

 Two sequences of octets are said to case-insensitively match each
 other if and only if they are equivalent under the i;ascii-casemap
 collation defined in [RFC4790].

 The term string means a sequence of non-NUL octets.

 The terms "active browsing context", "active document", "ancestor
 navigables", "container document", "content navigable", "dedicated
 worker", "Document", "inclusive ancestor navigables", "navigable",
 "opaque origin", "sandboxed origin browsing context flag", "shared
 worker", "the worker’s Documents", "top-level traversable", and
 "WorkerGlobalScope" are defined in [HTML].

Bingler, et al. Expires 18 May 2024 [Page 6]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 "Service Workers" are defined in the Service Workers specification
 [SERVICE-WORKERS].

 The term "origin", the mechanism of deriving an origin from a URI,
 and the "the same" matching algorithm for origins are defined in
 [RFC6454].

 "Safe" HTTP methods include GET, HEAD, OPTIONS, and TRACE, as defined
 in Section 9.2.1 of [HTTPSEM].

 A domain’s "public suffix" is the portion of a domain that is
 controlled by a public registry, such as "com", "co.uk", and
 "pvt.k12.wy.us". A domain’s "registrable domain" is the domain’s
 public suffix plus the label to its left. That is, for
 https://www.site.example, the public suffix is example, and the
 registrable domain is site.example. Whenever possible, user agents
 SHOULD use an up-to-date public suffix list, such as the one
 maintained by the Mozilla project at [PSL].

 The term "request", as well as a request’s "client", "current url",
 "method", "target browsing context", and "url list", are defined in
 [FETCH].

 The term "non-HTTP APIs" refers to non-HTTP mechanisms used to set
 and retrieve cookies, such as a web browser API that exposes cookies
 to scripts.

 The term "top-level navigation" refers to a navigation of a top-level
 traversable.

3. Overview

 This section outlines a way for an origin server to send state
 information to a user agent and for the user agent to return the
 state information to the origin server.

 To store state, the origin server includes a Set-Cookie header field
 in an HTTP response. In subsequent requests, the user agent returns
 a Cookie request header field to the origin server. The Cookie
 header field contains cookies the user agent received in previous
 Set-Cookie header fields. The origin server is free to ignore the
 Cookie header field or use its contents for an application-defined
 purpose.

Bingler, et al. Expires 18 May 2024 [Page 7]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Origin servers MAY send a Set-Cookie response header field with any
 response. An origin server can include multiple Set-Cookie header
 fields in a single response. The presence of a Cookie or a Set-
 Cookie header field does not preclude HTTP caches from storing and
 reusing a response.

 Origin servers SHOULD NOT fold multiple Set-Cookie header fields into
 a single header field. The usual mechanism for folding HTTP headers
 fields (i.e., as defined in Section 5.3 of [HTTPSEM]) might change
 the semantics of the Set-Cookie header field because the %x2C (",")
 character is used by Set-Cookie in a way that conflicts with such
 folding.

 User agents MAY ignore Set-Cookie header fields based on response
 status codes or the user agent’s cookie policy (see Section 5.3).

3.1. Examples

 Using the Set-Cookie header field, a server can send the user agent a
 short string in an HTTP response that the user agent will return in
 future HTTP requests that are within the scope of the cookie. For
 example, the server can send the user agent a "session identifier"
 named SID with the value 31d4d96e407aad42. The user agent then
 returns the session identifier in subsequent requests.

 == Server -> User Agent ==

 Set-Cookie: SID=31d4d96e407aad42

 == User Agent -> Server ==

 Cookie: SID=31d4d96e407aad42

 The server can alter the default scope of the cookie using the Path
 and Domain attributes. For example, the server can instruct the user
 agent to return the cookie to every path and every subdomain of
 site.example.

 == Server -> User Agent ==

 Set-Cookie: SID=31d4d96e407aad42; Path=/; Domain=site.example

 == User Agent -> Server ==

 Cookie: SID=31d4d96e407aad42

Bingler, et al. Expires 18 May 2024 [Page 8]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 As shown in the next example, the server can store multiple cookies
 at the user agent. For example, the server can store a session
 identifier as well as the user’s preferred language by returning two
 Set-Cookie header fields. Notice that the server uses the Secure and
 HttpOnly attributes to provide additional security protections for
 the more sensitive session identifier (see Section 4.1.2).

 == Server -> User Agent ==

 Set-Cookie: SID=31d4d96e407aad42; Path=/; Secure; HttpOnly
 Set-Cookie: lang=en-US; Path=/; Domain=site.example

 == User Agent -> Server ==

 Cookie: SID=31d4d96e407aad42; lang=en-US

 Notice that the Cookie header field above contains two cookies, one
 named SID and one named lang. If the server wishes the user agent to
 persist the cookie over multiple "sessions" (e.g., user agent
 restarts), the server can specify an expiration date in the Expires
 attribute. Note that the user agent might delete the cookie before
 the expiration date if the user agent’s cookie store exceeds its
 quota or if the user manually deletes the server’s cookie.

 == Server -> User Agent ==

 Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT

 == User Agent -> Server ==

 Cookie: SID=31d4d96e407aad42; lang=en-US

 Finally, to remove a cookie, the server returns a Set-Cookie header
 field with an expiration date in the past. The server will be
 successful in removing the cookie only if the Path and the Domain
 attribute in the Set-Cookie header field match the values used when
 the cookie was created.

 == Server -> User Agent ==

 Set-Cookie: lang=; Expires=Sun, 06 Nov 1994 08:49:37 GMT

 == User Agent -> Server ==

 Cookie: SID=31d4d96e407aad42

Bingler, et al. Expires 18 May 2024 [Page 9]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

3.2. Which Requirements to Implement

 The upcoming two sections, Section 4 and Section 5, discuss the set
 of requirements for two distinct types of implementations. This
 section is meant to help guide implementers in determining which set
 of requirements best fits their goals. Choosing the wrong set of
 requirements could result in a lack of compatibility with other
 cookie implementations.

 It’s important to note that being compatible means different things
 depending on the implementer’s goals. These differences have built
 up over time due to both intentional and unintentional spec changes,
 spec interpretations, and historical implementation differences.

 This section roughly divides implementers of the cookie spec into two
 types, producers and consumers. These are not official terms and are
 only used here to help readers develop an intuitive understanding of
 the use cases.

3.2.1. Cookie Producing Implementations

 An implementer should choose Section 4 whenever cookies are created
 and will be sent to a user agent, such as a web browser. These
 implementations are frequently referred to as Servers by the spec but
 that term includes anything which primarily produces cookies. Some
 potential examples:

 * Server applications hosting a website or API

 * Programming languages or software frameworks that support cookies

 * Integrated third-party web applications, such as a business
 management suite

 All these benefit from not only supporting as many user agents as
 possible but also supporting other servers. This is useful if a
 cookie is produced by a software framework and is later sent back to
 a server application which needs to read it. Section 4 advises best
 practices that help maximize this sense of compatibility.

 See Section 3.2.2.1 for more details on programming languages and
 software frameworks.

3.2.2. Cookie Consuming Implementations

 An implementer should choose Section 5 whenever cookies are primarily
 received from another source. These implementations are referred to
 as user agents. Some examples:

Bingler, et al. Expires 18 May 2024 [Page 10]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Web browsers

 * Tools that support stateful HTTP

 * Programming languages or software frameworks that support cookies

 Because user agents don’t know which servers a user will access, and
 whether or not that server is following best practices, users agents
 are advised to implement a more lenient set of requirements and to
 accept some things that servers are warned against producing.
 Section 5 advises best practices that help maximize this sense of
 compatibility.

 See Section 3.2.2.1 for more details on programming languages and
 software frameworks.

3.2.2.1. Programming Languages & Software Frameworks

 A programming language or software framework with support for cookies
 could reasonably be used to create an application that acts as a
 cookie producer, cookie consumer, or both. Because a developer may
 want to maximize their compatibility as either a producer or
 consumer, these languages or frameworks should strongly consider
 supporting both sets of requirements, Section 4 and Section 5, behind
 a compatibility mode toggle. This toggle should default to
 Section 4’s requirements.

 Doing so will reduce the chances that a developer’s application can
 inadvertently create cookies that cannot be read by other servers.

4. Server Requirements

 This section describes the syntax and semantics of a well-behaved
 profile of the Cookie and Set-Cookie header fields.

4.1. Set-Cookie

 The Set-Cookie HTTP response header field is used to send cookies
 from the server to the user agent.

4.1.1. Syntax

 Informally, the Set-Cookie response header field contains a cookie,
 which begins with a name-value-pair, followed by zero or more
 attribute-value pairs. Servers SHOULD NOT send Set-Cookie header
 fields that fail to conform to the following grammar:

Bingler, et al. Expires 18 May 2024 [Page 11]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 set-cookie = set-cookie-string
 set-cookie-string = BWS cookie-pair *(BWS ";" OWS cookie-av)
 cookie-pair = cookie-name BWS "=" BWS cookie-value
 cookie-name = 1*cookie-octet
 cookie-value = *cookie-octet / (DQUOTE *cookie-octet DQUOTE)
 cookie-octet = %x21 / %x23-2B / %x2D-3A / %x3C-5B / %x5D-7E
 ; US-ASCII characters excluding CTLs,
 ; whitespace DQUOTE, comma, semicolon,
 ; and backslash

 cookie-av = expires-av / max-age-av / domain-av /
 path-av / secure-av / httponly-av /
 samesite-av / extension-av
 expires-av = "Expires" BWS "=" BWS sane-cookie-date
 sane-cookie-date =
 <IMF-fixdate, defined in [HTTPSEM], Section 5.6.7>
 max-age-av = "Max-Age" BWS "=" BWS non-zero-digit *DIGIT
 non-zero-digit = %x31-39
 ; digits 1 through 9
 domain-av = "Domain" BWS "=" BWS domain-value
 domain-value = <subdomain>
 ; see details below
 path-av = "Path" BWS "=" BWS path-value
 path-value = *av-octet
 secure-av = "Secure"
 httponly-av = "HttpOnly"
 samesite-av = "SameSite" BWS "=" BWS samesite-value
 samesite-value = "Strict" / "Lax" / "None"
 extension-av = *av-octet
 av-octet = %x20-3A / %x3C-7E
 ; any CHAR except CTLs or ";"

 Note that some of the grammatical terms above reference documents
 that use different grammatical notations than this document (which
 uses ABNF from [RFC5234]).

 Per the grammar above, servers SHOULD NOT produce nameless cookies
 (i.e.: an empty cookie-name) as such cookies may be unpredictably
 serialized by UAs when sent back to the server.

 The semantics of the cookie-value are not defined by this document.

 To maximize compatibility with user agents, servers that wish to
 store arbitrary data in a cookie-value SHOULD encode that data, for
 example, using Base64 [RFC4648].

Bingler, et al. Expires 18 May 2024 [Page 12]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Per the grammar above, the cookie-value MAY be wrapped in DQUOTE
 characters. Note that in this case, the initial and trailing DQUOTE
 characters are not stripped. They are part of the cookie-value, and
 will be included in Cookie header fields sent to the server.

 The domain-value is a subdomain as defined by [RFC1034], Section 3.5,
 and as enhanced by [RFC1123], Section 2.1. Thus, domain-value is a
 string of [USASCII] characters, such as one obtained by applying the
 "ToASCII" operation defined in Section 4 of [RFC3490].

 The portions of the set-cookie-string produced by the cookie-av term
 are known as attributes. To maximize compatibility with user agents,
 servers SHOULD NOT produce two attributes with the same name in the
 same set-cookie-string. (See Section 5.6 for how user agents handle
 this case.)

 NOTE: The name of an attribute-value pair is not case sensitive. So
 while they are presented here in CamelCase, such as "HttpOnly" or
 "SameSite", any case is accepted. E.x.: "httponly", "Httponly",
 "hTTPoNLY", etc.

 Servers SHOULD NOT include more than one Set-Cookie header field in
 the same response with the same cookie-name. (See Section 5.5 for
 how user agents handle this case.)

 If a server sends multiple responses containing Set-Cookie header
 fields concurrently to the user agent (e.g., when communicating with
 the user agent over multiple sockets), these responses create a "race
 condition" that can lead to unpredictable behavior.

 NOTE: Some existing user agents differ in their interpretation of
 two-digit years. To avoid compatibility issues, servers SHOULD use
 the rfc1123-date format, which requires a four-digit year.

 NOTE: Some user agents store and process dates in cookies as 32-bit
 UNIX time_t values. Implementation bugs in the libraries supporting
 time_t processing on some systems might cause such user agents to
 process dates after the year 2038 incorrectly.

4.1.2. Semantics (Non-Normative)

 This section describes simplified semantics of the Set-Cookie header
 field. These semantics are detailed enough to be useful for
 understanding the most common uses of cookies by servers. The full
 semantics are described in Section 5.

Bingler, et al. Expires 18 May 2024 [Page 13]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 When the user agent receives a Set-Cookie header field, the user
 agent stores the cookie together with its attributes. Subsequently,
 when the user agent makes an HTTP request, the user agent includes
 the applicable, non-expired cookies in the Cookie header field.

 If the user agent receives a new cookie with the same cookie-name,
 domain-value, and path-value as a cookie that it has already stored,
 the existing cookie is evicted and replaced with the new cookie.
 Notice that servers can delete cookies by sending the user agent a
 new cookie with an Expires attribute with a value in the past.

 Unless the cookie’s attributes indicate otherwise, the cookie is
 returned only to the origin server (and not, for example, to any
 subdomains), and it expires at the end of the current session (as
 defined by the user agent). User agents ignore unrecognized cookie
 attributes (but not the entire cookie).

4.1.2.1. The Expires Attribute

 The Expires attribute indicates the maximum lifetime of the cookie,
 represented as the date and time at which the cookie expires. The
 user agent is not required to retain the cookie until the specified
 date has passed. In fact, user agents often evict cookies due to
 memory pressure or privacy concerns.

 The user agent MUST limit the maximum value of the Expires attribute.
 The limit SHOULD NOT be greater than 400 days (34560000 seconds) in
 the future. The RECOMMENDED limit is 400 days in the future, but the
 user agent MAY adjust the limit (see Section 7.2). Expires
 attributes that are greater than the limit MUST be reduced to the
 limit.

4.1.2.2. The Max-Age Attribute

 The Max-Age attribute indicates the maximum lifetime of the cookie,
 represented as the number of seconds until the cookie expires. The
 user agent is not required to retain the cookie for the specified
 duration. In fact, user agents often evict cookies due to memory
 pressure or privacy concerns.

 The user agent MUST limit the maximum value of the Max-Age attribute.
 The limit SHOULD NOT be greater than 400 days (34560000 seconds) in
 duration. The RECOMMENDED limit is 400 days in duration, but the
 user agent MAY adjust the limit (see Section 7.2). Max-Age
 attributes that are greater than the limit MUST be reduced to the
 limit.

Bingler, et al. Expires 18 May 2024 [Page 14]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 NOTE: Some existing user agents do not support the Max-Age attribute.
 User agents that do not support the Max-Age attribute ignore the
 attribute.

 If a cookie has both the Max-Age and the Expires attribute, the Max-
 Age attribute has precedence and controls the expiration date of the
 cookie. If a cookie has neither the Max-Age nor the Expires
 attribute, the user agent will retain the cookie until "the current
 session is over" (as defined by the user agent).

4.1.2.3. The Domain Attribute

 The Domain attribute specifies those hosts to which the cookie will
 be sent. For example, if the value of the Domain attribute is
 "site.example", the user agent will include the cookie in the Cookie
 header field when making HTTP requests to site.example,
 www.site.example, and www.corp.site.example. (Note that a leading
 %x2E ("."), if present, is ignored even though that character is not
 permitted.) If the server omits the Domain attribute, the user agent
 will return the cookie only to the origin server.

 WARNING: Some existing user agents treat an absent Domain attribute
 as if the Domain attribute were present and contained the current
 host name. For example, if site.example returns a Set-Cookie header
 field without a Domain attribute, these user agents will erroneously
 send the cookie to www.site.example as well.

 The user agent will reject cookies unless the Domain attribute
 specifies a scope for the cookie that would include the origin
 server. For example, the user agent will accept a cookie with a
 Domain attribute of "site.example" or of "foo.site.example" from
 foo.site.example, but the user agent will not accept a cookie with a
 Domain attribute of "bar.site.example" or of "baz.foo.site.example".

 NOTE: For security reasons, many user agents are configured to reject
 Domain attributes that correspond to "public suffixes". For example,
 some user agents will reject Domain attributes of "com" or "co.uk".
 (See Section 5.6 for more information.)

4.1.2.4. The Path Attribute

 The scope of each cookie is limited to a set of paths, controlled by
 the Path attribute. If the server omits the Path attribute, the user
 agent will use the "directory" of the request-uri’s path component as
 the default value. (See Section 5.1.4 for more details.)

Bingler, et al. Expires 18 May 2024 [Page 15]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 The user agent will include the cookie in an HTTP request only if the
 path portion of the request-uri matches (or is a subdirectory of) the
 cookie’s Path attribute, where the %x2F ("/") character is
 interpreted as a directory separator.

 Although seemingly useful for isolating cookies between different
 paths within a given host, the Path attribute cannot be relied upon
 for security (see Section 8).

4.1.2.5. The Secure Attribute

 The Secure attribute limits the scope of the cookie to "secure"
 channels (where "secure" is defined by the user agent). When a
 cookie has the Secure attribute, the user agent will include the
 cookie in an HTTP request only if the request is transmitted over a
 secure channel (typically HTTP over Transport Layer Security (TLS)
 [RFC2818]).

4.1.2.6. The HttpOnly Attribute

 The HttpOnly attribute limits the scope of the cookie to HTTP
 requests. In particular, the attribute instructs the user agent to
 omit the cookie when providing access to cookies via non-HTTP APIs.

 Note that the HttpOnly attribute is independent of the Secure
 attribute: a cookie can have both the HttpOnly and the Secure
 attribute.

4.1.2.7. The SameSite Attribute

 The "SameSite" attribute limits the scope of the cookie such that it
 will only be attached to requests if those requests are same-site, as
 defined by the algorithm in Section 5.2. For example, requests for
 https://site.example/sekrit-image will attach same-site cookies if
 and only if initiated from a context whose "site for cookies" is an
 origin with a scheme and registered domain of "https" and
 "site.example" respectively.

 If the "SameSite" attribute’s value is "Strict", the cookie will only
 be sent along with "same-site" requests. If the value is "Lax", the
 cookie will be sent with same-site requests, and with "cross-site"
 top-level navigations, as described in Section 5.5.7.1. If the value
 is "None", the cookie will be sent with same-site and cross-site
 requests. If the "SameSite" attribute’s value is something other
 than these three known keywords, the attribute’s value will be
 subject to a default enforcement mode that is equivalent to "Lax".

Bingler, et al. Expires 18 May 2024 [Page 16]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 The "SameSite" attribute affects cookie creation as well as delivery.
 Cookies which assert "SameSite=Lax" or "SameSite=Strict" cannot be
 set in responses to cross-site subresource requests, or cross-site
 nested navigations. They can be set along with any top-level
 navigation, cross-site or otherwise.

4.1.3. Cookie Name Prefixes

 Section 8.5 and Section 8.6 of this document spell out some of the
 drawbacks of cookies’ historical implementation. In particular, it
 is impossible for a server to have confidence that a given cookie was
 set with a particular set of attributes. In order to provide such
 confidence in a backwards-compatible way, two common sets of
 requirements can be inferred from the first few characters of the
 cookie’s name.

 The user agent requirements for the prefixes described below are
 detailed in Section 5.4.

 To maximize compatibility with user agents servers SHOULD use
 prefixes as described below.

4.1.3.1. The "__Secure-" Prefix

 If a cookie’s name begins with a case-sensitive match for the string
 __Secure-, then the cookie will have been set with a Secure
 attribute.

 For example, the following Set-Cookie header field would be rejected
 by a conformant user agent, as it does not have a Secure attribute.

 Set-Cookie: __Secure-SID=12345; Domain=site.example

 Whereas the following Set-Cookie header field would be accepted if
 set from a secure origin (e.g. "https://site.example/"), and rejected
 otherwise:

 Set-Cookie: __Secure-SID=12345; Domain=site.example; Secure

4.1.3.2. The "__Host-" Prefix

 If a cookie’s name begins with a case-sensitive match for the string
 __Host-, then the cookie will have been set with a Secure attribute,
 a Path attribute with a value of /, and no Domain attribute.

 This combination yields a cookie that hews as closely as a cookie can
 to treating the origin as a security boundary. The lack of a Domain
 attribute ensures that the cookie’s host-only-flag is true, locking

Bingler, et al. Expires 18 May 2024 [Page 17]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 the cookie to a particular host, rather than allowing it to span
 subdomains. Setting the Path to / means that the cookie is effective
 for the entire host, and won’t be overridden for specific paths. The
 Secure attribute ensures that the cookie is unaltered by non-secure
 origins, and won’t span protocols.

 Ports are the only piece of the origin model that __Host- cookies
 continue to ignore.

 For example, the following cookies would always be rejected:

 Set-Cookie: __Host-SID=12345
 Set-Cookie: __Host-SID=12345; Secure
 Set-Cookie: __Host-SID=12345; Domain=site.example
 Set-Cookie: __Host-SID=12345; Domain=site.example; Path=/
 Set-Cookie: __Host-SID=12345; Secure; Domain=site.example; Path=/

 While the following would be accepted if set from a secure origin
 (e.g. "https://site.example/"), and rejected otherwise:

 Set-Cookie: __Host-SID=12345; Secure; Path=/

4.2. Cookie

4.2.1. Syntax

 The user agent sends stored cookies to the origin server in the
 Cookie header field. If the server conforms to the requirements in
 Section 4.1 (and the user agent conforms to the requirements in
 Section 5), the user agent will send a Cookie header field that
 conforms to the following grammar:

 cookie = cookie-string
 cookie-string = cookie-pair *(";" SP cookie-pair)

4.2.2. Semantics

 Each cookie-pair represents a cookie stored by the user agent. The
 cookie-pair contains the cookie-name and cookie-value the user agent
 received in the Set-Cookie header field.

 Notice that the cookie attributes are not returned. In particular,
 the server cannot determine from the Cookie field alone when a cookie
 will expire, for which hosts the cookie is valid, for which paths the
 cookie is valid, or whether the cookie was set with the Secure or
 HttpOnly attributes.

Bingler, et al. Expires 18 May 2024 [Page 18]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 The semantics of individual cookies in the Cookie header field are
 not defined by this document. Servers are expected to imbue these
 cookies with application-specific semantics.

 Although cookies are serialized linearly in the Cookie header field,
 servers SHOULD NOT rely upon the serialization order. In particular,
 if the Cookie header field contains two cookies with the same name
 (e.g., that were set with different Path or Domain attributes),
 servers SHOULD NOT rely upon the order in which these cookies appear
 in the header field.

5. User Agent Requirements

 This section specifies the Cookie and Set-Cookie header fields in
 sufficient detail that a user agent implementing these requirements
 precisely can interoperate with existing servers (even those that do
 not conform to the well-behaved profile described in Section 4).

 A user agent could enforce more restrictions than those specified
 herein (e.g., restrictions specified by its cookie policy, described
 in Section 7.2). However, such additional restrictions may reduce
 the likelihood that a user agent will be able to interoperate with
 existing servers.

5.1. Subcomponent Algorithms

 This section defines some algorithms used by user agents to process
 specific subcomponents of the Cookie and Set-Cookie header fields.

5.1.1. Dates

 The user agent MUST use an algorithm equivalent to the following
 algorithm to parse a cookie-date. Note that the various boolean
 flags defined as a part of the algorithm (i.e., found-time, found-
 day-of-month, found-month, found-year) are initially "not set".

 1. Using the grammar below, divide the cookie-date into date-tokens.

Bingler, et al. Expires 18 May 2024 [Page 19]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 cookie-date = *delimiter date-token-list *delimiter
 date-token-list = date-token *(1*delimiter date-token)
 date-token = 1*non-delimiter

 delimiter = %x09 / %x20-2F / %x3B-40 / %x5B-60 / %x7B-7E
 non-delimiter = %x00-08 / %x0A-1F / DIGIT / ":" / ALPHA
 / %x7F-FF
 non-digit = %x00-2F / %x3A-FF

 day-of-month = 1*2DIGIT [non-digit *OCTET]
 month = ("jan" / "feb" / "mar" / "apr" /
 "may" / "jun" / "jul" / "aug" /
 "sep" / "oct" / "nov" / "dec") *OCTET
 year = 2*4DIGIT [non-digit *OCTET]
 time = hms-time [non-digit *OCTET]
 hms-time = time-field ":" time-field ":" time-field
 time-field = 1*2DIGIT

 2. Process each date-token sequentially in the order the date-tokens
 appear in the cookie-date:

 1. If the found-time flag is not set and the token matches the
 time production, set the found-time flag and set the hour-
 value, minute-value, and second-value to the numbers denoted
 by the digits in the date-token, respectively. Skip the
 remaining sub-steps and continue to the next date-token.

 2. If the found-day-of-month flag is not set and the date-token
 matches the day-of-month production, set the found-day-of-
 month flag and set the day-of-month-value to the number
 denoted by the date-token. Skip the remaining sub-steps and
 continue to the next date-token.

 3. If the found-month flag is not set and the date-token matches
 the month production, set the found-month flag and set the
 month-value to the month denoted by the date-token. Skip the
 remaining sub-steps and continue to the next date-token.

 4. If the found-year flag is not set and the date-token matches
 the year production, set the found-year flag and set the
 year-value to the number denoted by the date-token. Skip the
 remaining sub-steps and continue to the next date-token.

 3. If the year-value is greater than or equal to 70 and less than or
 equal to 99, increment the year-value by 1900.

 4. If the year-value is greater than or equal to 0 and less than or
 equal to 69, increment the year-value by 2000.

Bingler, et al. Expires 18 May 2024 [Page 20]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 1. NOTE: Some existing user agents interpret two-digit years
 differently.

 5. Abort these steps and fail to parse the cookie-date if:

 * at least one of the found-day-of-month, found-month, found-
 year, or found-time flags is not set,

 * the day-of-month-value is less than 1 or greater than 31,

 * the year-value is less than 1601,

 * the hour-value is greater than 23,

 * the minute-value is greater than 59, or

 * the second-value is greater than 59.

 (Note that leap seconds cannot be represented in this syntax.)

 6. Let the parsed-cookie-date be the date whose day-of-month, month,
 year, hour, minute, and second (in UTC) are the day-of-month-
 value, the month-value, the year-value, the hour-value, the
 minute-value, and the second-value, respectively. If no such
 date exists, abort these steps and fail to parse the cookie-date.

 7. Return the parsed-cookie-date as the result of this algorithm.

5.1.2. Canonicalized Host Names

 A canonicalized host name is the string generated by the following
 algorithm:

 1. Convert the host name to a sequence of individual domain name
 labels.

 2. Convert each label that is not a Non-Reserved LDH (NR-LDH) label,
 to an A-label (see Section 2.3.2.1 of [RFC5890] for the former
 and latter), or to a "punycode label" (a label resulting from the
 "ToASCII" conversion in Section 4 of [RFC3490]), as appropriate
 (see Section 6.3 of this specification).

 3. Concatenate the resulting labels, separated by a %x2E (".")
 character.

Bingler, et al. Expires 18 May 2024 [Page 21]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

5.1.3. Domain Matching

 A string domain-matches a given domain string if at least one of the
 following conditions hold:

 * The domain string and the string are identical. (Note that both
 the domain string and the string will have been canonicalized to
 lower case at this point.)

 * All of the following conditions hold:

 - The domain string is a suffix of the string.

 - The last character of the string that is not included in the
 domain string is a %x2E (".") character.

 - The string is a host name (i.e., not an IP address).

5.1.4. Paths and Path-Match

 The user agent MUST use an algorithm equivalent to the following
 algorithm to compute the default-path of a cookie:

 1. Let uri-path be the path portion of the request-uri if such a
 portion exists (and empty otherwise).

 2. If the uri-path is empty or if the first character of the uri-
 path is not a %x2F ("/") character, output %x2F ("/") and skip
 the remaining steps.

 3. If the uri-path contains no more than one %x2F ("/") character,
 output %x2F ("/") and skip the remaining step.

 4. Output the characters of the uri-path from the first character up
 to, but not including, the right-most %x2F ("/").

 A request-path path-matches a given cookie-path if at least one of
 the following conditions holds:

 * The cookie-path and the request-path are identical.

 Note that this differs from the rules in [RFC3986] for equivalence
 of the path component, and hence two equivalent paths can have
 different cookies.

 * The cookie-path is a prefix of the request-path, and the last
 character of the cookie-path is %x2F ("/").

Bingler, et al. Expires 18 May 2024 [Page 22]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * The cookie-path is a prefix of the request-path, and the first
 character of the request-path that is not included in the cookie-
 path is a %x2F ("/") character.

5.2. "Same-site" and "cross-site" Requests

 Two origins are same-site if they satisfy the "same site" criteria
 defined in [SAMESITE]. A request is "same-site" if the following
 criteria are true:

 1. The request is not the result of a cross-site redirect. That is,
 the origin of every url in the request’s url list is same-site
 with the request’s current url’s origin.

 2. The request is not the result of a reload navigation triggered
 through a user interface element (as defined by the user agent;
 e.g., a request triggered by the user clicking a refresh button
 on a toolbar).

 3. The request’s current url’s origin is same-site with the
 request’s client’s "site for cookies" (which is an origin), or if
 the request has no client or the request’s client is null.

 Requests which are the result of a reload navigation triggered
 through a user interface element are same-site if the reloaded
 document was originally navigated to via a same-site request. A
 request that is not "same-site" is instead "cross-site".

 The request’s client’s "site for cookies" is calculated depending
 upon its client’s type, as described in the following subsections:

5.2.1. Document-based requests

 The URI displayed in a user agent’s address bar is the only security
 context directly exposed to users, and therefore the only signal
 users can reasonably rely upon to determine whether or not they trust
 a particular website. The origin of that URI represents the context
 in which a user most likely believes themselves to be interacting.
 We’ll define this origin, the top-level traversable’s active
 document’s origin, as the "top-level origin".

 For a document displayed in a top-level traversable, we can stop
 here: the document’s "site for cookies" is the top-level origin.

 For container documents, we need to audit the origins of each of a
 document’s ancestor navigables’ active documents in order to account
 for the "multiple-nested scenarios" described in Section 4 of
 [RFC7034]. A document’s "site for cookies" is the top-level origin

Bingler, et al. Expires 18 May 2024 [Page 23]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 if and only if the top-level origin is same-site with the document’s
 origin, and with each of the document’s ancestor documents’ origins.
 Otherwise its "site for cookies" is an origin set to an opaque
 origin.

 Given a Document (document), the following algorithm returns its
 "site for cookies":

 1. Let top-document be the active document in document’s navigable’s
 top-level traversable.

 2. Let top-origin be the origin of top-document’s URI if top-
 document’s sandboxed origin browsing context flag is set, and
 top-document’s origin otherwise.

 3. Let documents be a list consisting of the active documents of
 document’s inclusive ancestor navigables.

 4. For each item in documents:

 1. Let origin be the origin of item’s URI if item’s sandboxed
 origin browsing context flag is set, and item’s origin
 otherwise.

 2. If origin is not same-site with top-origin, return an origin
 set to an opaque origin.

 5. Return top-origin.

 Note: This algorithm only applies when the entire chain of documents
 from top-document to document are all active.

5.2.2. Worker-based requests

 Worker-driven requests aren’t as clear-cut as document-driven
 requests, as there isn’t a clear link between a top-level traversable
 and a worker. This is especially true for Service Workers
 [SERVICE-WORKERS], which may execute code in the background, without
 any document visible at all.

 Note: The descriptions below assume that workers must be same-origin
 with the documents that instantiate them. If this invariant changes,
 we’ll need to take the worker’s script’s URI into account when
 determining their status.

Bingler, et al. Expires 18 May 2024 [Page 24]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

5.2.2.1. Dedicated and Shared Workers

 Dedicated workers are simple, as each dedicated worker is bound to
 one and only one document. Requests generated from a dedicated
 worker (via importScripts, XMLHttpRequest, fetch(), etc) define their
 "site for cookies" as that document’s "site for cookies".

 Shared workers may be bound to multiple documents at once. As it is
 quite possible for those documents to have distinct "site for
 cookies" values, the worker’s "site for cookies" will be an origin
 set to an opaque origin in cases where the values are not all same-
 site with the worker’s origin, and the worker’s origin in cases where
 the values agree.

 Given a WorkerGlobalScope (worker), the following algorithm returns
 its "site for cookies":

 1. Let site be worker’s origin.

 2. For each document in worker’s Documents:

 1. Let document-site be document’s "site for cookies" (as
 defined in Section 5.2.1).

 2. If document-site is not same-site with site, return an origin
 set to an opaque origin.

 3. Return site.

5.2.2.2. Service Workers

 Service Workers are more complicated, as they act as a completely
 separate execution context with only tangential relationship to the
 Document which registered them.

 How user agents handle Service Workers may differ, but user agents
 SHOULD match the [SERVICE-WORKERS] specification.

5.3. Ignoring Set-Cookie Header Fields

 User agents MAY ignore Set-Cookie header fields contained in
 responses with 100-level status codes or based on its cookie policy
 (see Section 7.2).

Bingler, et al. Expires 18 May 2024 [Page 25]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 All other Set-Cookie header fields SHOULD be processed according to
 Section 5.5. That is, Set-Cookie header fields contained in
 responses with non-100-level status codes (including those in
 responses with 400- and 500-level status codes) SHOULD be processed
 unless ignored according to the user agent’s cookie policy.

5.4. Cookie Name Prefixes

 User agents’ requirements for cookie name prefixes differ slightly
 from servers’ (Section 4.1.3) in that UAs MUST match the prefix
 string case-insensitively.

 The normative requirements for the prefixes are detailed in the
 storage model algorithm defined in Section 5.6.

 This is because some servers will process cookie case-insensitively,
 resulting in them unintentionally miscapitalizing and accepting
 miscapitalized prefixes.

 For example, if a server sends the following Set-Cookie header field

 Set-Cookie: __SECURE-SID=12345

 to a UA which checks prefixes case-sensitively it will accept this
 cookie and the server would incorrectly believe the cookie is subject
 the same guarantees as one spelled __Secure-.

 Additionally the server is vulnerable to an attacker that
 purposefully miscapitalizes a cookie in order to impersonate a
 prefixed cookie. For example, a site already has a cookie __Secure-
 SID=12345 and by some means an attacker sends the following Set-
 Cookie header field for the site to a UA which checks prefixes case-
 sensitively.

 Set-Cookie: __SeCuRe-SID=evil

 The next time a user visits the site the UA will send both cookies:

 Cookie: __Secure-SID=12345; __SeCuRe-SID=evil

 The server, being case-insensitive, won’t be able to tell the
 difference between the two cookies allowing the attacker to
 compromise the site.

 To prevent these issues, UAs MUST match cookie name prefixes case-
 insensitive.

Bingler, et al. Expires 18 May 2024 [Page 26]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Note: Cookies with different names are still considered separate by
 UAs. So both __Secure-foo=bar and __secure-foo=baz can exist as
 distinct cookies simultaneously and both would have the requirements
 of the __Secure- prefix applied.

 The following are examples of Set-Cookie header fields that would be
 rejected by a conformant user agent.

 Set-Cookie: __Secure-SID=12345; Domain=site.example
 Set-Cookie: __secure-SID=12345; Domain=site.example
 Set-Cookie: __SECURE-SID=12345; Domain=site.example
 Set-Cookie: __Host-SID=12345
 Set-Cookie: __host-SID=12345; Secure
 Set-Cookie: __host-SID=12345; Domain=site.example
 Set-Cookie: __HOST-SID=12345; Domain=site.example; Path=/
 Set-Cookie: __Host-SID=12345; Secure; Domain=site.example; Path=/
 Set-Cookie: __host-SID=12345; Secure; Domain=site.example; Path=/
 Set-Cookie: __HOST-SID=12345; Secure; Domain=site.example; Path=/

 Whereas the following Set-Cookie header fields would be accepted if
 set from a secure origin.

 Set-Cookie: __Secure-SID=12345; Domain=site.example; Secure
 Set-Cookie: __secure-SID=12345; Domain=site.example; Secure
 Set-Cookie: __SECURE-SID=12345; Domain=site.example; Secure
 Set-Cookie: __Host-SID=12345; Secure; Path=/
 Set-Cookie: __host-SID=12345; Secure; Path=/
 Set-Cookie: __HOST-SID=12345; Secure; Path=/

5.5. The Set-Cookie Header Field

 When a user agent receives a Set-Cookie header field in an HTTP
 response, the user agent MAY ignore the Set-Cookie header field in
 its entirety (see Section 5.3).

 If the user agent does not ignore the Set-Cookie header field in its
 entirety, the user agent MUST parse the field-value of the Set-Cookie
 header field as a set-cookie-string (defined below).

 NOTE: The algorithm below is more permissive than the grammar in
 Section 4.1. For example, the algorithm strips leading and trailing
 whitespace from the cookie name and value (but maintains internal
 whitespace), whereas the grammar in Section 4.1 forbids whitespace in
 these positions. In addition, the algorithm below accommodates some
 characters that are not cookie-octets according to the grammar in
 Section 4.1. User agents use this algorithm so as to interoperate
 with servers that do not follow the recommendations in Section 4.

Bingler, et al. Expires 18 May 2024 [Page 27]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 NOTE: As set-cookie-string may originate from a non-HTTP API, it is
 not guaranteed to be free of CTL characters, so this algorithm
 handles them explicitly. Horizontal tab (%x09) is excluded from the
 CTL characters that lead to set-cookie-string rejection, as it is
 considered whitespace, which is handled separately.

 NOTE: The set-cookie-string may contain octet sequences that appear
 percent-encoded as per Section 2.1 of [RFC3986]. However, a user
 agent MUST NOT decode these sequences and instead parse the
 individual octets as specified in this algorithm.

 A user agent MUST use an algorithm equivalent to the following
 algorithm to parse a set-cookie-string:

 1. If the set-cookie-string contains a %x00-08 / %x0A-1F / %x7F
 character (CTL characters excluding HTAB): Abort these steps and
 ignore the set-cookie-string entirely.

 2. If the set-cookie-string contains a %x3B (";") character:

 1. The name-value-pair string consists of the characters up to,
 but not including, the first %x3B (";"), and the unparsed-
 attributes consist of the remainder of the set-cookie-string
 (including the %x3B (";") in question).

 Otherwise:

 1. The name-value-pair string consists of all the characters
 contained in the set-cookie-string, and the unparsed-
 attributes is the empty string.

 3. If the name-value-pair string lacks a %x3D ("=") character, then
 the name string is empty, and the value string is the value of
 name-value-pair.

 Otherwise, the name string consists of the characters up to, but
 not including, the first %x3D ("=") character, and the (possibly
 empty) value string consists of the characters after the first
 %x3D ("=") character.

 4. Remove any leading or trailing WSP characters from the name
 string and the value string.

 5. If the sum of the lengths of the name string and the value string
 is more than 4096 octets, abort these steps and ignore the set-
 cookie-string entirely.

Bingler, et al. Expires 18 May 2024 [Page 28]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 6. The cookie-name is the name string, and the cookie-value is the
 value string.

 The user agent MUST use an algorithm equivalent to the following
 algorithm to parse the unparsed-attributes:

 1. If the unparsed-attributes string is empty, skip the rest of
 these steps.

 2. Discard the first character of the unparsed-attributes (which
 will be a %x3B (";") character).

 3. If the remaining unparsed-attributes contains a %x3B (";")
 character:

 1. Consume the characters of the unparsed-attributes up to, but
 not including, the first %x3B (";") character.

 Otherwise:

 1. Consume the remainder of the unparsed-attributes.

 Let the cookie-av string be the characters consumed in this step.

 4. If the cookie-av string contains a %x3D ("=") character:

 1. The (possibly empty) attribute-name string consists of the
 characters up to, but not including, the first %x3D ("=")
 character, and the (possibly empty) attribute-value string
 consists of the characters after the first %x3D ("=")
 character.

 Otherwise:

 1. The attribute-name string consists of the entire cookie-av
 string, and the attribute-value string is empty.

 5. Remove any leading or trailing WSP characters from the attribute-
 name string and the attribute-value string.

 6. If the attribute-value is longer than 1024 octets, ignore the
 cookie-av string and return to Step 1 of this algorithm.

 7. Process the attribute-name and attribute-value according to the
 requirements in the following subsections. (Notice that
 attributes with unrecognized attribute-names are ignored.)

 8. Return to Step 1 of this algorithm.

Bingler, et al. Expires 18 May 2024 [Page 29]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 When the user agent finishes parsing the set-cookie-string, the user
 agent is said to "receive a cookie" from the request-uri with name
 cookie-name, value cookie-value, and attributes cookie-attribute-
 list. (See Section 5.6 for additional requirements triggered by
 receiving a cookie.)

5.5.1. The Expires Attribute

 If the attribute-name case-insensitively matches the string
 "Expires", the user agent MUST process the cookie-av as follows.

 1. Let the expiry-time be the result of parsing the attribute-value
 as cookie-date (see Section 5.1.1).

 2. If the attribute-value failed to parse as a cookie date, ignore
 the cookie-av.

 3. Let cookie-age-limit be the maximum age of the cookie (which
 SHOULD be 400 days in the future or sooner, see Section 4.1.2.1).

 4. If the expiry-time is more than cookie-age-limit, the user agent
 MUST set the expiry time to cookie-age-limit in seconds.

 5. If the expiry-time is earlier than the earliest date the user
 agent can represent, the user agent MAY replace the expiry-time
 with the earliest representable date.

 6. Append an attribute to the cookie-attribute-list with an
 attribute-name of Expires and an attribute-value of expiry-time.

5.5.2. The Max-Age Attribute

 If the attribute-name case-insensitively matches the string "Max-
 Age", the user agent MUST process the cookie-av as follows.

 1. If the attribute-value is empty, ignore the cookie-av.

 2. If the first character of the attribute-value is neither a DIGIT,
 nor a "-" character followed by a DIGIT, ignore the cookie-av.

 3. If the remainder of attribute-value contains a non-DIGIT
 character, ignore the cookie-av.

 4. Let delta-seconds be the attribute-value converted to a base 10
 integer.

 5. Let cookie-age-limit be the maximum age of the cookie (which
 SHOULD be 400 days or less, see Section 4.1.2.2).

Bingler, et al. Expires 18 May 2024 [Page 30]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 6. Set delta-seconds to the smaller of its present value and cookie-
 age-limit.

 7. If delta-seconds is less than or equal to zero (0), let expiry-
 time be the earliest representable date and time. Otherwise, let
 the expiry-time be the current date and time plus delta-seconds
 seconds.

 8. Append an attribute to the cookie-attribute-list with an
 attribute-name of Max-Age and an attribute-value of expiry-time.

5.5.3. The Domain Attribute

 If the attribute-name case-insensitively matches the string "Domain",
 the user agent MUST process the cookie-av as follows.

 1. Let cookie-domain be the attribute-value.

 2. If cookie-domain starts with %x2E ("."), let cookie-domain be
 cookie-domain without its leading %x2E (".").

 3. Convert the cookie-domain to lower case.

 4. Append an attribute to the cookie-attribute-list with an
 attribute-name of Domain and an attribute-value of cookie-domain.

5.5.4. The Path Attribute

 If the attribute-name case-insensitively matches the string "Path",
 the user agent MUST process the cookie-av as follows.

 1. If the attribute-value is empty or if the first character of the
 attribute-value is not %x2F ("/"):

 1. Let cookie-path be the default-path.

 Otherwise:

 1. Let cookie-path be the attribute-value.

 2. Append an attribute to the cookie-attribute-list with an
 attribute-name of Path and an attribute-value of cookie-path.

5.5.5. The Secure Attribute

 If the attribute-name case-insensitively matches the string "Secure",
 the user agent MUST append an attribute to the cookie-attribute-list
 with an attribute-name of Secure and an empty attribute-value.

Bingler, et al. Expires 18 May 2024 [Page 31]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

5.5.6. The HttpOnly Attribute

 If the attribute-name case-insensitively matches the string
 "HttpOnly", the user agent MUST append an attribute to the cookie-
 attribute-list with an attribute-name of HttpOnly and an empty
 attribute-value.

5.5.7. The SameSite Attribute

 If the attribute-name case-insensitively matches the string
 "SameSite", the user agent MUST process the cookie-av as follows:

 1. Let enforcement be "Default".

 2. If cookie-av’s attribute-value is a case-insensitive match for
 "None", set enforcement to "None".

 3. If cookie-av’s attribute-value is a case-insensitive match for
 "Strict", set enforcement to "Strict".

 4. If cookie-av’s attribute-value is a case-insensitive match for
 "Lax", set enforcement to "Lax".

 5. Append an attribute to the cookie-attribute-list with an
 attribute-name of "SameSite" and an attribute-value of
 enforcement.

5.5.7.1. "Strict" and "Lax" enforcement

 Same-site cookies in "Strict" enforcement mode will not be sent along
 with top-level navigations which are triggered from a cross-site
 document context. As discussed in Section 8.8.2, this might or might
 not be compatible with existing session management systems. In the
 interests of providing a drop-in mechanism that mitigates the risk of
 CSRF attacks, developers may set the SameSite attribute in a "Lax"
 enforcement mode that carves out an exception which sends same-site
 cookies along with cross-site requests if and only if they are top-
 level navigations which use a "safe" (in the [HTTPSEM] sense) HTTP
 method. (Note that a request’s method may be changed from POST to
 GET for some redirects (see Sections 15.4.2 and 15.4.3 of [HTTPSEM]);
 in these cases, a request’s "safe"ness is determined based on the
 method of the current redirect hop.)

 Lax enforcement provides reasonable defense in depth against CSRF
 attacks that rely on unsafe HTTP methods (like POST), but does not
 offer a robust defense against CSRF as a general category of attack:

Bingler, et al. Expires 18 May 2024 [Page 32]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 1. Attackers can still pop up new windows or trigger top-level
 navigations in order to create a "same-site" request (as
 described in Section 5.2.1), which is only a speedbump along the
 road to exploitation.

 2. Features like <link rel=’prerender’> [prerendering] can be
 exploited to create "same-site" requests without the risk of user
 detection.

 When possible, developers should use a session management mechanism
 such as that described in Section 8.8.2 to mitigate the risk of CSRF
 more completely.

5.5.7.2. "Lax-Allowing-Unsafe" enforcement

 As discussed in Section 8.8.6, compatibility concerns may necessitate
 the use of a "Lax-allowing-unsafe" enforcement mode that allows
 cookies to be sent with a cross-site HTTP request if and only if it
 is a top-level request, regardless of request method. That is, the
 "Lax-allowing-unsafe" enforcement mode waives the requirement for the
 HTTP request’s method to be "safe" in the SameSite enforcement step
 of the retrieval algorithm in Section 5.7.3. (All cookies,
 regardless of SameSite enforcement mode, may be set for top-level
 navigations, regardless of HTTP request method, as specified in
 Section 5.6.)

 "Lax-allowing-unsafe" is not a distinct value of the SameSite
 attribute. Rather, user agents MAY apply "Lax-allowing-unsafe"
 enforcement only to cookies that did not explicitly specify a
 SameSite attribute (i.e., those whose same-site-flag was set to
 "Default" by default). To limit the scope of this compatibility
 mode, user agents which apply "Lax-allowing-unsafe" enforcement
 SHOULD restrict the enforcement to cookies which were created
 recently. Deployment experience has shown a cookie age of 2 minutes
 or less to be a reasonable limit.

 If the user agent uses "Lax-allowing-unsafe" enforcement, it MUST
 apply the following modification to the retrieval algorithm defined
 in Section 5.7.3:

 Replace the condition in the penultimate bullet point of step 1 of
 the retrieval algorithm reading

 * The HTTP request associated with the retrieval uses a "safe"
 method.

 with

Bingler, et al. Expires 18 May 2024 [Page 33]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * At least one of the following is true:

 1. The HTTP request associated with the retrieval uses a "safe"
 method.

 2. The cookie’s same-site-flag is "Default" and the amount of
 time elapsed since the cookie’s creation-time is at most a
 duration of the user agent’s choosing.

5.6. Storage Model

 The user agent stores the following fields about each cookie: name,
 value, expiry-time, domain, path, creation-time, last-access-time,
 persistent-flag, host-only-flag, secure-only-flag, http-only-flag,
 and same-site-flag.

 When the user agent "receives a cookie" from a request-uri with name
 cookie-name, value cookie-value, and attributes cookie-attribute-
 list, the user agent MUST process the cookie as follows:

 1. A user agent MAY ignore a received cookie in its entirety. See
 Section 5.3.

 2. If cookie-name is empty and cookie-value is empty, abort these
 steps and ignore the cookie entirely.

 3. If the cookie-name or the cookie-value contains a %x00-08 /
 %x0A-1F / %x7F character (CTL characters excluding HTAB), abort
 these steps and ignore the cookie entirely.

 4. If the sum of the lengths of cookie-name and cookie-value is
 more than 4096 octets, abort these steps and ignore the cookie
 entirely.

 5. Create a new cookie with name cookie-name, value cookie-value.
 Set the creation-time and the last-access-time to the current
 date and time.

 6. If the cookie-attribute-list contains an attribute with an
 attribute-name of "Max-Age":

 1. Set the cookie’s persistent-flag to true.

 2. Set the cookie’s expiry-time to attribute-value of the last
 attribute in the cookie-attribute-list with an attribute-
 name of "Max-Age".

Bingler, et al. Expires 18 May 2024 [Page 34]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Otherwise, if the cookie-attribute-list contains an attribute
 with an attribute-name of "Expires" (and does not contain an
 attribute with an attribute-name of "Max-Age"):

 1. Set the cookie’s persistent-flag to true.

 2. Set the cookie’s expiry-time to attribute-value of the last
 attribute in the cookie-attribute-list with an attribute-
 name of "Expires".

 Otherwise:

 1. Set the cookie’s persistent-flag to false.

 2. Set the cookie’s expiry-time to the latest representable
 date.

 7. If the cookie-attribute-list contains an attribute with an
 attribute-name of "Domain":

 1. Let the domain-attribute be the attribute-value of the last
 attribute in the cookie-attribute-list with both an
 attribute-name of "Domain" and an attribute-value whose
 length is no more than 1024 octets. (Note that a leading
 %x2E ("."), if present, is ignored even though that
 character is not permitted.)

 Otherwise:

 1. Let the domain-attribute be the empty string.

 8. If the domain-attribute contains a character that is not in the
 range of [USASCII] characters, abort these steps and ignore the
 cookie entirely.

 9. If the user agent is configured to reject "public suffixes" and
 the domain-attribute is a public suffix:

 1. If the domain-attribute is identical to the canonicalized
 request-host:

 1. Let the domain-attribute be the empty string.

 Otherwise:

 1. Abort these steps and ignore the cookie entirely.

Bingler, et al. Expires 18 May 2024 [Page 35]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 NOTE: This step prevents attacker.example from disrupting the
 integrity of site.example by setting a cookie with a Domain
 attribute of "example".

 10. If the domain-attribute is non-empty:

 1. If the canonicalized request-host does not domain-match the
 domain-attribute:

 1. Abort these steps and ignore the cookie entirely.

 Otherwise:

 1. Set the cookie’s host-only-flag to false.

 2. Set the cookie’s domain to the domain-attribute.

 Otherwise:

 1. Set the cookie’s host-only-flag to true.

 2. Set the cookie’s domain to the canonicalized request-host.

 11. If the cookie-attribute-list contains an attribute with an
 attribute-name of "Path", set the cookie’s path to attribute-
 value of the last attribute in the cookie-attribute-list with
 both an attribute-name of "Path" and an attribute-value whose
 length is no more than 1024 octets. Otherwise, set the cookie’s
 path to the default-path of the request-uri.

 12. If the cookie-attribute-list contains an attribute with an
 attribute-name of "Secure", set the cookie’s secure-only-flag to
 true. Otherwise, set the cookie’s secure-only-flag to false.

 13. If the scheme component of the request-uri does not denote a
 "secure" protocol (as defined by the user agent), and the
 cookie’s secure-only-flag is true, then abort these steps and
 ignore the cookie entirely.

 14. If the cookie-attribute-list contains an attribute with an
 attribute-name of "HttpOnly", set the cookie’s http-only-flag to
 true. Otherwise, set the cookie’s http-only-flag to false.

 15. If the cookie was received from a "non-HTTP" API and the
 cookie’s http-only-flag is true, abort these steps and ignore
 the cookie entirely.

Bingler, et al. Expires 18 May 2024 [Page 36]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 16. If the cookie’s secure-only-flag is false, and the scheme
 component of request-uri does not denote a "secure" protocol,
 then abort these steps and ignore the cookie entirely if the
 cookie store contains one or more cookies that meet all of the
 following criteria:

 1. Their name matches the name of the newly-created cookie.

 2. Their secure-only-flag is true.

 3. Their domain domain-matches the domain of the newly-created
 cookie, or vice-versa.

 4. The path of the newly-created cookie path-matches the path
 of the existing cookie.

 Note: The path comparison is not symmetric, ensuring only that a
 newly-created, non-secure cookie does not overlay an existing
 secure cookie, providing some mitigation against cookie-fixing
 attacks. That is, given an existing secure cookie named ’a’
 with a path of ’/login’, a non-secure cookie named ’a’ could be
 set for a path of ’/’ or ’/foo’, but not for a path of ’/login’
 or ’/login/en’.

 17. If the cookie-attribute-list contains an attribute with an
 attribute-name of "SameSite", and an attribute-value of
 "Strict", "Lax", or "None", set the cookie’s same-site-flag to
 the attribute-value of the last attribute in the cookie-
 attribute-list with an attribute-name of "SameSite". Otherwise,
 set the cookie’s same-site-flag to "Default".

 18. If the cookie’s same-site-flag is not "None":

 1. If the cookie was received from a "non-HTTP" API, and the
 API was called from a navigable’s active document whose
 "site for cookies" is not same-site with the top-level
 origin, then abort these steps and ignore the newly created
 cookie entirely.

 2. If the cookie was received from a "same-site" request (as
 defined in Section 5.2), skip the remaining substeps and
 continue processing the cookie.

Bingler, et al. Expires 18 May 2024 [Page 37]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 3. If the cookie was received from a request which is
 navigating a top-level traversable [HTML] (e.g. if the
 request’s "reserved client" is either null or an environment
 whose "target browsing context"’s navigable is a top-level
 traversable), skip the remaining substeps and continue
 processing the cookie.

 Note: Top-level navigations can create a cookie with any
 SameSite value, even if the new cookie wouldn’t have been
 sent along with the request had it already existed prior to
 the navigation.

 4. Abort these steps and ignore the newly created cookie
 entirely.

 19. If the cookie’s "same-site-flag" is "None", abort these steps
 and ignore the cookie entirely unless the cookie’s secure-only-
 flag is true.

 20. If the cookie-name begins with a case-insensitive match for the
 string "__Secure-", abort these steps and ignore the cookie
 entirely unless the cookie’s secure-only-flag is true.

 21. If the cookie-name begins with a case-insensitive match for the
 string "__Host-", abort these steps and ignore the cookie
 entirely unless the cookie meets all the following criteria:

 1. The cookie’s secure-only-flag is true.

 2. The cookie’s host-only-flag is true.

 3. The cookie-attribute-list contains an attribute with an
 attribute-name of "Path", and the cookie’s path is /.

 22. If the cookie-name is empty and either of the following
 conditions are true, abort these steps and ignore the cookie:

 * the cookie-value begins with a case-insensitive match for the
 string "__Secure-"

 * the cookie-value begins with a case-insensitive match for the
 string "__Host-"

 23. If the cookie store contains a cookie with the same name,
 domain, host-only-flag, and path as the newly-created cookie:

Bingler, et al. Expires 18 May 2024 [Page 38]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 1. Let old-cookie be the existing cookie with the same name,
 domain, host-only-flag, and path as the newly-created
 cookie. (Notice that this algorithm maintains the invariant
 that there is at most one such cookie.)

 2. If the newly-created cookie was received from a "non-HTTP"
 API and the old-cookie’s http-only-flag is true, abort these
 steps and ignore the newly created cookie entirely.

 3. Update the creation-time of the newly-created cookie to
 match the creation-time of the old-cookie.

 4. Remove the old-cookie from the cookie store.

 24. Insert the newly-created cookie into the cookie store.

 A cookie is "expired" if the cookie has an expiry date in the past.

 The user agent MUST evict all expired cookies from the cookie store
 if, at any time, an expired cookie exists in the cookie store.

 At any time, the user agent MAY "remove excess cookies" from the
 cookie store if the number of cookies sharing a domain field exceeds
 some implementation-defined upper bound (such as 50 cookies).

 At any time, the user agent MAY "remove excess cookies" from the
 cookie store if the cookie store exceeds some predetermined upper
 bound (such as 3000 cookies).

 When the user agent removes excess cookies from the cookie store, the
 user agent MUST evict cookies in the following priority order:

 1. Expired cookies.

 2. Cookies whose secure-only-flag is false, and which share a domain
 field with more than a predetermined number of other cookies.

 3. Cookies that share a domain field with more than a predetermined
 number of other cookies.

 4. All cookies.

 If two cookies have the same removal priority, the user agent MUST
 evict the cookie with the earliest last-access-time first.

 When "the current session is over" (as defined by the user agent),
 the user agent MUST remove from the cookie store all cookies with the
 persistent-flag set to false.

Bingler, et al. Expires 18 May 2024 [Page 39]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

5.7. Retrieval Model

 This section defines how cookies are retrieved from a cookie store in
 the form of a cookie-string. A "retrieval" is any event which
 requires generating a cookie-string. For example, a retrieval may
 occur in order to build a Cookie header field for an HTTP request, or
 may be required in order to return a cookie-string from a call to a
 "non-HTTP" API that provides access to cookies. A retrieval has an
 associated URI, same-site status, and type, which are defined below
 depending on the type of retrieval.

5.7.1. The Cookie Header Field

 The user agent includes stored cookies in the Cookie HTTP request
 header field.

 When the user agent generates an HTTP request, the user agent MUST
 NOT attach more than one Cookie header field.

 A user agent MAY omit the Cookie header field in its entirety. For
 example, the user agent might wish to block sending cookies during
 "third-party" requests from setting cookies (see Section 7.1).

 If the user agent does attach a Cookie header field to an HTTP
 request, the user agent MUST compute the cookie-string following the
 algorithm defined in Section 5.7.3, where the retrieval’s URI is the
 request-uri, the retrieval’s same-site status is computed for the
 HTTP request as defined in Section 5.2, and the retrieval’s type is
 "HTTP".

5.7.2. Non-HTTP APIs

 The user agent MAY implement "non-HTTP" APIs that can be used to
 access stored cookies.

 A user agent MAY return an empty cookie-string in certain contexts,
 such as when a retrieval occurs within a third-party context (see
 Section 7.1).

 If a user agent does return cookies for a given call to a "non-HTTP"
 API with an associated Document, then the user agent MUST compute the
 cookie-string following the algorithm defined in Section 5.7.3, where
 the retrieval’s URI is defined by the caller (see
 [DOM-DOCUMENT-COOKIE]), the retrieval’s same-site status is "same-
 site" if the Document’s "site for cookies" is same-site with the top-
 level origin as defined in Section 5.2.1 (otherwise it is "cross-
 site"), and the retrieval’s type is "non-HTTP".

Bingler, et al. Expires 18 May 2024 [Page 40]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

5.7.3. Retrieval Algorithm

 Given a cookie store and a retrieval, the following algorithm returns
 a cookie-string from a given cookie store.

 1. Let cookie-list be the set of cookies from the cookie store that
 meets all of the following requirements:

 * Either:

 - The cookie’s host-only-flag is true and the canonicalized
 host of the retrieval’s URI is identical to the cookie’s
 domain.

 Or:

 - The cookie’s host-only-flag is false and the canonicalized
 host of the retrieval’s URI domain-matches the cookie’s
 domain.

 NOTE: (For user agents configured to reject "public suffixes")
 It’s possible that the public suffix list was changed since a
 cookie was created. If this change results in a cookie’s
 domain becoming a public suffix then that cookie is considered
 invalid as it would have been rejected during creation (See
 Section 5.6 step 9). User agents should be careful to avoid
 retrieving these invalid cookies even if they domain-match the
 host of the retrieval’s URI.

 * The retrieval’s URI’s path path-matches the cookie’s path.

 * If the cookie’s secure-only-flag is true, then the retrieval’s
 URI’s scheme must denote a "secure" protocol (as defined by
 the user agent).

 NOTE: The notion of a "secure" protocol is not defined by this
 document. Typically, user agents consider a protocol secure
 if the protocol makes use of transport-layer security, such as
 SSL or TLS. For example, most user agents consider "https" to
 be a scheme that denotes a secure protocol.

 * If the cookie’s http-only-flag is true, then exclude the
 cookie if the retrieval’s type is "non-HTTP".

 * If the cookie’s same-site-flag is not "None" and the
 retrieval’s same-site status is "cross-site", then exclude the
 cookie unless all of the following conditions are met:

Bingler, et al. Expires 18 May 2024 [Page 41]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 - The retrieval’s type is "HTTP".

 - The same-site-flag is "Lax" or "Default".

 - The HTTP request associated with the retrieval uses a
 "safe" method.

 - The target browsing context of the HTTP request associated
 with the retrieval is the active browsing context or a top-
 level traversable.

 2. The user agent SHOULD sort the cookie-list in the following
 order:

 * Cookies with longer paths are listed before cookies with
 shorter paths.

 * Among cookies that have equal-length path fields, cookies with
 earlier creation-times are listed before cookies with later
 creation-times.

 NOTE: Not all user agents sort the cookie-list in this order, but
 this order reflects common practice when this document was
 written, and, historically, there have been servers that
 (erroneously) depended on this order.

 3. Update the last-access-time of each cookie in the cookie-list to
 the current date and time.

 4. Serialize the cookie-list into a cookie-string by processing each
 cookie in the cookie-list in order:

 1. If the cookies’ name is not empty, output the cookie’s name
 followed by the %x3D ("=") character.

 2. If the cookies’ value is not empty, output the cookie’s
 value.

 3. If there is an unprocessed cookie in the cookie-list, output
 the characters %x3B and %x20 ("; ").

6. Implementation Considerations

6.1. Limits

 Practical user agent implementations have limits on the number and
 size of cookies that they can store. General-use user agents SHOULD
 provide each of the following minimum capabilities:

Bingler, et al. Expires 18 May 2024 [Page 42]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * At least 50 cookies per domain.

 * At least 3000 cookies total.

 User agents MAY limit the maximum number of cookies they store, and
 may evict any cookie at any time (whether at the request of the user
 or due to implementation limitations).

 Note that a limit on the maximum number of cookies also limits the
 total size of the stored cookies, due to the length limits which MUST
 be enforced in Section 5.5.

 Servers SHOULD use as few and as small cookies as possible to avoid
 reaching these implementation limits and to minimize network
 bandwidth due to the Cookie header field being included in every
 request.

 Servers SHOULD gracefully degrade if the user agent fails to return
 one or more cookies in the Cookie header field because the user agent
 might evict any cookie at any time.

6.2. Application Programming Interfaces

 One reason the Cookie and Set-Cookie header fields use such esoteric
 syntax is that many platforms (both in servers and user agents)
 provide a string-based application programming interface (API) to
 cookies, requiring application-layer programmers to generate and
 parse the syntax used by the Cookie and Set-Cookie header fields,
 which many programmers have done incorrectly, resulting in
 interoperability problems.

 Instead of providing string-based APIs to cookies, platforms would be
 well-served by providing more semantic APIs. It is beyond the scope
 of this document to recommend specific API designs, but there are
 clear benefits to accepting an abstract "Date" object instead of a
 serialized date string.

6.3. IDNA Dependency and Migration

 IDNA2008 [RFC5890] supersedes IDNA2003 [RFC3490]. However, there are
 differences between the two specifications, and thus there can be
 differences in processing (e.g., converting) domain name labels that
 have been registered under one from those registered under the other.
 There will be a transition period of some time during which
 IDNA2003-based domain name labels will exist in the wild. User
 agents SHOULD implement IDNA2008 [RFC5890] and MAY implement [UTS46]
 or [RFC5895] in order to facilitate their IDNA transition. If a user
 agent does not implement IDNA2008, the user agent MUST implement

Bingler, et al. Expires 18 May 2024 [Page 43]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 IDNA2003 [RFC3490].

7. Privacy Considerations

 Cookies’ primary privacy risk is their ability to correlate user
 activity. This can happen on a single site, but is most problematic
 when activity is tracked across different, seemingly unconnected Web
 sites to build a user profile.

 Over time, this capability (warned against explicitly in [RFC2109]
 and all of its successors) has become widely used for varied reasons
 including:

 * authenticating users across sites,

 * assembling information on users,

 * protecting against fraud and other forms of undesirable traffic,

 * targeting advertisements at specific users or at users with
 specified attributes,

 * measuring how often ads are shown to users, and

 * recognizing when an ad resulted in a change in user behavior.

 While not every use of cookies is necessarily problematic for
 privacy, their potential for abuse has become a widespread concern in
 the Internet community and broader society. In response to these
 concerns, user agents have actively constrained cookie functionality
 in various ways (as allowed and encouraged by previous
 specifications), while avoiding disruption to features they judge
 desirable for the health of the Web.

 It is too early to declare consensus on which specific mechanism(s)
 should be used to mitigate cookies’ privacy impact; user agents’
 ongoing changes to how they are handled are best characterised as
 experiments that can provide input into that eventual consensus.

Bingler, et al. Expires 18 May 2024 [Page 44]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Instead, this document describes limited, general mitigations against
 the privacy risks associated with cookies that enjoy wide deployment
 at the time of writing. It is expected that implementations will
 continue to experiment and impose stricter, more well-defined
 limitations on cookies over time. Future versions of this document
 might codify those mechanisms based upon deployment experience. If
 functions that currently rely on cookies can be supported by
 separate, targeted mechanisms, they might be documented in separate
 specifications and stricter limitations on cookies might become
 feasible.

 Note that cookies are not the only mechanism that can be used to
 track users across sites, so while these mitigations are necessary to
 improve Web privacy, they are not sufficient on their own.

7.1. Third-Party Cookies

 A "third-party" or cross-site cookie is one that is associated with
 embedded content (such as scripts, images, stylesheets, frames) that
 is obtained from a different server than the one that hosts the
 primary resource (usually, the Web page that the user is viewing).
 Third-party cookies are often used to correlate users’ activity on
 different sites.

 Because of their inherent privacy issues, most user agents now limit
 third-party cookies in a variety of ways. Some completely block
 third-party cookies by refusing to process third-party Set-Cookie
 header fields and refusing to send third-party Cookie header fields.
 Some partition cookies based upon the first-party context, so that
 different cookies are sent depending on the site being browsed. Some
 block cookies based upon user agent cookie policy and/or user
 controls.

 While this document does not endorse or require a specific approach,
 it is RECOMMENDED that user agents adopt a policy for third-party
 cookies that is as restrictive as compatibility constraints permit.
 Consequently, resources cannot rely upon third-party cookies being
 treated consistently by user agents for the foreseeable future.

7.2. Cookie Policy

 User agents MAY enforce a cookie policy consisting of restrictions on
 how cookies may be used or ignored (see Section 5.3).

Bingler, et al. Expires 18 May 2024 [Page 45]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 A cookie policy may govern which domains or parties, as in first and
 third parties (see Section 7.1), for which the user agent will allow
 cookie access. The policy can also define limits on cookie size,
 cookie expiry (see Section 4.1.2.1 and Section 4.1.2.2), and the
 number of cookies per domain or in total.

 The recomended cookie expiry upper limit is 400 days. User agents
 may set a lower limit to enforce shorter data retention timelines, or
 set the limit higher to support longer retention when appropriate
 (e.g., server-to-server communication over HTTPS).

 The goal of a restrictive cookie policy is often to improve security
 or privacy. User agents often allow users to change the cookie
 policy (see Section 7.3).

7.3. User Controls

 User agents SHOULD provide users with a mechanism for managing the
 cookies stored in the cookie store. For example, a user agent might
 let users delete all cookies received during a specified time period
 or all the cookies related to a particular domain. In addition, many
 user agents include a user interface element that lets users examine
 the cookies stored in their cookie store.

 User agents SHOULD provide users with a mechanism for disabling
 cookies. When cookies are disabled, the user agent MUST NOT include
 a Cookie header field in outbound HTTP requests and the user agent
 MUST NOT process Set-Cookie header fields in inbound HTTP responses.

 User agents MAY offer a way to change the cookie policy (see
 Section 7.2).

 User agents MAY provide users the option of preventing persistent
 storage of cookies across sessions. When configured thusly, user
 agents MUST treat all received cookies as if the persistent-flag were
 set to false. Some popular user agents expose this functionality via
 "private browsing" mode [Aggarwal2010].

7.4. Expiration Dates

 Although servers can set the expiration date for cookies to the
 distant future, most user agents do not actually retain cookies for
 multiple decades. Rather than choosing gratuitously long expiration
 periods, servers SHOULD promote user privacy by selecting reasonable
 cookie expiration periods based on the purpose of the cookie. For
 example, a typical session identifier might reasonably be set to
 expire in two weeks.

Bingler, et al. Expires 18 May 2024 [Page 46]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

8. Security Considerations

8.1. Overview

 Cookies have a number of security pitfalls. This section overviews a
 few of the more salient issues.

 In particular, cookies encourage developers to rely on ambient
 authority for authentication, often becoming vulnerable to attacks
 such as cross-site request forgery [CSRF]. Also, when storing
 session identifiers in cookies, developers often create session
 fixation vulnerabilities.

 Transport-layer encryption, such as that employed in HTTPS, is
 insufficient to prevent a network attacker from obtaining or altering
 a victim’s cookies because the cookie protocol itself has various
 vulnerabilities (see "Weak Confidentiality" and "Weak Integrity",
 below). In addition, by default, cookies do not provide
 confidentiality or integrity from network attackers, even when used
 in conjunction with HTTPS.

8.2. Ambient Authority

 A server that uses cookies to authenticate users can suffer security
 vulnerabilities because some user agents let remote parties issue
 HTTP requests from the user agent (e.g., via HTTP redirects or HTML
 forms). When issuing those requests, user agents attach cookies even
 if the remote party does not know the contents of the cookies,
 potentially letting the remote party exercise authority at an unwary
 server.

 Although this security concern goes by a number of names (e.g.,
 cross-site request forgery, confused deputy), the issue stems from
 cookies being a form of ambient authority. Cookies encourage server
 operators to separate designation (in the form of URLs) from
 authorization (in the form of cookies). Consequently, the user agent
 might supply the authorization for a resource designated by the
 attacker, possibly causing the server or its clients to undertake
 actions designated by the attacker as though they were authorized by
 the user.

 Instead of using cookies for authorization, server operators might
 wish to consider entangling designation and authorization by treating
 URLs as capabilities. Instead of storing secrets in cookies, this
 approach stores secrets in URLs, requiring the remote entity to
 supply the secret itself. Although this approach is not a panacea,
 judicious application of these principles can lead to more robust
 security.

Bingler, et al. Expires 18 May 2024 [Page 47]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

8.3. Clear Text

 Unless sent over a secure channel (such as TLS), the information in
 the Cookie and Set-Cookie header fields is transmitted in the clear.

 1. All sensitive information conveyed in these header fields is
 exposed to an eavesdropper.

 2. A malicious intermediary could alter the header fields as they
 travel in either direction, with unpredictable results.

 3. A malicious client could alter the Cookie header fields before
 transmission, with unpredictable results.

 Servers SHOULD encrypt and sign the contents of cookies (using
 whatever format the server desires) when transmitting them to the
 user agent (even when sending the cookies over a secure channel).
 However, encrypting and signing cookie contents does not prevent an
 attacker from transplanting a cookie from one user agent to another
 or from replaying the cookie at a later time.

 In addition to encrypting and signing the contents of every cookie,
 servers that require a higher level of security SHOULD use the Cookie
 and Set-Cookie header fields only over a secure channel. When using
 cookies over a secure channel, servers SHOULD set the Secure
 attribute (see Section 4.1.2.5) for every cookie. If a server does
 not set the Secure attribute, the protection provided by the secure
 channel will be largely moot.

 For example, consider a webmail server that stores a session
 identifier in a cookie and is typically accessed over HTTPS. If the
 server does not set the Secure attribute on its cookies, an active
 network attacker can intercept any outbound HTTP request from the
 user agent and redirect that request to the webmail server over HTTP.
 Even if the webmail server is not listening for HTTP connections, the
 user agent will still include cookies in the request. The active
 network attacker can intercept these cookies, replay them against the
 server, and learn the contents of the user’s email. If, instead, the
 server had set the Secure attribute on its cookies, the user agent
 would not have included the cookies in the clear-text request.

8.4. Session Identifiers

 Instead of storing session information directly in a cookie (where it
 might be exposed to or replayed by an attacker), servers commonly
 store a nonce (or "session identifier") in a cookie. When the server
 receives an HTTP request with a nonce, the server can look up state
 information associated with the cookie using the nonce as a key.

Bingler, et al. Expires 18 May 2024 [Page 48]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Using session identifier cookies limits the damage an attacker can
 cause if the attacker learns the contents of a cookie because the
 nonce is useful only for interacting with the server (unlike non-
 nonce cookie content, which might itself be sensitive). Furthermore,
 using a single nonce prevents an attacker from "splicing" together
 cookie content from two interactions with the server, which could
 cause the server to behave unexpectedly.

 Using session identifiers is not without risk. For example, the
 server SHOULD take care to avoid "session fixation" vulnerabilities.
 A session fixation attack proceeds in three steps. First, the
 attacker transplants a session identifier from his or her user agent
 to the victim’s user agent. Second, the victim uses that session
 identifier to interact with the server, possibly imbuing the session
 identifier with the user’s credentials or confidential information.
 Third, the attacker uses the session identifier to interact with
 server directly, possibly obtaining the user’s authority or
 confidential information.

8.5. Weak Confidentiality

 Cookies do not provide isolation by port. If a cookie is readable by
 a service running on one port, the cookie is also readable by a
 service running on another port of the same server. If a cookie is
 writable by a service on one port, the cookie is also writable by a
 service running on another port of the same server. For this reason,
 servers SHOULD NOT both run mutually distrusting services on
 different ports of the same host and use cookies to store security-
 sensitive information.

 Cookies do not provide isolation by scheme. Although most commonly
 used with the http and https schemes, the cookies for a given host
 might also be available to other schemes, such as ftp and gopher.
 Although this lack of isolation by scheme is most apparent in non-
 HTTP APIs that permit access to cookies (e.g., HTML’s document.cookie
 API), the lack of isolation by scheme is actually present in
 requirements for processing cookies themselves (e.g., consider
 retrieving a URI with the gopher scheme via HTTP).

 Cookies do not always provide isolation by path. Although the
 network-level protocol does not send cookies stored for one path to
 another, some user agents expose cookies via non-HTTP APIs, such as
 HTML’s document.cookie API. Because some of these user agents (e.g.,
 web browsers) do not isolate resources received from different paths,
 a resource retrieved from one path might be able to access cookies
 stored for another path.

Bingler, et al. Expires 18 May 2024 [Page 49]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

8.6. Weak Integrity

 Cookies do not provide integrity guarantees for sibling domains (and
 their subdomains). For example, consider foo.site.example and
 bar.site.example. The foo.site.example server can set a cookie with
 a Domain attribute of "site.example" (possibly overwriting an
 existing "site.example" cookie set by bar.site.example), and the user
 agent will include that cookie in HTTP requests to bar.site.example.
 In the worst case, bar.site.example will be unable to distinguish
 this cookie from a cookie it set itself. The foo.site.example server
 might be able to leverage this ability to mount an attack against
 bar.site.example.

 Even though the Set-Cookie header field supports the Path attribute,
 the Path attribute does not provide any integrity protection because
 the user agent will accept an arbitrary Path attribute in a Set-
 Cookie header field. For example, an HTTP response to a request for
 http://site.example/foo/bar can set a cookie with a Path attribute of
 "/qux". Consequently, servers SHOULD NOT both run mutually
 distrusting services on different paths of the same host and use
 cookies to store security-sensitive information.

 An active network attacker can also inject cookies into the Cookie
 header field sent to https://site.example/ by impersonating a
 response from http://site.example/ and injecting a Set-Cookie header
 field. The HTTPS server at site.example will be unable to
 distinguish these cookies from cookies that it set itself in an HTTPS
 response. An active network attacker might be able to leverage this
 ability to mount an attack against site.example even if site.example
 uses HTTPS exclusively.

 Servers can partially mitigate these attacks by encrypting and
 signing the contents of their cookies, or by naming the cookie with
 the __Secure- prefix. However, using cryptography does not mitigate
 the issue completely because an attacker can replay a cookie he or
 she received from the authentic site.example server in the user’s
 session, with unpredictable results.

 Finally, an attacker might be able to force the user agent to delete
 cookies by storing a large number of cookies. Once the user agent
 reaches its storage limit, the user agent will be forced to evict
 some cookies. Servers SHOULD NOT rely upon user agents retaining
 cookies.

Bingler, et al. Expires 18 May 2024 [Page 50]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

8.7. Reliance on DNS

 Cookies rely upon the Domain Name System (DNS) for security. If the
 DNS is partially or fully compromised, the cookie protocol might fail
 to provide the security properties required by applications.

8.8. SameSite Cookies

8.8.1. Defense in depth

 "SameSite" cookies offer a robust defense against CSRF attack when
 deployed in strict mode, and when supported by the client. It is,
 however, prudent to ensure that this designation is not the extent of
 a site’s defense against CSRF, as same-site navigations and
 submissions can certainly be executed in conjunction with other
 attack vectors such as cross-site scripting.

 Developers are strongly encouraged to deploy the usual server-side
 defenses (CSRF tokens, ensuring that "safe" HTTP methods are
 idempotent, etc) to mitigate the risk more fully.

 Additionally, client-side techniques such as those described in
 [app-isolation] may also prove effective against CSRF, and are
 certainly worth exploring in combination with "SameSite" cookies.

8.8.2. Top-level Navigations

 Setting the SameSite attribute in "strict" mode provides robust
 defense in depth against CSRF attacks, but has the potential to
 confuse users unless sites’ developers carefully ensure that their
 cookie-based session management systems deal reasonably well with
 top-level navigations.

 Consider the scenario in which a user reads their email at MegaCorp
 Inc’s webmail provider https://site.example/. They might expect that
 clicking on an emailed link to https://projects.example/secret/
 project would show them the secret project that they’re authorized to
 see, but if https://projects.example has marked their session cookies
 as SameSite=Strict, then this cross-site navigation won’t send them
 along with the request. https://projects.example will render a 404
 error to avoid leaking secret information, and the user will be quite
 confused.

 Developers can avoid this confusion by adopting a session management
 system that relies on not one, but two cookies: one conceptually
 granting "read" access, another granting "write" access. The latter
 could be marked as SameSite=Strict, and its absence would prompt a
 reauthentication step before executing any non-idempotent action.

Bingler, et al. Expires 18 May 2024 [Page 51]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 The former could be marked as SameSite=Lax, in order to allow users
 access to data via top-level navigation, or SameSite=None, to permit
 access in all contexts (including cross-site embedded contexts).

8.8.3. Mashups and Widgets

 The Lax and Strict values for the SameSite attribute are
 inappropriate for some important use-cases. In particular, note that
 content intended for embedding in cross-site contexts (social
 networking widgets or commenting services, for instance) will not
 have access to same-site cookies. Cookies which are required in
 these situations should be marked with SameSite=None to allow access
 in cross-site contexts.

 Likewise, some forms of Single-Sign-On might require cookie-based
 authentication in a cross-site context; these mechanisms will not
 function as intended with same-site cookies and will also require
 SameSite=None.

8.8.4. Server-controlled

 SameSite cookies in and of themselves don’t do anything to address
 the general privacy concerns outlined in Section 7.1 of [RFC6265].
 The "SameSite" attribute is set by the server, and serves to mitigate
 the risk of certain kinds of attacks that the server is worried
 about. The user is not involved in this decision. Moreover, a
 number of side-channels exist which could allow a server to link
 distinct requests even in the absence of cookies (for example,
 connection and/or socket pooling between same-site and cross-site
 requests).

8.8.5. Reload navigations

 Requests issued for reloads triggered through user interface elements
 (such as a refresh button on a toolbar) are same-site only if the
 reloaded document was originally navigated to via a same-site
 request. This differs from the handling of other reload navigations,
 which are always same-site if top-level, since the source navigable’s
 active document is precisely the document being reloaded.

Bingler, et al. Expires 18 May 2024 [Page 52]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 This special handling of reloads triggered through a user interface
 element avoids sending SameSite cookies on user-initiated reloads if
 they were withheld on the original navigation (i.e., if the initial
 navigation were cross-site). If the reload navigation were instead
 considered same-site, and sent all the initially withheld SameSite
 cookies, the security benefits of withholding the cookies in the
 first place would be nullified. This is especially important given
 that the absence of SameSite cookies withheld on a cross-site
 navigation request may lead to visible site breakage, prompting the
 user to trigger a reload.

 For example, suppose the user clicks on a link from
 https://attacker.example/ to https://victim.example/. This is a
 cross-site request, so SameSite=Strict cookies are withheld. Suppose
 this causes https://victim.example/ to appear broken, because the
 site only displays its sensitive content if a particular SameSite
 cookie is present in the request. The user, frustrated by the
 unexpectedly broken site, presses refresh on their browser’s toolbar.
 To now consider the reload request same-site and send the initially
 withheld SameSite cookie would defeat the purpose of withholding it
 in the first place, as the reload navigation triggered through the
 user interface may replay the original (potentially malicious)
 request. Thus, the reload request should be considered cross-site,
 like the request that initially navigated to the page.

8.8.6. Top-level requests with "unsafe" methods

 The "Lax" enforcement mode described in Section 5.5.7.1 allows a
 cookie to be sent with a cross-site HTTP request if and only if it is
 a top-level navigation with a "safe" HTTP method. Implementation
 experience shows that this is difficult to apply as the default
 behavior, as some sites may rely on cookies not explicitly specifying
 a SameSite attribute being included on top-level cross-site requests
 with "unsafe" HTTP methods (as was the case prior to the introduction
 of the SameSite attribute).

 For example, a login flow may involve a cross-site top-level POST
 request to an endpoint which expects a cookie with login information.
 For such a cookie, "Lax" enforcement is not appropriate, as it would
 cause the cookie to be excluded due to the unsafe HTTP request
 method. On the other hand, "None" enforcement would allow the cookie
 to be sent with all cross-site requests, which may not be desirable
 due to the cookie’s sensitive contents.

 The "Lax-allowing-unsafe" enforcement mode described in
 Section 5.5.7.2 retains some of the protections of "Lax" enforcement
 (as compared to "None") while still allowing cookies to be sent
 cross-site with unsafe top-level requests.

Bingler, et al. Expires 18 May 2024 [Page 53]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 As a more permissive variant of "Lax" mode, "Lax-allowing-unsafe"
 mode necessarily provides fewer protections against CSRF.
 Ultimately, the provision of such an enforcement mode should be seen
 as a temporary, transitional measure to ease adoption of "Lax"
 enforcement by default.

9. IANA Considerations

9.1. Cookie

 The permanent message header field registry (see [RFC3864]) needs to
 be updated with the following registration:

 Header field name: Cookie

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document: this specification (Section 5.7.1)

9.2. Set-Cookie

 The permanent message header field registry (see [RFC3864]) needs to
 be updated with the following registration:

 Header field name: Set-Cookie

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document: this specification (Section 5.5)

9.3. Cookie Attribute Registry

 IANA is requested to create the "Cookie Attribute Registry", defining
 the name space of attribute used to control cookies’ behavior. The
 registry should be maintained at https://www.iana.org/assignments/
 cookie-attribute-names (https://www.iana.org/assignments/cookie-
 attribute-names).

Bingler, et al. Expires 18 May 2024 [Page 54]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

9.3.1. Procedure

 Each registered attribute name is associated with a description, and
 a reference detailing how the attribute is to be processed and
 stored.

 New registrations happen on a "RFC Required" basis (see Section 4.7
 of [RFC8126]). The attribute to be registered MUST match the
 extension-av syntax defined in Section 4.1.1. Note that attribute
 names are generally defined in CamelCase, but technically accepted
 case-insensitively.

9.3.2. Registration

 The "Cookie Attribute Registry" should be created with the
 registrations below:

 +==========+==================================+
 | Name | Reference |
 +==========+==================================+
 | Domain | Section 4.1.2.3 of this document |
 +----------+----------------------------------+
 | Expires | Section 4.1.2.1 of this document |
 +----------+----------------------------------+
 | HttpOnly | Section 4.1.2.6 of this document |
 +----------+----------------------------------+
 | Max-Age | Section 4.1.2.2 of this document |
 +----------+----------------------------------+
 | Path | Section 4.1.2.4 of this document |
 +----------+----------------------------------+
 | SameSite | Section 4.1.2.7 of this document |
 +----------+----------------------------------+
 | Secure | Section 4.1.2.5 of this document |
 +----------+----------------------------------+

 Table 1

10. References

10.1. Normative References

 [DOM-DOCUMENT-COOKIE]
 WHATWG, "HTML - Living Standard", 18 May 2021,
 <https://html.spec.whatwg.org/#dom-document-cookie>.

 [FETCH] van Kesteren, A., "Fetch", n.d.,
 <https://fetch.spec.whatwg.org/>.

Bingler, et al. Expires 18 May 2024 [Page 55]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 [HTML] Hickson, I., Pieters, S., van Kesteren, A., Jägenstedt,
 P., and D. Denicola, "HTML", n.d.,
 <https://html.spec.whatwg.org/>.

 [HTTPSEM] Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP
 Semantics", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-semantics-19, 12 September 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 semantics-19>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/rfc/rfc1034>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/rfc/rfc1123>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3490] Costello, A., "Internationalizing Domain Names in
 Applications (IDNA)", RFC 3490, March 2003,
 <https://www.rfc-editor.org/rfc/rfc3490>. See Section 6.3
 for an explanation why the normative reference to an
 obsoleted specification is needed.

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 DOI 10.17487/RFC4790, March 2007,
 <https://www.rfc-editor.org/rfc/rfc4790>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5234>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/rfc/rfc5890>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/rfc/rfc6454>.

Bingler, et al. Expires 18 May 2024 [Page 56]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [SAMESITE] WHATWG, "HTML - Living Standard", 26 January 2021,
 <https://html.spec.whatwg.org/#same-site>.

 [SERVICE-WORKERS]
 Russell, A., Song, J., and J. Archibald, "Service
 Workers", n.d., <http://www.w3.org/TR/service-workers/>.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

10.2. Informative References

 [Aggarwal2010]
 Aggarwal, G., Burzstein, E., Jackson, C., and D. Boneh,
 "An Analysis of Private Browsing Modes in Modern
 Browsers", 2010,
 <http://www.usenix.org/events/sec10/tech/full_papers/
 Aggarwal.pdf>.

 [app-isolation]
 Chen, E., Bau, J., Reis, C., Barth, A., and C. Jackson,
 "App Isolation - Get the Security of Multiple Browsers
 with Just One", 2011,
 <http://www.collinjackson.com/research/papers/
 appisolation.pdf>.

 [CSRF] Barth, A., Jackson, C., and J. Mitchell, "Robust Defenses
 for Cross-Site Request Forgery",
 DOI 10.1145/1455770.1455782, ISBN 978-1-59593-810-7,
 ACM CCS ’08: Proceedings of the 15th ACM conference on
 Computer and communications security (pages 75-88),
 October 2008,
 <http://portal.acm.org/citation.cfm?id=1455770.1455782>.

 [I-D.ietf-httpbis-cookie-alone]
 West, M., "Deprecate modification of ’secure’ cookies from
 non-secure origins", Work in Progress, Internet-Draft,
 draft-ietf-httpbis-cookie-alone-01, 5 September 2016,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 cookie-alone-01>.

Bingler, et al. Expires 18 May 2024 [Page 57]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 [I-D.ietf-httpbis-cookie-prefixes]
 West, M., "Cookie Prefixes", Work in Progress, Internet-
 Draft, draft-ietf-httpbis-cookie-prefixes-00, 23 February
 2016, <https://datatracker.ietf.org/doc/html/draft-ietf-
 httpbis-cookie-prefixes-00>.

 [I-D.ietf-httpbis-cookie-same-site]
 West, M. and M. Goodwin, "Same-Site Cookies", Work in
 Progress, Internet-Draft, draft-ietf-httpbis-cookie-same-
 site-00, 20 June 2016,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 cookie-same-site-00>.

 [prerendering]
 Bentzel, C., "Chrome Prerendering", n.d.,
 <https://www.chromium.org/developers/design-documents/
 prerender>.

 [PSL] "Public Suffix List", n.d.,
 <https://publicsuffix.org/list/>.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109, DOI 10.17487/RFC2109, February 1997,
 <https://www.rfc-editor.org/rfc/rfc2109>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/rfc/rfc2818>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/rfc/rfc3864>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC5895] Resnick, P. and P. Hoffman, "Mapping Characters for
 Internationalized Domain Names in Applications (IDNA)
 2008", RFC 5895, DOI 10.17487/RFC5895, September 2010,
 <https://www.rfc-editor.org/rfc/rfc5895>.

Bingler, et al. Expires 18 May 2024 [Page 58]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/rfc/rfc6265>.

 [RFC7034] Ross, D. and T. Gondrom, "HTTP Header Field X-Frame-
 Options", RFC 7034, DOI 10.17487/RFC7034, October 2013,
 <https://www.rfc-editor.org/rfc/rfc7034>.

 [UTS46] Davis, M. and M. Suignard, "Unicode IDNA Compatibility
 Processing", UNICODE Unicode Technical Standards # 46,
 June 2016, <http://unicode.org/reports/tr46/>.

Appendix A. Changes

A.1. draft-ietf-httpbis-rfc6265bis-00

 * Port [RFC6265] to Markdown. No (intentional) normative changes.

A.2. draft-ietf-httpbis-rfc6265bis-01

 * Fixes to formatting caused by mistakes in the initial port to
 Markdown:

 - https://github.com/httpwg/http-extensions/issues/243
 (https://github.com/httpwg/http-extensions/issues/243)

 - https://github.com/httpwg/http-extensions/issues/246
 (https://github.com/httpwg/http-extensions/issues/246)

 * Addresses errata 3444 by updating the path-value and extension-av
 grammar, errata 4148 by updating the day-of-month, year, and time
 grammar, and errata 3663 by adding the requested note.
 https://www.rfc-editor.org/errata_search.php?rfc=6265
 (https://www.rfc-editor.org/errata_search.php?rfc=6265)

 * Dropped Cookie2 and Set-Cookie2 from the IANA Considerations
 section: https://github.com/httpwg/http-extensions/issues/247
 (https://github.com/httpwg/http-extensions/issues/247)

 * Merged the recommendations from [I-D.ietf-httpbis-cookie-alone],
 removing the ability for a non-secure origin to set cookies with a
 ’secure’ flag, and to overwrite cookies whose ’secure’ flag is
 true.

 * Merged the recommendations from
 [I-D.ietf-httpbis-cookie-prefixes], adding __Secure- and __Host-
 cookie name prefix processing instructions.

Bingler, et al. Expires 18 May 2024 [Page 59]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

A.3. draft-ietf-httpbis-rfc6265bis-02

 * Merged the recommendations from
 [I-D.ietf-httpbis-cookie-same-site], adding support for the
 SameSite attribute.

 * Closed a number of editorial bugs:

 - Clarified address bar behavior for SameSite cookies:
 https://github.com/httpwg/http-extensions/issues/201
 (https://github.com/httpwg/http-extensions/issues/201)

 - Added the word "Cookies" to the document’s name:
 https://github.com/httpwg/http-extensions/issues/204
 (https://github.com/httpwg/http-extensions/issues/204)

 - Clarified that the __Host- prefix requires an explicit Path
 attribute: https://github.com/httpwg/http-extensions/issues/222
 (https://github.com/httpwg/http-extensions/issues/222)

 - Expanded the options for dealing with third-party cookies to
 include a brief mention of partitioning based on first-party:
 https://github.com/httpwg/http-extensions/issues/248
 (https://github.com/httpwg/http-extensions/issues/248)

 - Noted that double-quotes in cookie values are part of the
 value, and are not stripped: https://github.com/httpwg/http-
 extensions/issues/295 (https://github.com/httpwg/http-
 extensions/issues/295)

 - Fixed the "site for cookies" algorithm to return something that
 makes sense: https://github.com/httpwg/http-extensions/
 issues/302 (https://github.com/httpwg/http-extensions/
 issues/302)

A.4. draft-ietf-httpbis-rfc6265bis-03

 * Clarified handling of invalid SameSite values:
 https://github.com/httpwg/http-extensions/issues/389
 (https://github.com/httpwg/http-extensions/issues/389)

 * Reflect widespread implementation practice of including a cookie’s
 host-only-flag when calculating its uniqueness:
 https://github.com/httpwg/http-extensions/issues/199
 (https://github.com/httpwg/http-extensions/issues/199)

Bingler, et al. Expires 18 May 2024 [Page 60]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Introduced an explicit "None" value for the SameSite attribute:
 https://github.com/httpwg/http-extensions/issues/788
 (https://github.com/httpwg/http-extensions/issues/788)

A.5. draft-ietf-httpbis-rfc6265bis-04

 * Allow SameSite cookies to be set for all top-level navigations.
 https://github.com/httpwg/http-extensions/issues/594
 (https://github.com/httpwg/http-extensions/issues/594)

 * Treat Set-Cookie: token as creating the cookie ("", "token"):
 https://github.com/httpwg/http-extensions/issues/159
 (https://github.com/httpwg/http-extensions/issues/159)

 * Reject cookies with neither name nor value (e.g. Set-Cookie: =
 and Set-Cookie:: https://github.com/httpwg/http-extensions/
 issues/159 (https://github.com/httpwg/http-extensions/issues/159)

 * Clarified behavior of multiple SameSite attributes in a cookie
 string: https://github.com/httpwg/http-extensions/issues/901
 (https://github.com/httpwg/http-extensions/issues/901)

A.6. draft-ietf-httpbis-rfc6265bis-05

 * Typos and editorial fixes: https://github.com/httpwg/http-
 extensions/pull/1035 (https://github.com/httpwg/http-extensions/
 pull/1035), https://github.com/httpwg/http-extensions/pull/1038
 (https://github.com/httpwg/http-extensions/pull/1038),
 https://github.com/httpwg/http-extensions/pull/1040
 (https://github.com/httpwg/http-extensions/pull/1040),
 https://github.com/httpwg/http-extensions/pull/1047
 (https://github.com/httpwg/http-extensions/pull/1047).

A.7. draft-ietf-httpbis-rfc6265bis-06

 * Editorial fixes: https://github.com/httpwg/http-extensions/
 issues/1059 (https://github.com/httpwg/http-extensions/
 issues/1059), https://github.com/httpwg/http-extensions/
 issues/1158 (https://github.com/httpwg/http-extensions/
 issues/1158).

 * Created a registry for cookie attribute names:
 https://github.com/httpwg/http-extensions/pull/1060
 (https://github.com/httpwg/http-extensions/pull/1060).

Bingler, et al. Expires 18 May 2024 [Page 61]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Tweaks to ABNF for cookie-pair and the Cookie header production:
 https://github.com/httpwg/http-extensions/issues/1074
 (https://github.com/httpwg/http-extensions/issues/1074),
 https://github.com/httpwg/http-extensions/issues/1119
 (https://github.com/httpwg/http-extensions/issues/1119).

 * Fixed serialization for nameless/valueless cookies:
 https://github.com/httpwg/http-extensions/pull/1143
 (https://github.com/httpwg/http-extensions/pull/1143).

 * Converted a normative reference to Mozilla’s Public Suffix List
 [PSL] into an informative reference: https://github.com/httpwg/
 http-extensions/issues/1159 (https://github.com/httpwg/http-
 extensions/issues/1159).

A.8. draft-ietf-httpbis-rfc6265bis-07

 * Moved instruction to ignore cookies with empty cookie-name and
 cookie-value from Section 5.5 to Section 5.6 to ensure that they
 apply to cookies created without parsing a cookie string:
 https://github.com/httpwg/http-extensions/issues/1234
 (https://github.com/httpwg/http-extensions/issues/1234).

 * Add a default enforcement value to the same-site-flag, equivalent
 to "SameSite=Lax": https://github.com/httpwg/http-extensions/
 pull/1325 (https://github.com/httpwg/http-extensions/pull/1325).

 * Require a Secure attribute for "SameSite=None":
 https://github.com/httpwg/http-extensions/pull/1323
 (https://github.com/httpwg/http-extensions/pull/1323).

 * Consider scheme when running the same-site algorithm:
 https://github.com/httpwg/http-extensions/pull/1324
 (https://github.com/httpwg/http-extensions/pull/1324).

A.9. draft-ietf-httpbis-rfc6265bis-08

 * Define "same-site" for reload navigation requests, e.g. those
 triggered via user interface elements: https://github.com/httpwg/
 http-extensions/pull/1384 (https://github.com/httpwg/http-
 extensions/pull/1384)

 * Consider redirects when defining same-site:
 https://github.com/httpwg/http-extensions/pull/1348
 (https://github.com/httpwg/http-extensions/pull/1348)

Bingler, et al. Expires 18 May 2024 [Page 62]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Align on using HTML terminology for origins:
 https://github.com/httpwg/http-extensions/pull/1416
 (https://github.com/httpwg/http-extensions/pull/1416)

 * Modify cookie parsing and creation algorithms in Section 5.5 and
 Section 5.6 to explicitly handle control characters:
 https://github.com/httpwg/http-extensions/pull/1420
 (https://github.com/httpwg/http-extensions/pull/1420)

 * Refactor cookie retrieval algorithm to support non-HTTP APIs:
 https://github.com/httpwg/http-extensions/pull/1428
 (https://github.com/httpwg/http-extensions/pull/1428)

 * Define "Lax-allowing-unsafe" SameSite enforcement mode:
 https://github.com/httpwg/http-extensions/pull/1435
 (https://github.com/httpwg/http-extensions/pull/1435)

 * Consistently use "header field" (vs ’header"):
 https://github.com/httpwg/http-extensions/pull/1527
 (https://github.com/httpwg/http-extensions/pull/1527)

A.10. draft-ietf-httpbis-rfc6265bis-09

 * Update cookie size requirements: https://github.com/httpwg/http-
 extensions/pull/1563 (https://github.com/httpwg/http-extensions/
 pull/1563)

 * Reject cookies with control characters: https://github.com/httpwg/
 http-extensions/pull/1576 (https://github.com/httpwg/http-
 extensions/pull/1576)

 * No longer treat horizontal tab as a control character:
 https://github.com/httpwg/http-extensions/pull/1589
 (https://github.com/httpwg/http-extensions/pull/1589)

 * Specify empty domain attribute handling:
 https://github.com/httpwg/http-extensions/pull/1709
 (https://github.com/httpwg/http-extensions/pull/1709)

A.11. draft-ietf-httpbis-rfc6265bis-10

 * Standardize Max-Age/Expires upper bound:
 https://github.com/httpwg/http-extensions/pull/1732
 (https://github.com/httpwg/http-extensions/pull/1732),
 https://github.com/httpwg/http-extensions/pull/1980
 (https://github.com/httpwg/http-extensions/pull/1980).

Bingler, et al. Expires 18 May 2024 [Page 63]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Expand on privacy considerations and third-party cookies:
 https://github.com/httpwg/http-extensions/pull/1878
 (https://github.com/httpwg/http-extensions/pull/1878)

 * Specify that no decoding of Set-Cookie line should occur:
 https://github.com/httpwg/http-extensions/pull/1902
 (https://github.com/httpwg/http-extensions/pull/1902)

 * Require ASCII for domain attributes: https://github.com/httpwg/
 http-extensions/pull/1969 (https://github.com/httpwg/http-
 extensions/pull/1969)

 * Typos, formatting and editorial fixes: https://github.com/httpwg/
 http-extensions/pull/1789 (https://github.com/httpwg/http-
 extensions/pull/1789), https://github.com/httpwg/http-extensions/
 pull/1858 (https://github.com/httpwg/http-extensions/pull/1858),
 https://github.com/httpwg/http-extensions/pull/2069
 (https://github.com/httpwg/http-extensions/pull/2069).

A.12. draft-ietf-httpbis-rfc6265bis-11

 * Remove note to ignore Domain attribute with trailing dot:
 https://github.com/httpwg/http-extensions/pull/2087
 (https://github.com/httpwg/http-extensions/pull/2087),
 https://github.com/httpwg/http-extensions/pull/2092
 (https://github.com/httpwg/http-extensions/pull/2092).

 * Remove an inadvertant change to cookie-octet:
 https://github.com/httpwg/http-extensions/pull/2090
 (https://github.com/httpwg/http-extensions/pull/2090)

 * Remove note regarding cookie serialization:
 https://github.com/httpwg/http-extensions/pull/2165
 (https://github.com/httpwg/http-extensions/pull/2165)

 * Add case insensitivity note to Set-Cookie Syntax:
 https://github.com/httpwg/http-extensions/pull/2167
 (https://github.com/httpwg/http-extensions/pull/2167)

 * Add note not to send invalid cookies due to public suffix list
 changes: https://github.com/httpwg/http-extensions/pull/2215
 (https://github.com/httpwg/http-extensions/pull/2215)

 * Add warning to not send nameless cookies:
 https://github.com/httpwg/http-extensions/pull/2220
 (https://github.com/httpwg/http-extensions/pull/2220)

Bingler, et al. Expires 18 May 2024 [Page 64]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 * Add note regarding Service Worker’s computation of "site for
 cookies": https://github.com/httpwg/http-extensions/pull/2217
 (https://github.com/httpwg/http-extensions/pull/2217)

 * Compare cookie name prefixes case-insensitively:
 https://github.com/httpwg/http-extensions/pull/2236
 (https://github.com/httpwg/http-extensions/pull/2236)

 * Update editors and the acknowledgements https://github.com/httpwg/
 http-extensions/pull/2244 (https://github.com/httpwg/http-
 extensions/pull/2244)

 * Prevent nameless cookies with prefixed values
 https://github.com/httpwg/http-extensions/pull/2251
 (https://github.com/httpwg/http-extensions/pull/2251)

A.13. draft-ietf-httpbis-rfc6265bis-12

 * Advise the reader which section to implement
 https://github.com/httpwg/http-extensions/pull/2478
 (https://github.com/httpwg/http-extensions/pull/2478)

 * Define top-level navigation https://github.com/httpwg/http-
 extensions/pull/2481 (https://github.com/httpwg/http-extensions/
 pull/2481)

 * Use navigables concept https://github.com/httpwg/http-extensions/
 pull/2478 (https://github.com/httpwg/http-extensions/pull/2478)

Acknowledgements

 RFC 6265 was written by Adam Barth. This document is an update of
 RFC 6265, adding features and aligning the specification with the
 reality of todays deployments. Here, were standing upon the
 shoulders of a giant since the majority of the text is still Adams.

 Thank you to both Lily Chen and Steven Englehardt, editors emeritus,
 for their significant contributions improving this draft.

Authors’ Addresses

 Steven Bingler (editor)
 Google LLC
 Email: bingler@google.com

 Mike West (editor)
 Google LLC

Bingler, et al. Expires 18 May 2024 [Page 65]

Internet-Draft Cookies: HTTP State Management Mechanism November 2023

 Email: mkwst@google.com
 URI: https://mikewest.org/

 John Wilander (editor)
 Apple, Inc
 Email: wilander@apple.com

Bingler, et al. Expires 18 May 2024 [Page 66]

