
ICN Research Group R. Ravindran
Internet-Draft A. Chakraborti
Intended status: Informational S. Amin
Expires: January 17, 2018 Huawei Technologies
 J. Chen
 Winlab, Rutgers University
 July 16, 2017

 Support for Notifications in CCN
 draft-ravi-icnrg-ccn-notification-01

Abstract

 This draft proposes a new packet primitive called Notification for
 CCN. Notification is a PUSH primitive and can be unicast or
 multicast to multiple listening points. Notifications do not expect
 a Content Object response hence only requires the use of FIB state in
 the CCN forwarder. Emulating Notification as a PULL has performance
 and routing implications. The draft first discusses the design
 choices associated with using current Interest/Data abstraction for
 achieving push and challenges associated with them. We follow this
 by proposing a new fixed header primitive called Notification and a
 CCN message encoding using Content Object primitive to transport
 Notifications. This discussion are presented in the context of
 CCNx1.0 [1] proposal. The draft also provides discussions on various
 aspects related to notification such as flow and congestion control,
 routing and reliability considerations, and use case scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2018.

Ravindran, et al. Expires January 17, 2018 [Page 1]

Internet-Draft Interest Notification July 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Notification Requirements in CCN 3
 3. Using Interest/Data Abstraction for PUSH 4
 4. Proposed Notification Primitive in CCN 9
 5. Notification Message Encoding 10
 6. Notification Processing 12
 7. Security Considerations 12
 8. Annex . 13
 8.1. Flow and Congestion Control 13
 8.1.1. Issues with Basic Notifications 13
 8.1.2. Flow and Congestion Control Mechanims 14
 8.1.2.1. End-to-End Approaches 14
 8.1.2.2. Hybrid Approaches 15
 8.1.3. Receiver Reliability 17
 8.2. Routing Notifications 18
 8.3. Notification reliability 18
 8.4. Use Case Scenarios 19
 8.4.1. Realizing PUB/SUB System 19
 9. Informative References 20
 Authors’ Addresses . 22

1. Introduction

 Notification is a PUSH primitive used in the Internet today by many
 IoT and social applications. The nature of notifications varies with
 the application scenario, ranging from being mission critical to one
 that is best effort. Notifications can be unicast or multicast
 depending on whether the notification service is aware of all the
 consumers or not. A notification service is preceded by a consumer
 subscribing to a specific event such as, subscription to hash-tag
 feeds, health emergency notification service, or temperature sensor

Ravindran, et al. Expires January 17, 2018 [Page 2]

Internet-Draft Interest Notification July 2017

 reading from a room in a building; following this subscription the
 service pushes notifications to consuming entities. It has to be
 noted that certain IoT applications expects notification end-to-end
 latency of few milliseconds [2]. Industrial IoT applications have
 more stringent requirement in terms of QoS, timeliness, and
 reliability of message delivery. Though we term it as a
 Notification, this primitive can also be used for transactional
 exchange between two points.

 CCN optimizes networking around efficiently distributing already
 published content which the consumers learn through mechanisms like
 manifests containing the names of published content chunks and their
 locations. Applications relying on notifications requires event
 driven data to be pushed from multiple producers to multiple
 subscribers for which the current Interest/Data primitive is
 inefficient. This draft proposes to extend CCN’s current primitives
 set with a new notification primitive that can be processed in a new
 way by the CCN forwarder to serve notification objectives.
 Notification here implies a PUSH semantic that is available with IP
 today and supported by other FIA architectures like MobilityFirst [3]
 and XIA [4].

2. Notification Requirements in CCN

 General notification requirements and features have been discussed
 have been discussed in protocols such as CoAP’s Observe proposal [5]
 to push notifications from the server to the clients. Here we
 discuss basic notification requirements from CCN’s network layer
 perspective. Other requirements related to reliability, low latency,
 flow control can be engineered by the application or through more
 network layer state once the following requirements are met.

 o Supporting PUSH Intent: CCN should provide efficient and scalable
 support for PUSH, where application’s intent is to PUSH content to
 listening application without expecting any data in return.
 Efficiency relates to minimimizing control and forwarding overhead
 and scalability refers to support arbitrary number of producers
 and consumers participating in a general pub/sub or multicast
 service.

 o Multicast Support: CCN network should be able to handle multicast
 notifications from a producer to multiple consumers.

 o Security: Just as a content object in the context of Interest/Data
 primitive provides data authentication and privacy, similar
 features should also be offered by notification objects too.

Ravindran, et al. Expires January 17, 2018 [Page 3]

Internet-Draft Interest Notification July 2017

 o Routing/Forwarding Support: Name prefixes over which multicast
 notifications are managed should be handled in a different manner
 from the name prefixes over which Interest/Data primitive is used
 for content distribution in order to support the PUSH intent.
 This differentiation applies to the control as well as the
 forwarding plane.

 o Minimizing Processing: Notification processing in the forwarder
 should be minimized considering the application’s intent to PUSH
 data to listening consumers.

3. Using Interest/Data Abstraction for PUSH

 Recent CCN and NDN research [6][7] have studied the problem of
 handling notifications and have proposed several solutions to handle
 this. Here, we discuss several of them and point out their benefits
 and issues:

 Long-lived Interest v.1: The most intuitive solution makes the
 assumption that the consumers know exactly the names of the
 contents that will be published in the future. Yet, it is not
 easy since the providers can give arbitrary names to each piece of
 content, even though the contents might share a common prefix
 (i.e., GROUP_PREFIX). To make it feasible, the providers can
 publish the contents with sequential ID, e.g., /GROUP_PREFIX/
 SENQUENTIAL_ID[/SEGMENT_ID], so that the consumers can query the
 contents with names /GROUP_ID/item_1, /GROUP_ID/item_2, ... (each
 name represents a content item). The consumers can pipeline the
 requests (always keep some unsatisfied requests in flight, similar
 to TCP) to better utilize the network capacity.

 However, this solution has several issues, especially in the
 multi-provider scenario:

 * Since it is unknown to the consumer (and the network) which
 provider will use which sequential ID, each request has to be
 forwarded to all the possible providers. This solution might
 use up a large amount of state (PIT entries) in the network, as
 each consumer can keep tens of requests (to all providers) in
 flight for each group.

 * Since each sequential ID should only be used by one provider,
 many PIT entries will not be consumed until timeout (if there
 is a timeout mechanism). E.g., P1 and P2 are 2 providers of a
 group (/GROUP), the consumers have to send requests /GROUP/
 item_1, and /GROUP/item_2 to both providers. Assume that P1
 publishes first so he uses the name /GROUP/item_1. The PIT

Ravindran, et al. Expires January 17, 2018 [Page 4]

Internet-Draft Interest Notification July 2017

 entries for /GROUP/item_1 towards P2 will not be consumed since
 P2 should now publish with name /GROUP/item_2.

 * When the PIT entries form loops in the network (it can happen
 quite often in the multi-provider, multi-consumer scenario),
 the data packets can waste network traffic while following the
 loops and get discarded when redundancy happens.

 * Other than the inefficiencies mentioned above, one major issue
 with this solution is the difficulty of provider
 synchronization. It is not easy to make sure that different
 providers would use different sequential IDs especially when
 the providers are publishing contents at the same time.

 Polling v.1: To eliminate the requirement for a sequential ID when
 publishing (to address the synchronization issue), the solution
 Polling v.1 makes the providers publish contents with name format:
 /GROUP_ID/TIMESTAMP. While querying the contents, the consumer
 query using name /GROUP_ID/ with "exclude" field <Earliest version
 after Tx>, where Tx is the latest version the consumer has
 received. E.g., after receiving a content with name /GROUP_ID/
 v_1234 (v_1234 is the timestamp of the publication time), the
 consumer would send a query with name /GROUP_ID/<Earliest after
 v_1234>. He might get the next piece with name /GROUP_ID/v_2345
 (assuming that there is no content published between these two
 time stamps) without the need to know the exact names of the
 contents. The content providers do not have to be synchronized on
 the sequential IDs and use the timestamp instead.

 While this solution is similar to the one used in NDN for getting
 the "latest" version under a prefix, it has several issues when we
 need to get "all" versions under a prefix:

 * Ambiguity contents will appear when two providers of a same
 group publish at the same time.

 * Consumers might miss messages when the clocks are not
 synchronized on the providers. E.g., one provider (with faster
 clock) might publish a content with name /GROUP_ID/v_2345 after
 v_1234. When the consumer queries for the earliest version
 after v_1234, he will get the content. Yet, another provider
 (with slower clock) would publish a content with name
 /GROUP_ID/v_2234 after the consumer gets v_2345. The consumer
 would miss the content with v_2234 as he will query for
 <Earliest after v_2345>.

 * Consumers might miss messages due to different delivery latency
 (e.g., cache hit vs. no cache hit) even when the clocks on the

Ravindran, et al. Expires January 17, 2018 [Page 5]

Internet-Draft Interest Notification July 2017

 providers are perfectly synchronized (e.g., via GPS signals).
 E.g., when a client queries for content /GROUP_ID/<Earliest
 after v_1234>, and there are two pieces of content exist in the
 network (v_2234, and v_2345). It can happen that v_2345 is
 returned earlier (either due to a cache hit or because the
 provider is closer). The consumer would then query for
 <Earliest after v_2345> and miss v_2234 with this solution.

 * Also just as with the previous approach, this mechanism also
 requires the producers to sync so that they don’t produce
 content using the same name.

 Long-lived Interest v.2: To completely address the issues with
 multiple providers sharing a same prefix (e.g., synchronization in
 Long-lived Interest v.1, and clock synchronization in Polling
 v.1), Long-lived Interest v.2 gives a prefix to each provider.
 The providers in this solution provide contents with name
 /GROUP_ID/PROVIDER_ID/SEQUENTIAL_ID, and the consumers query the
 full names accordingly (similar to Long-lived Interest v.1 but
 with an extra prefix PROVIDER_ID). The consumer can still use
 pipelining to improve the throughput.

 While this solution can avoid packet losses in the previous
 solution, it has several other issues:

 * Consumers have to know all the potential providers, which might
 be difficult in some applications where every user can send
 messages in any group that he might be interested in.

 * Compared to Long-lived Interest v.1, the consumers in this
 solution have to keep multiple pending queries per group per
 provider. It might consume even more states in the network,
 which makes the solution less scalable.

 * When a provider has more than one device (e.g., laptop and
 smartphone) that can publish contents under a same name
 /GROUP_ID/PROVIDER_ID, the solution would have the same
 synchronization issue as Long-lived Interest v.1. If the
 solution mandates each device to have a separate provider ID,
 it will end up with even more PIT entries (states) in the
 network, and the solution becomes less "information-centric".

 Polling v.2: To reduce the states and the control overhead in Long-
 lived Interest v.2, the solution Polling v.2 allows the provider
 process the requests in the application layer. Periodically, the
 consumer would query each provider "if there is any update after
 Nx" (Nx is name of the last content the consumer has received).
 The query would be in the format: /GROUP_ID/PROVIDER_ID/Nx/NONCE.

Ravindran, et al. Expires January 17, 2018 [Page 6]

Internet-Draft Interest Notification July 2017

 The provider would reply aggregated results in one response (with
 different segments, but under the same name), and an indication of
 "no update" if there is no publication after Nx. Since a same
 query for /GROUP_ID/PROVIDER_ID/Nx can get different responses
 ("no update", or aggregated publications), a NONCE has to be added
 in the name to prevent possible cache hits in the network. This
 solution can be effective in games since the publication rate
 (actions of the provider in the game) is much higher than the
 polling rate (refresh rate on the consumer). However, it still
 has some issues (inefficiencies):

 * There is a tradeoff between timeliness vs. in-network traffic
 when choosing the polling frequency. The solution can be
 inefficient when the polling is too frequent: most of the
 polling will get "no update" responses. This can consume a
 large amount of traffic in the network and extra computation on
 both the providers and the consumers. The timeliness can be
 impaired when the polling is infrequent since the publication
 can only reach the consumer when the consumer queries. The
 average delivery time of a publication in such solution is half
 of the polling period.

 * In-network cache cannot be used since the response to a same
 query (without nonce) can be different according to the time
 (and maybe the consumer).

 * Consumers still have to know all the potential providers
 similar to Long-lived Interest v.2.

 Polling with A Server: To relieve the consumers from knowing all
 potential providers in Polling v.2, solution Polling with A Server
 introduces a server (or broker) as the delegate of all the
 providers. The providers would publish data into the server and
 the consumers would poll for the updates from the server (similar
 to Twitter and Facebook in IP network). In this solution, the
 consumers do not have to poll each provider for the updates, which
 reduces the overhead in the network. With the aggregated response
 on the server, the network traffic is further reduced. However,
 it still has several issues:

 * Similar to all the server-based solutions like Facebook and
 Twitter, the server has to deal with all the polls. This can
 cause single point of failure.

 * It is not easy for the providers "publish contents to the
 server". This becomes another notification problem and has to
 be solved by the other solutions mentioned in this section.

Ravindran, et al. Expires January 17, 2018 [Page 7]

Internet-Draft Interest Notification July 2017

 * Cache is not used in this solution similar to Polling v.2.

 * This solution is not really "information-centric" as the
 consumers have to get the location of the content rather than
 the content itself.

 Interest Overloading: Since all the aforementioned query/response
 solutions have issues with efficiency, scalability and/or
 timeliness, Interest Overloading tries to modify the communication
 pattern by using Interest packets to deliver publications
 directly. The consumers in this solution propagate FIB entry of
 /GROUP_ID to all potential providers (or simply flood the
 network). When a provider sends a publication, he would send an
 Interest with name /GROUP_ID/NONCE/<Payload> and the lifetime set
 to zero. Since the traditional Interest packets do not have
 payload, the solution has to embed (e.g., URL encode [1]) the
 payload in the name of the Interest. NONCE is used to prevent PIT
 aggregation since providers may publish contents with same payload
 (e.g., sensor readings). This solution can address the timeliness
 and scalability issues with the Polling and Long-lived Interest
 solutions, yet there are still some issues:

 * This solution creates ambiguity in the meaning of Interest
 packets (and the corresponding forwarding behaviors on the
 routers). For a normal Interest packet, the forwarding engines
 should perform an anycast (send it to only one of the
 providers) according to FIB. However, in this solution, the
 forwarding engines should use multicast logic for prefix
 /GROUP_ID (and avoid PIT storage). Solution in [8] specifies
 some multicast prefixes so that the forwarding engines can
 distinguish the publications from the normal requests. Yet,
 this places higher overhead on both the forwarding engines and
 the network management. It also prevents providers to create
 contents under the /GROUP_ID prefix (since the query will be
 forwarded using multicast, and not kept in the PIT).

 * The routing is also a concern in this solution. When the
 consumers propagate FIB, it should reach all potential
 providers (in most of the time it will flood the network since
 all the users can be potential providers). Naturally, in a
 multi-provider, multi-consumer scenario, the FIB entries would
 form a mesh in the network. It is less scalable compared to
 the tree-based routing in IP multicast (PIM-SM). The network
 has to specify another routing policy specifically for these
 prefixes, which places even higher overhead on network
 management.

Ravindran, et al. Expires January 17, 2018 [Page 8]

Internet-Draft Interest Notification July 2017

 * As is mentioned in [9], it is not efficient to embed large
 amount of data into the name of the Interest packets. It adds
 more computation and storage overhead in the forwarding engines
 (PITs).

 Interest Trigger: Similar to Interest Overloading, Interest Trigger
 uses an Interest packet as notification. To eliminate the
 overhead of embedding the content in the Interest, this solution
 places the name of the publication in the name of the notification
 (Interest) packet. On receiving the notification, the consumers
 can extract the content name and send another query (Interest) for
 the real content. While this solution reduces the overhead of
 embedding the payload, it still has the ambiguity and routing
 issues similar to Interest Overloading solution. It also incurs
 additional round trip delay before the produced data arrives at
 the listening consumer.

 To summarize CCN and NDN operates on PULL primitive optimized for
 content distribution applications. Emulating PUSH operation over
 PULL has the following issues:

 o It is a mismatch between an application’s intent to PUSH data and
 the PULL APIs currently available.

 o Unless Interests are marked distinctly, overloading Interests with
 notification data will undergo PIT/CS processing and are also
 subjected to similar routing and forwarding policies as regular
 Interests which is inefficient.

 o Another concern in treating PUSH as PULL is with respect to the
 effect of local strategy layer routing policies, where the intent
 to experiment with multiple faces to fetch content is not required
 for notification messages.

 This motivates the need for treating notifications as a separate
 class of traffic which would allow a forwarder to apply the
 appropriate routing and forwarding processing in the network.

4. Proposed Notification Primitive in CCN

 Notification is a new type of packet hence can be subjected to
 different processing logic by a forwarder. By definition, a
 notification message is a PUSH primitive, hence is not subjected to
 PIT/CS processing. This primitive can also be used by any other
 transactional or content distribution application towards service
 authentication or exchanging contextual information between end
 points and the service.

Ravindran, et al. Expires January 17, 2018 [Page 9]

Internet-Draft Interest Notification July 2017

5. Notification Message Encoding

 The wire packet format for a Notification is shown in Fig. 1 and Fig.
 2. Fig. 1 shows the Notification fixed header considering the
 CCNx1.0 encoding, and Fig. 2 shows the format for the CCN
 Notification message, which is used to transport the notification
 data. We next discuss these two packet segments of the Notification
 message.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+--------------+
 | Version | PacketType= | PacketLength |
 | | Notification | |
 +---------------+---------------+---------------+--------------+
 | HopLimit | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+--------------+
 / Optional Hop-by-hop header TLVs /
 +---------------+---------------+---------------+--------------+
 / Content Object as Notification Message /
 +---------------+---------------+---------------+--------------+

 Figure 1: CCN Notification fixed header

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+--------------+
 | MessageType = Content Object | MessageLength |
 +---------------+---------------+---------------+--------------+
 | Name TLV |
 +---------------+---------------+---------------+--------------+
 | Optional MetaData TLVs |
 +---------------+---------------+---------------+--------------+
 | Message Payload Type | Message Type Length |
 +---------------+---------------+---------------+--------------+
 | Payload or Optional Content Object |
 +---------------+---------------+---------------+--------------+
 / Optional CCNx ValidationAlgorithm TLV /
 +---------------+---------------+---------------+--------------+
 / Optional CCNx ValidationPayload TLV (ValidationAlg required) /
 +---------------+---------------+---------------+--------------+

 Figure 2: CCN Notification Message

Ravindran, et al. Expires January 17, 2018 [Page 10]

Internet-Draft Interest Notification July 2017

 Notification Fixed Header: The fields in the fixed header that have
 new meaning in the context of notifications are discussed next, while
 the other fields follow the definition in [1].

 o Packet Type: This new type code identifies that the packet is of
 type Notification [TBD].

 o Optional Hop-by-hop header TLVs : Encodes any new hop-by-hop
 headers relevant to notifications [TBD].

 CCN Notification message: The CCN Notification message is a Content
 Object as in [1]. Notifications are always routed on the top level
 Content Object (outer CO) name. Notification itself can be encoded
 in two forms depending on the application requirement:

 o Notification with single name: In this case the notification
 contains a single content object. Here the producer generates
 notification using the same name used by consumers on which they
 listen on.

 o Notification with two names: In this case the notification
 contains a top level Content Object (outer CO), that encapsulates
 another Content Object (inner CO). With an encapsulated Content
 Object, the meaning is that notification producers and consumers
 operate on different name-spaces requiring separate name-data
 security binding. A good application of the encapsulation format
 is a PUB/SUB service, where the consumer learns about the
 notification service name offline, and the producer who is
 decoupled from the consumer generates a new Content Object using
 its own name and pushes the notification to the consumer.

 The interpretation of the fields shown in Fig. 2 are as follows:

 o MessageType : The CCN message type is of type Content Object.

 o Name TLV : Name TLV in the Content Object is used to route the
 Notification.

 o Optional Metadata TLV: These TLVs carry metadata used to describe
 the Notification payload.

 o Message Payload Type: This is of type T_PAYLOADTYPE defined in
 CCNx.1.0 or a new encapsulation type (T_ENCAP) that indicates the
 presence of another encapsulated Content Object [TBD].

 o Optional Encapsulated Content Object: This is an optional
 encapsulated Content Object newly defined for the Notification
 primitive. The name in the encapsulated Content Object

Ravindran, et al. Expires January 17, 2018 [Page 11]

Internet-Draft Interest Notification July 2017

 corresponds to the producer’s name-space, or anything else based
 on the application logic. The rational for an encapsulated
 Content Object was discussed earlier.

 o Optional Security Validation data: The Content Object optionally
 carries security validation payload as per CCNx1.0.

6. Notification Processing

 The following steps are followed by a CCN forwarder to process the
 Notification packet.

 o Notification packet type is identified in the fixed header of a
 CCN packet with a new type code. The Notification carries a
 Content Object, whose name is used for routing. This name is
 matched against the FIB entries to determine the next hop(s).
 Novel strategy layer routing techniques catering to the
 notification traffic can be applied here.

 o CCN forwarder also processes the optional metadata associated with
 the Notification meant for the network to help with the forwarding
 strategy, for e.g., mission critical notifications can be given
 priority over all other traffic.

 o As mentioned earlier, CCN forwarder MUST NOT cache the Content
 Objects in the notifications.

7. Security Considerations

 The proposed processing logic of Notifications that bypass the
 processing of PIT/CS has the following security implications:

 Flow Balance : PIT state maintains the per-hop flow balance over all
 the available faces by enforcing a simple rule, that is, one Content
 Object is send over a face for a single Interest. Bypassing PIT
 processing compromises this flow balancing property. For scenarios
 where the notification traffic volume is not high such as for IoT
 applications, the impact may not be significant. However, this may
 not be the case considering the plethora of social networking and
 emerging IoT applications in a general Internet scenario. This flow
 balance tradeoff has to be understood considering an application’s
 intent to PUSH data and the latency introduced by processing such
 traffic if a PULL primitive is used. Also PIT offers a natural
 defense mechanism by throttling traffic at the network edge,
 considering the provisioned PIT size, and bypassing it could
 exacerbate DDOS attacks on producing end points.

Ravindran, et al. Expires January 17, 2018 [Page 12]

Internet-Draft Interest Notification July 2017

 Cache Poisoning: This draft doesn’t recommend the caching of the
 Content Object in the Notification payload, though doing so might
 help in increasing the availability of notification information in
 the network. A possible exception would be if the inner CO is a
 nameless object [10]. as those can only be fetched from CS by hash We
 leave this possibility of applying policy-based caching of
 Notification Content Objects for future exploration. The
 recommendation for not caching these Content objects is that, in a
 regular Interest/Content Object exchange, content arrives at the
 forwarder and is cached as a result of per-hop active Interest
 expression. Unsolicited Content Objects, as in the case of the
 Notification, violates this rule, which could be exploited by
 malicious producers to generate DDOS attack against the cache
 resource of a CCN infrastructure.

8. Annex

8.1. Flow and Congestion Control

8.1.1. Issues with Basic Notifications

 As mentioned in the previous sections, one of the main issues with
 notification is the flow and congestion control. One naive way to
 solve this issue is the routers drop the packets from aggressive
 flows. Flow-based fair queueing (and its variation stochastic
 fairness queueing) maintain queues for flows (or the hash of flows)
 and try to give a fair share to each flow (or a hash). Flows can be
 classified by the prefixes in the ICN case. However, according to
 [11], the overall network throughput will be affected when there are
 multiple bottlenecks in the network. Therefore, [11] promotes an
 end-to-end solution for congestion control. Flow balance is a key
 requirement to an end-to-end (or end-driven) flow and congestion
 control. In the case of CCN query/response, flow balance entails
 that an Interest pulls at most one Data object from upstream. The
 data consumer can therefore control the amount of traffic coming from
 the data source(s) either it is a data provider or a cache in the
 network. However, the basic notification does not follow the rule of
 flow balance (each Subscription can result in more than one
 Notifications disseminated in the network). In the absence of a
 proper feedback mechanism to notify the data sender or the network
 the available bandwidth and local resource the consumer has, the
 sender can easily congest the bottleneck link of the receivers
 (causing congestion collapse) and/or overflow the buffer on the
 receiver side. In the later sections, we will describe the possible
 congestion control mechanisms in ICN and how to deal with packet loss
 when both congestion control and reliability are required.

Ravindran, et al. Expires January 17, 2018 [Page 13]

Internet-Draft Interest Notification July 2017

 However, the basic notification does not follow the rule of flow
 balance (each Subscription can result in more than one Notifications
 disseminated in the network). There is no way a receiver can notify
 the data sender or the network the available bandwidth and local
 resource it has. As a result, the sender can easily congest the
 bottleneck link of the receivers (causing congestion collapse) and/or
 overflow the buffer on the receiver side.

8.1.2. Flow and Congestion Control Mechanims

 Here we discuss broad approaches towards achieving flow and
 congestion control in CCN as applied to Notification traffic. Since
 the forwarding logic of the Notification packets are quite similar to
 that of IP multicast, existing multicast congestion control solutions
 can be candidates to solve the flow/congestion control issue with
 Notification. In addition we also summarize recent ICN research to
 address this issue.

8.1.2.1. End-to-End Approaches

 In the multicast communication, it is not scalable to have direct
 receiver-to-sender feedback loop similar to TCP since this would
 result in each receiver sending ACKs (or NACKs) to the data sender
 and cause ACK (NACK) implosion. To address the ACK implosion issue,
 two types of solutions have been proposed in multicast congestion
 control, namely, sender-driven approaches and receiver-driven
 approaches.

8.1.2.1.1. Sender-driven Multicast

 In the first category, the sender controls the sending rate and to
 ensure the network friendliness, the sender usually align the sending
 rate to the slowest receiver.

 To avoid the ACK implosion issue, TCP-Friendly Multicast Congestion
 Control (TFMCC [12]) uses rate based solution. This solution uses
 TCP-Friendly Rate Control (TFRC) to get a proper sending rate based
 on the RTT between sender and each receiver. The sender only needs
 to collect the RTTs periodically instead of per-packet ACKs.
 Similarly, in ICN, the sender can create another channel (namespace)
 to collect the RTT measurement from the receivers. However, due to
 the dynamics on each path, it is difficult to calculate the proper
 sending rate.

 To address the rate calculation issue, pgmcc [13], a window-based
 solution is proposed. It uses NACKs to detect the slowest receiver
 (the ACKer). The ACKer sends an ACK back to the sender on receiving
 each multicast packet. A feedback loop similar to TCP is formed

Ravindran, et al. Expires January 17, 2018 [Page 14]

Internet-Draft Interest Notification July 2017

 between the sender and the ACKer to control the sending rate. Since
 the ACKer is the slowest receiver, the sender adapts its sending rate
 to the available bandwidth of the slowest receiver, the solution can
 therefore ensure the network friendliness. In the ICN case, the
 receivers can send NACKs in the form of Notification packets through
 another namespace, and the ACKer can also use the same mechanism to
 send ACKs.

 However, since the sender is always aligning the sending rate to the
 slowest receiver to ensure the network friendliness, the performance
 of the solutions can be dramatically affected by a very slow
 receiver.

8.1.2.1.2. Receiver-driven Multicast

 Unlike the sender-driven solutions, the receiver-driven solutions
 [14] choose to use layered-multicast to satisfy heterogeneous
 receivers. The sender first initiates several multicast groups
 (namespaces in the case of ICN) with different sending rates. Each
 receiver would choose to join a multicast group with the highest
 sending rate that it can afford. The sender can also adapt the
 sending rate of each multicast group according to the receiver
 status.

 These solutions can support applications like video streaming (with
 layered codecs) efficiently. However, they also have some issues: 1)
 they complicate the sender and receiver logic, especially for simple
 applications like file transfer; and 2) the receivers are limited by
 the sending rates initiated by the provider and would therefore
 under-utilize the available bandwidth.

8.1.2.2. Hybrid Approaches

 In this approach, flow balance of Notification is achieved by the
 receivers notifying the network (rather than the sender or other
 receivers) about the capacity it can receive. Here, we take
 advantage of operating the Notification service through a receiver-
 driven approach and get support from the network.

 A solution based on this approach is proposed in [15], which we
 summarize next.

 To retain flow balance, the consumers in this solution send out one
 subscription for only one next Notification instead of the original
 logic (that receives all the Notifications). Similar to the flow and
 congestion control in query/response, the receivers can now maintain
 a congestion window to control the amount of traffic coming from
 upstream.

Ravindran, et al. Expires January 17, 2018 [Page 15]

Internet-Draft Interest Notification July 2017

 Here, instead of maintaining a (name, outgoing face) pair in FIB (or
 subscription table), the routers now adds a third field --
 accumulated count -- for each entry. The accumulated count is
 increased by 1 on receiving such a subscription and decreased by 1 on
 sending a Notification to that face. The routers should also
 propagate the maximum accumulated count upstream till the 1st hop
 router of the provider (or the rendezvous point in the network). The
 subscribers sends a subscription for every successfully received
 notification. Here we also assume that, the subscribers operate
 based on the AIMD scheme.

 If the dissemination of Notification follows a tree topology in the
 network, we define the branching point of a receiver R (BP_R) as the
 router closest to R which has another outgoing face that can receive
 data faster than R. For receivers that has bandwidth/resources to
 receive all the data from the provider, BP_R is the 1st hop router of
 the provider (or the rendezvous point).

 In this solution, we can prove that there is a feedback loop between
 each receiver and its branching point. Therefore, when a receiver
 maintains its congestion window size using AIMD, the traffic between
 the branching point and the receiver is similar to TCP. It can get a
 fair share at the bottleneck on the path, even if the bottleneck is
 not directly under the branching point. In the multicast tree, the
 solution can ensure the fairness with other (TCP-like) flows on each
 branch.

 The solution can thus allow the sender to send at an application-
 efficient rate rather than being affected by the slowest receiver
 like pgmcc [13].

 It is true that the solution requires more packets and more states in
 the network compared to the basic notification solution, but the cost
 is similar to (and smaller than) that of query/response. Since we
 are using one notification per subscription pattern, the amount of
 traffic overhead is the same as query/response. As for the states
 stored in the router, the solution only requires 1 entry per prefix
 per face, which is smaller than the query/response which requires 1
 entry per packet per face. Therefore, the overhead of the solution
 is acceptable in CCN.

8.1.2.2.1. Other Challenges

 o Sender Rate Control: The sender in the solution does not have to
 limit the sending rate to the slowest receiver to maintain network
 friendliness. Therefore, the choice of sending rate is a tradeoff
 between network traffic and session completion time. In the case
 where the application does not require a certain sending rate

Ravindran, et al. Expires January 17, 2018 [Page 16]

Internet-Draft Interest Notification July 2017

 (like file transfer), the sender can align the sending rate to the
 slowest receiver (similar to pgmcc) to minimize the repair
 traffic, but at the cost of longer session completion time. He
 can also send at the rate of the fastest receiver and try to get
 peer repair in the network. This allows faster receivers finish
 the session earlier but causing higher network traffic due to the
 repair. An ACKer-based solution similar to pgmcc can be adopted
 to allow the sender align the rate at a proportion of users (e.g.,
 top 30%). The sender can collect feedback (throughput, latency,
 etc.) from all the receivers periodically and pick an ACKer
 according to the proportion it desires. On receiving a
 Notification packet, the ACKer would send an ACK just like TCP.
 The sender can maintain a congestion window also like TCP. The
 feedback loop between the sender and the ACKer can align the
 sending rate at the ACKers’s available bandwidth.

 o Receiver Window Control: Slightly different from one-sender one-
 receiver window control in TCP, the sending rate in the hybrid
 approach is not controlled by any of the receivers. Receiving
 intermittent packets can indicate both congestion (similar to TCP)
 and not enough window size (since the sending rate is higher). In
 the first case, the receiver should reduce the window size while
 in the second case, the receiver should increase the window size.
 An indication of congestion (e.g., Random Early Detection, RED)
 should be provided directly from the network.The receivers with
 available bandwidth higher than the sending rate would have too
 large window size since it does not see any packet loss. Please
 refer to [15] for a detailed solution on this issue.

8.1.3. Receiver Reliability

 The receiver would miss packets when the available bandwidth/resource
 of the receiver is lower than the sending rate of the Notification
 provider. Some applications (like gaming and video conferencing) can
 tolerant such kind of packet loss while the others (like file
 transfer) cannot. Therefore, another module that ensures the
 reliability is needed. However, reliability should be separated from
 the flow and congestion control since it is not a universal
 requirement.

 With the solution described in the receiver-driver or the hybrid
 approach, the slower consumers would receive intermittent packets
 since the sending rate can be faster than their fair share. The
 applications that require reliable transfer can query the missing
 packets similar to the normal query/response. This also requires
 that each content in the Notifications should have a unique Content
 Name (or hash in the nameless scenario). The clients should also be
 able to detect the missing packets either based on the sequence

Ravindran, et al. Expires January 17, 2018 [Page 17]

Internet-Draft Interest Notification July 2017

 number or based on a pre-acquired meta-file. Caching in CCN can be
 leveraged to achieve availability and reliability.

 The network can forward the requests (Interests) of the missing
 packets towards the data provider, the other consumers and/or the in-
 network cache to optimize the overall throughput of the consumers.
 This solution is similar to Scalable Reliable Multicast (SRM [16]).
 However, as mentioned in [17], solutions like SRM requires the
 consumers communicate directly with each other and therefore lose the
 privacy and trust. CCN can ensure the privacy since the providers
 cannot get the information of the identity of the consumers. Trust
 (data integrity) is also maintained with the signature in the Data
 packets.

8.2. Routing Notifications

 Appropriate routing policies should be employed to ensure reliable
 forwarding of a notification to its one or many intended receivers.
 The name in the notification identifies a host or a multicast service
 being listened to by the multiple intended receivers. Two types of
 routing strategies can be adopted to handle notifications, depending
 on whether or not an explicit pub/sub state is maintained in the
 forwarder.

 o Stateless forwarding: In this case the notification only relies on
 the CCN FIB state to route the notification. The FIB entries are
 populated through a routing control plane, which distinguishes the
 FIB states for the notification service from the content fetching
 FIB entries. Through this logical separation, Notifications can
 be routed by matching its name with the matching FIB policy in the
 CCN forwarder, hence processed as notification multicast.

 o Stateful forwarding: In this case, specific subscription state is
 managed in the forwarder to aid notification delivery. This is
 required to scale notifications at the same time apply
 notification policies, such as filter notifications or to improve
 notification reliability and efficiency to subscribing users [18].

8.3. Notification reliability

 This proposal doesn’t provide any form of reliability. Reliability
 can be realized by the specific application using the proposed
 notification primitive, for instance using the following potential
 approaches:

 Caching: This proposal doesn’t propose any form of caching. But
 caching feature can be explored to improve notification reliability,
 and this is a subject of future study. For instance, consumers,

Ravindran, et al. Expires January 17, 2018 [Page 18]

Internet-Draft Interest Notification July 2017

 which expect notifications and use external means (such as periodic
 updates or by receiving manifests) to track notifications, can
 recover the lost notifications using the PULL feature of CCN.

 Notification Acknowledgment: If the producer maintains per-receiver
 state, then the consumer can send back notification ACK or NACK to
 the producer of having received or not received them.

8.4. Use Case Scenarios

 Here we provide the discussions related to the use of Notification in
 different scenarios.

8.4.1. Realizing PUB/SUB System

 A PUB/SUB system provides a service infrastructure for subscribers to
 request update on a set of topics of interest, and with multicast
 publishers publishing content on those topics. A PUB/SUB system maps
 the subscribers’ interests to published contents and pushes them as
 Notifications to the subscribers. A PUB/SUB system has many
 requirements as discussed in [19] which include low latency,
 reliability, fast recovery, scalability, security, minimizing false
 (positive/negative) notifications.

 Current IP based PUB/SUB systems suffer from interoperability
 challenges because of application-defined naming approach and lack of
 support of multicast in the data plane. The proposed Notification
 primitive can be used to realize large scale PUB/SUB system, as it
 unifies naming in the network layer and support for name-based
 multicasting.

 Depending on the routing strategy discussed earlier, two kind of PUB/
 SUB approaches can be realized : 1) Rendezvous style approach ; 2)
 Distributed approach. Each of these approaches can use the
 Notification primitive to implement their PUSH service.

 In the Rendezvous style approach, a logically centralized service
 maps subscriber’s topic interest with the publisher’s content and
 pushes it as notifications. If stateless forwarding is used, the
 routing entries contain specific application-ID’s requesting a given
 notification, to handle scalability, a group of these application can
 share a multicast-ID reducing the state in the FIB.

 In the Distributed approach, the CCN/NDN protocol is further enhanced
 with new subscription primitive for the subscription interested
 consumers. When a consumer explicitly susbcribes to a multicast
 topic, its subscription request is forwarded to the upstream
 forwarder which manages this state mapping between subscription names

Ravindran, et al. Expires January 17, 2018 [Page 19]

Internet-Draft Interest Notification July 2017

 to the downstream faces which has expressed interest for
 Notifications being pushed under that prefix. An example of the
 network layer based approach is the COPSS notification proposal [19].
 Here a PUB/SUB multi-cast state state, called the subscribers
 interest table, is managed in the forwarders. When a Notification
 arrives at a forwarder, the content descriptor in the notification is
 matched to the PUB/SUB state in the forwarder to decide the faces
 over which the Notification has to be forwarded.

9. Informative References

 [1] CCN Wire format, CCNX1., "http://www.ietf.org/id/
 draft-mosko-icnrg-ccnxmessages-00.txt.", 2013.

 [2] Osseiran, A., "Scenarios for 5G Mobile and Wireless
 Communications: The Vision of the METIS Project.", IEEE
 Communication Magazine , 2014.

 [3] NSF FIA project, MobilityFirst.,
 "http://www.nets-fia.net/", 2010.

 [4] NSF FIA project, XIA., "https://www.cs.cmu.edu/˜xia/",
 2010.

 [5] Observing Resources in CoAp, observe.,
 "https://tools.ietf.org/html/draft-ietf-core-observe-16.",
 2015.

 [6] Amadeo, M., Campolo, C., and A. Molinaro, "Internet of
 Things via Named Data Networking: The Support of Push
 Traffic", Network of the Future (NOF), 2014 International
 Conference and Workshop on the , 2014.

 [7] Shang, W., Bannis, A., Liang, T., and Z. Wang, "Named Data
 Networking of Things.", IEEE IoTDI 2016, 2016.

 [8] Zhu, Z. and A. Afanasyev, "Let’s chronosync: Decentralized
 dataset state synchronization in named data networking",
 The 21st IEEE International Conference on Network
 Protocols ICNP, 2013.

 [9] Moiseenko, I. and O. Oran, "TCP/ICN: Carrying TCP over
 Content Centric and Named Data Networks", Proceedings of
 the 3rd ACM Conference on Information-Centric
 Networking ICN, 2016.

 [10] Mosko, M., "Nameless Objects.", IETF/ICNRG, Paris
 Interim 2016, 2016.

Ravindran, et al. Expires January 17, 2018 [Page 20]

Internet-Draft Interest Notification July 2017

 [11] Floyd, S. and F. Kevin, "Promoting The Use of End-to-End
 Congestion Control in The Internet.", IEEE ToN vol. 7(4),
 pp. 458-472, 1999.

 [12] Widmer, J. and M. Handley, "TCP-Friendly Multicast
 Congestion Control (TFMCC): Protocol Specification.", IETF
 RFC 4654, 2006.

 [13] Rizzo, L., "pgmcc: A TCP-Friendly Single-Rate Multicast
 Congestion Control Scheme.", SIGCOMM CCR vol. 30.4, pp.
 17-28, 2000, 2000.

 [14] McCanne, S., Jacobson, V., and M. Vetterli, "Receiver-
 driven Layered Multicast.", SIGCOMM CCR pp. 117-130, 1996.

 [15] Chen, J., Arumaithurai, M., Fu, X., and KK. Ramakrishnan,
 "SAID: A Control Protocol for Scalable and Adaptive
 Information Dissemination in ICN.", arXiv vol. 1510.08530,
 2015.

 [16] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and L.
 Zhang, "A Reliable Multicast Framework for Light-Weight
 Sessions and Application Level Framing.", IEEE TON vol.
 5(6), pp. 784-803, 1997.

 [17] Floyd, N., Grossglauser, M., and KK. Ramakrishnan,
 "Distrust and Privacy: Axioms for Multicast Congestion
 Control.", Distrust and Privacy: Axioms for Multicast
 Congestion Control NOSSDAV, 1999.

 [18] Francois et al, J., "CCN Traffic Optimization for IoT",
 Proc. of NoF , 2013.

 [19] Chen, J., Arumaithurai, M., Jiao, L., Fu, X., and K.
 Ramakrishnan, "COPSS: An Efficient Content Oriented
 Publish/Subscribe System.", ACM/IEEE Symposium on
 Architectures for Networking and Communications Systems
 (ANCS 2011) , 2011.

 [20] DNS Security Introduction and Requirements, DNS-SEC.,
 "http://www.ietf.org/rfc/rfc4033.txt.", 2005.

 [21] Cisco System Inc., CISCO., "Cisco visual networking index:
 Global mobile data traffic forecast update.", 2009-2014.

 [22] CCNx Label Forwarding, CCNLF., "http://www.ccnx.org/pubs/
 ccnx-mosko-labelforwarding-01.txt.", 2013.

Ravindran, et al. Expires January 17, 2018 [Page 21]

Internet-Draft Interest Notification July 2017

Authors’ Addresses

 Ravishankar Ravindran
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Email: ravi.ravindran@huawei.com

 Asit Chakraborti
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Email: asit.chakraborti@huawei.com

 Syed Obaid Amin
 Huawei Technologies
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Email: obaid.amin@huawei.com

 Jiachen Chen
 Winlab, Rutgers University
 671, U.S 1
 North Brunswick, NJ 08902
 USA

 Email: jiachen@winlab.rutgers.edu

Ravindran, et al. Expires January 17, 2018 [Page 22]

