
Network Working Group M. Nottingham
Internet-Draft May 11, 2017
Obsoletes: 3205 (if approved)
Intended status: Best Current Practice
Expires: November 12, 2017

 On the use of HTTP as a Substrate
 draft-nottingham-bcp56bis-00

Abstract

 HTTP is often used as a substrate for other application protocols.
 This document specifies best practices for these protocols’ use of
 HTTP.

Note to Readers

 The issues list for this draft can be found at
 https://github.com/mnot/I-D/labels/bcp56bis .

 The most recent (often, unpublished) draft is at
 https://mnot.github.io/I-D/bcp56bis/ .

 Recent changes are listed at https://github.com/mnot/I-D/commits/gh-
 pages/bcp56bis .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 12, 2017.

Nottingham Expires November 12, 2017 [Page 1]

Internet-Draft On the use of HTTP as a Substrate May 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 4
 2. Is HTTP Being Used? . 4
 3. What’s Important About HTTP 5
 3.1. Generic Semantics . 5
 3.2. Links . 6
 3.3. Getting Value from HTTP 6
 4. Best Practices for Using HTTP 7
 4.1. Specifying the Use of HTTP 7
 4.2. Defining HTTP Resources 8
 4.3. HTTP URLs . 9
 4.3.1. Initial URL Discovery 9
 4.3.2. URL Schemes . 9
 4.3.3. Transport Ports 10
 4.4. Authentication and Application State 10
 4.5. HTTP Methods . 10
 4.6. HTTP Status Codes . 11
 4.7. HTTP Header Fields 12
 5. IANA Considerations . 12
 6. Security Considerations 12
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Author’s Address . 16

1. Introduction

 HTTP [RFC7230] is often used as a substrate for other application
 protocols. This is done for a variety of reasons, including:

Nottingham Expires November 12, 2017 [Page 2]

Internet-Draft On the use of HTTP as a Substrate May 2017

 o familiarity by implementers, specifiers, administrators,
 developers and users,

 o availability of a variety of client, server and proxy
 implementations,

 o ease of use,

 o ubiquity of Web browsers,

 o reuse of existing mechanisms like authentication and encryption,

 o presence of HTTP servers and clients in target deployments, and

 o its ability to traverse firewalls.

 The Internet community has a long tradition of protocol reuse, dating
 back to the use of Telnet [RFC0854] as a substrate for FTP [RFC0959]
 and SMTP [RFC2821]. However, layering new protocols over HTTP brings
 its own set of issues:

 o Should an application using HTTP define a new URL scheme? Use new
 ports?

 o Should it use standard HTTP methods and status codes, or define
 new ones?

 o How can the maximum value be extracted from the use of HTTP?

 o How does it coexist with other uses of HTTP - especially Web
 browsing?

 o How can interoperability problems and "protocol dead ends" be
 avoided?

 This document contains best current practices regarding the use of
 HTTP by applications other than Web browsing. Section 2 defines what
 applications it applies to; Section 3 surveys the properties of HTTP
 that are important to preserve, and Section 4 conveys best practices
 for those applications that do use HTTP.

 It is written primarily to guide IETF efforts, but might be
 applicable in other situations. Note that the requirements herein do
 not necessarily apply to the development of generic HTTP extensions.

Nottingham Expires November 12, 2017 [Page 3]

Internet-Draft On the use of HTTP as a Substrate May 2017

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Is HTTP Being Used?

 Different applications have different goals when using HTTP. In this
 document, we say an application is _using HTTP_ when any of the
 following conditions are true:

 o The transport port in use is 80 or 443,

 o The URL scheme "http" or "https" is used,

 o The ALPN protocol ID [RFC7301] "http/1.1", "h2" or "h2c" is used,
 or

 o The message formats described in [RFC7320] and/or [RFC7540] are
 used in conjunction with the IANA registries defined for HTTP.

 When an application is using HTTP, all of the requirements of the
 HTTP protocol suite (including but not limited to [RFC7320],
 [RFC7321], [RFC7322], [RFC7233], [RFC7234], [RFC7325] and [RFC7540])
 are in force.

 An application might not be _using HTTP_ according to this
 definition, but still relying upon the HTTP specifications in some
 manner. For example, an application might wish to avoid re-
 specifying parts of the message format, but change others; or, it
 might want to use a different set of methods.

 Such applications are referred to as _protocols based upon HTTP_ in
 this document. These have more freedom to modify protocol operation,
 but are also likely to lose at least a portion of the benefits
 outlined above, as most HTTP implementations won’t be easily
 adaptable to these changes, and as the protocol diverges from HTTP,
 the benefit of mindshare will be lost.

 Protocols that are based upon HTTP MUST NOT reuse HTTP’s URL schemes,
 transport ports, ALPN protocol IDs or IANA registries; rather, they
 are encouraged to establish their own.

Nottingham Expires November 12, 2017 [Page 4]

Internet-Draft On the use of HTTP as a Substrate May 2017

3. What’s Important About HTTP

 There are many ways that HTTP applications are defined and deployed,
 and sometimes they are brought to the IETF for standardisation. In
 that process, what might be workable for deployment in a limited
 fashion isn’t appropriate for standardisation and the corresponding
 broader deployment.

 This section examines the facets of the protocol that are important
 to preserve in these situations.

3.1. Generic Semantics

 When writing an application’s specification, it’s often tempting to
 specify exactly how HTTP is to be implemented, supported and used.

 However, this can easily lead to an unintended profile of HTTP’s
 behaviour. For example, it’s common to see specifications with
 language like this:

A ‘200 OK‘ response means that the widget has successfully been updated.

 This sort of specification is bad practice, because it is adding new
 semantics to HTTP’s status codes and methods, respectively; a
 recipient - whether it’s an origin server, client library,
 intermediary or cache - now has to know these extra semantics to
 understand the message.

 Some applications even require specific behaviours, such as:

 A ‘POST‘ request MUST result in a ‘201 Created‘ response.

 This forms an expectation in the client that the response will always
 be "201 Created", when in fact there are a number of reasons why the
 status code might differ in a real deployment. If the client does
 not anticipate this, the application’s deployment is brittle.

 Much of the value of HTTP is in its _generic semantics_ - that is,
 the protocol elements defined by HTTP are potentially applicable to
 every resource, not specific to a particular context. Application-
 specific semantics are expressed in the payload; mostly, in the body,
 but also in header fields.

 This allows a HTTP message to be examined by generic HTTP software
 (e.g., HTTP servers, intermediaries, client implementatiions), and
 its handling to be correctly determined. It also allows people to
 leverage their knowledge of HTTP semantics without special-casing
 them for a particular application.

Nottingham Expires November 12, 2017 [Page 5]

Internet-Draft On the use of HTTP as a Substrate May 2017

 Therefore, applications that use HTTP MUST NOT re-define, refine or
 overlay the semantics of defined protocol elements. Instead, they
 SHOULD focus their specifications on protocol elements that are
 specific to them; namely their HTTP resources.

 See Section 4.2 for details.

3.2. Links

 Another common practice is assuming that the HTTP server’s name space
 (or a portion thereof) is exclusively for the use of a single
 application. This effectively overlays special, application-specific
 semantics onto that space, precludes other applications from using
 it.

 As explained in [RFC7320], such "squatting" on a part of the URL
 space by a standard usurps the server’s authority over its own
 resources, can cause deployment issues, and is therefore bad practice
 in standards.

 Instead of statically defining URL paths, it is RECOMMENDED that
 applications using HTTP define links in payloads, to allow
 flexibility in deployment.

 Using runtime links in this fashion has a number of other benefits.
 For example, navigating with a link allows a request to be routed to
 a different server without the overhead of a redirection, thereby
 supporting deployment across machines well. It becomes possible to
 "mix" different applications on the same server, and offers a natural
 path for extensibility, versioning and capability management.

3.3. Getting Value from HTTP

 The simplest possible use of HTTP is to POST data to a single URL,
 thereby effectively tunnelling through the protocol.

 This "RPC" style of communication does get some benefit from using
 HTTP - namely, message framing and the availability of
 implementations - but fails to realise many others:

 o Caching for server scalability, latency and bandwidth reduction,
 and reliability;

 o Authentication and access control;

 o Automatic redirection;

 o Partial content to selectively request part of a response;

Nottingham Expires November 12, 2017 [Page 6]

Internet-Draft On the use of HTTP as a Substrate May 2017

 o Natural support for extensions and versioning through protocol
 extension; and

 o The ability to interact with the application easily using a Web
 browser.

 Using such a high-level protocol to tunnel simple semantics has
 downsides too; because of its more advanced capabilities, breadth of
 deployment and age, HTTP’s complexity can cause interoperability
 problems that could be avoided by using a simpler substrate (e.g.,
 WebSockets [RFC6455], if browser support is necessary, or TCP
 [RFC0793] if not), or making the application be _based upon HTTP_,
 instead of using it (as defined in Section 2).

 Applications that use HTTP are encouraged to accommodate the various
 features that the protocol offers, so that their users receive the
 maximum benefit from it. This document does not require specific
 features to be used, since the appropriate design tradeoffs are
 highly specific to a given situation. However, following the
 practices in Section 4 will help make them available.

4. Best Practices for Using HTTP

 This section contains best practices regarding the use of HTTP by
 applications, including practices for specific HTTP protocol
 elements.

4.1. Specifying the Use of HTTP

 When specifying the use of HTTP, an application SHOULD use [RFC7230]
 as the primary reference; it is not necessary to reference all of the
 specifications in the HTTP suite unless there are specific reasons to
 do so (e.g., a particular feature is called out).

 Applications using HTTP MAY specify a minimum version to be supported
 (HTTP/1.1 is suggested), and MUST NOT specify a maximum version.

 Likewise, applications need not specify what HTTP mechanisms - such
 as redirection, caching, authentication, proxy authentication, and so
 on - are to be supported. Full featured support for HTTP SHOULD be
 taken for granted in servers and clients, and the application’s
 function SHOULD degrade gracefully if they are not (although this
 might be achieved by informing the user that their task cannot be
 completed).

 For example, an application can specify that it uses HTTP like this:

Nottingham Expires November 12, 2017 [Page 7]

Internet-Draft On the use of HTTP as a Substrate May 2017

 Foo Application uses HTTP {{RFC7230}}. Implementations MUST support
 HTTP/1.1, and MAY support later versions. Support for common HTTP
 mechanisms such as redirection and caching are assumed.

4.2. Defining HTTP Resources

 HTTP Applications SHOULD focus on defining the following application-
 specific protocol elements:

 o Media types [RFC6838], often based upon a format convention such
 as JSON [RFC7159],

 o HTTP header fields, as per Section 4.7, and

 o The behaviour of resources, as identified by link relations
 [RFC5988].

 By composing these protocol elements, an application can define a set
 of resources, identified by link relations, that implement specified
 behaviours, including:

 o Retrieval of their state using GET, in one or more formats
 identified by media type;

 o Resource creation or update using POST or PUT, with an
 appropriately identified request body format;

 o Data processing using POST and identified request and response
 body format(s); and

 o Resource deletion using DELETE.

 For example, an application might specify:

 Resources linked to with the "example-widget" link relation type are
 Widgets. The state of a Widget can be fetched in the
 "application/example-widget+json" format, and can be updated by PUT
 to the same link. Widget resources can be deleted.

 The "Example-Count" response header field on Widget representations
 indicates how many Widgets are held by the sender.

 The "application/example-widget+json" format is a JSON {{RFC7159}}
 format representing the state of a Widget. It contains links to
 related information in the link indicated by the Link header field
 value with the "example-other-info" link relation type.

Nottingham Expires November 12, 2017 [Page 8]

Internet-Draft On the use of HTTP as a Substrate May 2017

4.3. HTTP URLs

 In HTTP, URLs are opaque identifiers under the control of the server.
 As outlined in [RFC7320], standards cannot usurp this space, since it
 might conflict with existing resources, and constrain implementation
 and deployment.

 In other words, applications that use HTTP MUST NOT associate
 application semantics with specific URL paths. For example,
 specifying that a "GET to the URL /foo retrieves a bar document" is
 bad practice. Likewise, specifying "The widget API is at the path
 /bar" violates [RFC7320].

 Instead, applications that use HTTP are encouraged to use typed links
 [RFC5988] to convey the URIs that are in use, as well as the
 semantics of the resources that they identify. See Section 4.2 for
 details.

4.3.1. Initial URL Discovery

 Generally, a client with begin interacting with a given application
 server by requesting an initial document that contains information
 about that particular deployment, potentially including links to
 other relevant resources.

 Applications that use HTTP SHOULD allow an arbitrary URL to be used
 as that entry point. For example, rather than specifying "the
 initial document is at "/foo/v1", they should allow a deployment to
 use any URL as the entry point for the application.

 In cases where doing so is impractical (e.g., it is not possible to
 convey a whole URL, but only a hostname) applications that use HTTP
 MAY define a well-known URL [RFC5785] as an entry point.

4.3.2. URL Schemes

 Applications that use HTTP MUST allow use of the "https" URL scheme,
 and SHOULD NOT allow use of the "http" URL scheme, unless
 interoperability considerations with existing deployments require it.
 They MUST NOT use other URL schemes.

 "https" is preferred to mitigate pervasive monitoring attacks
 [RFC7258].

 Using other schemes to denote an application using HTTP makes it more
 difficult to use with existing implementations (e.g., Web browsers),
 and is likely to fail to meet the requirements of [RFC7595].

Nottingham Expires November 12, 2017 [Page 9]

Internet-Draft On the use of HTTP as a Substrate May 2017

 If it is necessary to advertise the application in use, this SHOULD
 be done in message payloads, not the URL scheme.

4.3.3. Transport Ports

 Applications that use HTTP SHOULD use the default port for the URL
 scheme in use. If it is felt that networks might need to distinguish
 the application’s traffic for operational reasons, it MAY register a
 separate port, but be aware that this has privacy implications for
 that protocol’s users. The impact of doing so MUST be documented in
 Security Considerations.

4.4. Authentication and Application State

 Applications that use HTTP MAY use stateful cookies [RFC6265] to
 identify a client and/or store client-specific data to contextualise
 requests.

 If it is only necessary to identify clients, applications that use
 HTTP MAY use HTTP authentication [RFC7235]; if the Basic
 authentication scheme [RFC7617] is used, it MUST NOT be used with the
 ’http’ URL scheme.

 In either case, it is important to carefully specify the scoping and
 use of these mechanisms; if they expose sensitive data or
 capabilities (e.g., by acting as an ambiant authority), exploits are
 possible. Mitigations include using a request-specific token to
 assure the intent of the client.

4.5. HTTP Methods

 Applications that use HTTP MUST confine themselves to using
 registered HTTP methods such as GET, POST, PUT, DELETE, and PATCH.

 New HTTP methods are rare; they are required to be registered with
 IETF Review (see [RFC7232]), and are also required to be _generic_.
 That means that they need to be potentially applicable to all
 resources, not just those of one application.

 While historically some applications (e.g., [RFC6352] and [RFC4791])
 have defined non-generic methods, [RFC7231] now forbids this.

 When it is believed that a new method is required, authors are
 encouraged to engage with the HTTP community early, and document
 their proposal as a separate HTTP extension, rather than as part of
 an application’s specification.

Nottingham Expires November 12, 2017 [Page 10]

Internet-Draft On the use of HTTP as a Substrate May 2017

4.6. HTTP Status Codes

 Applications that use HTTP MUST only use registered HTTP status
 codes.

 As with methods, new HTTP status codes are rare, and required (by
 [RFC7231]) to be registered with IETF review. Similarly, HTTP status
 codes are generic; they are required (by [RFC7231]) to be potentially
 applicable to all resources, not just to those of one application.

 When it is believed that a new status code is required, authors are
 encouraged to engage with the HTTP community early, and document
 their proposal as a separate HTTP extension, rather than as part of
 an application’s specification.

 Status codes’ primary function is to convey HTTP semantics for the
 benefit of generic HTTP software, not application-specific semantics.
 Therefore, applications MUST NOT specify additional semantics or
 refine existing semantics for status codes.

 In particular, specifying that a particular status code has a
 specific meaning in the context of an application is harmful, as
 these are not generic semantics, since the consumer needs to be in
 the context of the application to understand them.

 Furthermore, applications using HTTP MUST NOT re-specify the
 semantics of HTTP status codes, even if it is only by copying their
 definition. They MUST NOT require specific status phrases to be
 used; the status phrase has no function in HTTP, and is not
 guaranteed to be preserved by implementations.

 Typically, applications using HTTP will convey application-specific
 information in the message body and/or HTTP header fields, not the
 status code.

 Specifications sometimes also create a "laundry list" of potential
 status codes, in an effort to be helpful. The problem with doing so
 is that such a list is never complete; for example, if a network
 proxy is interposed, the client might encounter a "407 Proxy
 Authentication Required" response; or, if the server is rate limiting
 the client, it might receive a "429 Too Many Requests" response.

 Since the list of HTTP status codes can be added to, it’s safer to
 refer to it directly, and point out that clients SHOULD be able to
 handle all applicable protocol elements gracefully (i.e., falling
 back to the generic "n00" semantics of a given status code; e.g.,
 "499" can be safely handled as "400" by clients that don’t recognise
 it).

Nottingham Expires November 12, 2017 [Page 11]

Internet-Draft On the use of HTTP as a Substrate May 2017

4.7. HTTP Header Fields

 Applications that use HTTP MAY define new HTTP header fields,
 following the advice in [RFC7321], Section 8.3.1.

 Typically, using HTTP header fields is appropriate in a few different
 situations:

 o Their content is useful to intermediaries (who often wish to avoid
 parsing the body), and/or

 o Their content is useful to generic HTTP software (e.g., clients,
 servers), and/or

 o It is not possible to include their content in the message body
 (usually because a format does not allow it).

 If none of these motivations apply, using a header field is NOT
 RECOMMENDED.

 New header fields MUST be registered, as per [RFC7231] and [RFC3864].

 It is RECOMMENDED that header field names be short (even when HTTP/2
 header compression is in effect, there is an overhead) but
 appropriately specific. In particular, if a header field is specific
 to an application, an identifier for that application SHOULD form a
 prefix to the header field name, separated by a "-".

 The semantics of existing HTTP header fields MUST NOT be re-defined
 without updating their registration or defining an extension to them
 (if allowed). For example, an application using HTTP cannot specify
 that the "Location" header has a special meaning in a certain
 context.

 See Section 4.4 for requirements regarding header fields that carry
 application state (e.g,. Cookie).

5. IANA Considerations

 This document has no requirements for IANA.

6. Security Considerations

 Section 4.4 discusses the impact of using stateful mechanisms in the
 protocol as ambiant authority, and suggests a mitigation.

 Section 4.3.2 requires support for ’https’ URLs, and discourages the
 use of ’http’ URLs, to mitigate pervasive monitoring attacks.

Nottingham Expires November 12, 2017 [Page 12]

Internet-Draft On the use of HTTP as a Substrate May 2017

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <http://www.rfc-editor.org/info/rfc3864>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",
 RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

Nottingham Expires November 12, 2017 [Page 13]

Internet-Draft On the use of HTTP as a Substrate May 2017

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <http://www.rfc-editor.org/info/rfc7320>.

 [RFC7321] McGrew, D. and P. Hoffman, "Cryptographic Algorithm
 Implementation Requirements and Usage Guidance for
 Encapsulating Security Payload (ESP) and Authentication
 Header (AH)", RFC 7321, DOI 10.17487/RFC7321, August 2014,
 <http://www.rfc-editor.org/info/rfc7321>.

 [RFC7322] Flanagan, H. and S. Ginoza, "RFC Style Guide", RFC 7322,
 DOI 10.17487/RFC7322, September 2014,
 <http://www.rfc-editor.org/info/rfc7322>.

 [RFC7325] Villamizar, C., Ed., Kompella, K., Amante, S., Malis, A.,
 and C. Pignataro, "MPLS Forwarding Compliance and
 Performance Requirements", RFC 7325, DOI 10.17487/RFC7325,
 August 2014, <http://www.rfc-editor.org/info/rfc7325>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <http://www.rfc-editor.org/info/rfc7595>.

7.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC0854] Postel, J. and J. Reynolds, "Telnet Protocol
 Specification", STD 8, RFC 854, DOI 10.17487/RFC0854, May
 1983, <http://www.rfc-editor.org/info/rfc854>.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, DOI 10.17487/RFC0959, October 1985,
 <http://www.rfc-editor.org/info/rfc959>.

Nottingham Expires November 12, 2017 [Page 14]

Internet-Draft On the use of HTTP as a Substrate May 2017

 [RFC2821] Klensin, J., Ed., "Simple Mail Transfer Protocol",
 RFC 2821, DOI 10.17487/RFC2821, April 2001,
 <http://www.rfc-editor.org/info/rfc2821>.

 [RFC4791] Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <http://www.rfc-editor.org/info/rfc4791>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

 [RFC6352] Daboo, C., "CardDAV: vCard Extensions to Web Distributed
 Authoring and Versioning (WebDAV)", RFC 6352,
 DOI 10.17487/RFC6352, August 2011,
 <http://www.rfc-editor.org/info/rfc6352>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <http://www.rfc-editor.org/info/rfc6455>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7617] Reschke, J., "The ’Basic’ HTTP Authentication Scheme",
 RFC 7617, DOI 10.17487/RFC7617, September 2015,
 <http://www.rfc-editor.org/info/rfc7617>.

Nottingham Expires November 12, 2017 [Page 15]

Internet-Draft On the use of HTTP as a Substrate May 2017

Author’s Address

 Mark Nottingham

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

Nottingham Expires November 12, 2017 [Page 16]

