Transmission of IPv6 Packets over IEEE 802.11 Networks in mode Outside the Context of a Basic Service Set (IPv6-over-80211ocb)
draft-ietf-ipwave-ipv6-over-80211ocb-03.txt

Abstract

In order to transmit IPv6 packets on IEEE 802.11 networks run outside the context of a basic service set (OCB, earlier "802.11p") there is a need to define a few parameters such as the recommended Maximum Transmission Unit size, the header format preceding the IPv6 header, the Type value within it, and others. This document describes these parameters for IPv6 and IEEE 802.11 OCB networks; it portrays the layering of IPv6 on 802.11 OCB similarly to other known 802.11 and Ethernet layers - by using an Ethernet Adaptation Layer.

In addition, the document attempts to list what is different in 802.11 OCB (802.11p) compared to more ‘traditional’ 802.11a/b/g/n layers, layers over which IPv6 protocols operates without issues. Most notably, the operation outside the context of a BSS (OCB) has impact on IPv6 handover behaviour and on IPv6 security.

An example of an IPv6 packet captured while transmitted over an IEEE 802.11 OCB link (802.11p) is given.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute
1. Introduction .. 3
2. Terminology .. 5
3. Communication Scenarios where IEEE 802.11 OCB Links are Used 6
4. Aspects introduced by the OCB mode to 802.11 6
5. Layering of IPv6 over 802.11-OCB as over Ethernet 10
 5.1. Maximum Transmission Unit (MTU) 10
 5.2. Frame Format .. 11
 5.2.1. Ethernet Adaptation Layer 12
 5.3. Link-Local Addresses 13
 5.4. Address Mapping 14
 5.4.1. Address Mapping -- Unicast 14
 5.4.2. Address Mapping -- Multicast 14
 5.5. Stateless Autoconfiguration 15
 5.6. Subnet Structure 16
6. Example IPv6 Packet captured over a IEEE 802.11-OCB link ... 16
 6.1. Capture in Monitor Mode 17
 6.2. Capture in Normal Mode 19
7. Security Considerations 21
8. IANA Considerations 22
9. Contributors .. 22
10. Acknowledgements .. 22
1. Introduction

This document describes the transmission of IPv6 packets on IEEE Std 802.11 OCB networks (earlier known as 802.11p). This involves the layering of IPv6 networking on top of the IEEE 802.11 MAC layer (with an LLC layer). Compared to running IPv6 over the Ethernet MAC layer, there is no modification required to the standards: IPv6 works fine directly over 802.11 OCB too (with an LLC layer).

The term "802.11p" is an earlier definition. As of year 2012, the behaviour of "802.11p" networks has been rolled in the document IEEE Std 802.11-2012. In this document the term 802.11p disappears. Instead, each 802.11p feature is conditioned by a flag in the Management Information Base. That flag is named "OCBActivated". Whenever OCBActivated is set to true the feature it relates to represents an earlier 802.11p feature. For example, an 802.11 STation operating outside the context of a basic service set has the OCBActivated flag set. Such a station, when it has the flag set, it uses a BSS identifier equal to ff:ff:ff:ff:ff:ff.

In the following text we use the term "802.11p" to mean 802.11-2012 OCB.

The IPv6 network layer operates on 802.11 OCB in the same manner as it operates on 802.11 WiFi, with a few particular exceptions. The IPv6 network layer operates on WiFi by involving an Ethernet Adaptation Layer; this Ethernet Adaptation Layer maps 802.11 headers to Ethernet II headers. The operation of IP on Ethernet is described in [RFC1042] and [RFC2464]. The situation of IPv6 networking layer on Ethernet Adaptation Layer is illustrated below:
A more theoretical and detailed view of layer stacking, and interfaces between the IP layer and 802.11 OCB layers, is illustrated below. The IP layer operates on top of the EtherType Protocol Discrimination (EPD); this Discrimination layer is described in IEEE Std 802.3-2012; the interface between IPv6 and EPD is the LLC_SAP (Link Layer Control Service Access Point).

In addition to the description of interface between IP and MAC using "Ethernet Adaptation Layer" and "Ethernet Protocol Discrimination (EPD)" it is worth mentioning that SNAP [RFC1042] is used to carry the IPv6 Ethertype.

However, there may be some deployment considerations helping optimize the performances of running IPv6 over 802.11-OCB (e.g. in the case of handovers between 802.11 OCB-enabled access routers, or the consideration of using the IP security layer [RFC4301]).
There are currently no specifications for handover between OCB links since these are currently specified as LLC-1 links (i.e. connectionless). Any handovers must be performed above the Data Link Layer. Also, while there is no encryption applied below the network layer using 802.11p, 1609.2 does provide security services for applications to use so that there can easily be data security over the air without invoking IPsec.

We briefly introduce the vehicular communication scenarios where IEEE 802.11-OCB links are used. This is followed by a description of differences in specification terms, between 802.11 OCB and 802.11a/b/g/n (and the same differences expressed in terms of requirements to software implementation are listed in Appendix B.)

The document then concentrates on the parameters of layering IP over 802.11 OCB as over Ethernet: value of MTU, the contents of Frame Format, the rules for forming Interface Identifiers, the mechanism for Address Mapping and for State-less Address Auto-configuration. These are precisely the same as IPv6 over Ethernet [RFC2464].

As an example, these characteristics of layering IPv6 straight over LLC over 802.11 OCB MAC are illustrated by dissecting an IPv6 packet captured over a 802.11 OCB link; this is described in the section Section 6.

A couple of points can be considered as different, although they are not required in order to have a working implementation of IPv6-over-802.11-OCB. These points are consequences of the OCB operation which is particular to 802.11 OCB (Outside the Context of a BSS). First, the handovers between OCB links need specific behaviour for IP Router Advertisements, or otherwise 802.11 OCB’s Time Advertisement, or of higher layer messages such as the ‘Basic Safety Message’ (in the US) or the ‘Cooperative Awareness Message’ (in the EU) or the ‘WAVE Routing Advertisement’; second, the IP security mechanisms are necessary, since OCB means that 802.11 is stripped of all 802.11 link-layer security; a small additional security aspect which is shared between 802.11 OCB and other 802.11 links is the privacy concerns related to the address formation mechanisms.

In the published literature, many documents describe aspects related to running IPv6 over 802.11 OCB:
-I-D.jeong-ipwave-vehicular-networking-survey.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
RSU: Road Side Unit. A computer equipped with at least one IEEE 802.11 interface operated in OCB mode. This definition applies to this document. An RSU may be connected to the Internet, and may be equipped with additional wired or wireless network interfaces running IP. An RSU MAY be an IP Router.

OCB: outside the context of a basic service set (BSS): A mode of operation in which a STA is not a member of a BSS and does not utilize IEEE Std 802.11 authentication, association, or data confidentiality.

802.11-OCB, or 802.11 OCB: text in document IEEE 802.11-2012 that is flagged by "dot11OCBActivated". This means: IEEE 802.11e for quality of service; 802.11j-2004 for half-clocked operations; and (what was known earlier as) 802.11p for operation in the 5.9 GHz band and in mode OCB.

3. Communication Scenarios where IEEE 802.11 OCB Links are Used

The IEEE 802.11 OCB Networks are used for vehicular communications, as ‘Wireless Access in Vehicular Environments’. The IP communication scenarios for these environments have been described in several documents, among which we refer the reader to one recently updated [I-D.petrescu-its-scenarios-reqs], about scenarios and requirements for IP in Intelligent Transportation Systems.

4. Aspects introduced by the OCB mode to 802.11

In the IEEE 802.11 OCB mode, all nodes in the wireless range can directly communicate with each other without authentication/association procedures. Briefly, the IEEE 802.11 OCB mode has the following properties:

- The use by each node of a ‘wildcard’ BSSID (i.e., each bit of the BSSID is set to 1)
- No IEEE 802.11 Beacon frames transmitted
- No authentication required
- No association needed
- No encryption provided
- Flag dot11OCBActivated set to true

The following message exchange diagram illustrates a comparison between traditional 802.11 and 802.11 in OCB mode. The ‘Data’
messages can be IP messages such as the messages used in Stateless or Stateful Address Auto-Configuration, or other IP messages. Other 802.11 management and control frames (non IP) may be transmitted, as specified in the 802.11 standard. For information, the names of these messages as currently specified by the 802.11 standard are listed in Appendix D.

<table>
<thead>
<tr>
<th>STA</th>
<th>AP</th>
<th>STA1</th>
<th>STA2</th>
</tr>
</thead>
<tbody>
<tr>
<td><<------ Beacon ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td>---- Probe Req. ----->></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td><<- Probe Res. ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td>---- Auth Req. ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td><<- Auth Res. ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td>---- Asso Req. ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td><<- Asso Res. ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
<tr>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
<td><<------ Data ------>></td>
</tr>
</tbody>
</table>

(a) 802.11 Infrastructure mode (b) 802.11 OCB mode

The link 802.11 OCB was specified in IEEE Std 802.11p (TM) -2010 [ieee802.11p-2010] as an amendment to IEEE Std 802.11 (TM) -2007, titled "Amendment 6: Wireless Access in Vehicular Environments". Since then, this amendment has been included in IEEE 802.11(TM)-2012 [ieee802.11-2012], titled "IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"; the modifications are diffused throughout various sections (e.g. the Time Advertisement message described in the earlier 802.11 (TM) p amendment is now described in section 'Frame formats', and the operation outside the context of a BSS described in section 'MLME').

In document 802.11-2012, specifically anything referring "OCBActivated", or "outside the context of a basic service set" is actually referring to the 802.11p aspects introduced to 802.11. Note that in earlier 802.11p documents the term "OCBEnabled" was used instead of the current "OCBActivated".

In order to delineate the aspects introduced by 802.11 OCB to 802.11, we refer to the earlier [ieee802.11p-2010]. The amendment is concerned with vehicular communications, where the wireless link is similar to that of Wireless LAN (using a PHY layer specified by 802.11a/b/g/n), but which needs to cope with the high mobility factor inherent in scenarios of communications between moving vehicles, and between vehicles and fixed infrastructure deployed along roads. While 'p' is a letter just like 'a, b, g' and 'n' are, 'p' is concerned more with MAC modifications, and a little with PHY modifications; the others are mainly about PHY modifications. It is possible in practice to combine a 'p' MAC with an 'a' PHY by operating outside the context of a BSS with OFDM at 5.4GHz.

The 802.11 OCB links are specified to be compatible as much as possible with the behaviour of 802.11a/b/g/n and future generation IEEE WLAN links. From the IP perspective, an 802.11 OCB MAC layer offers practically the same interface to IP as the WiFi and Ethernet layers do (802.11a/b/g/n and 802.3).

To support this similarity statement (IPv6 is layered on top of LLC on top of 802.11 OCB similarly as on top of LLC on top of 802.11a/b/g/n, and as on top of LLC on top of 802.3) it is useful to analyze the differences between 802.11 OCB and 802.11 specifications. Whereas the 802.11p amendment specifies relatively complex and numerous changes to the MAC layer (and very little to the PHY layer), we note there are only a few characteristics which may be important for an implementation transmitting IPv6 packets on 802.11 OCB links.

In the list below, the only 802.11 OCB fundamental points which influence IPv6 are the OCB operation and the 12Mbit/s maximum which may be afforded by the IPv6 applications.

- **Operation Outside the Context of a BSS (OCB):** the (earlier 802.11p) 802.11-OCB links are operated without a Basic Service Set (BSS). This means that the frames IEEE 802.11 Beacon, Association Request/Response, Authentication Request/Response, and similar, are not used. The used identifier of BSS (BSSID) has a hexadecimal value always 0xffffffffffff (48 '1' bits, represented as MAC address ff:ff:ff:ff:ff:ff, or otherwise the 'wildcard' BSSID), as opposed to an arbitrary BSSID value set by administrator (e.g. 'My-Home-AccessPoint'). The OCB operation — namely the lack of beacon-based scanning and lack of authentication — has a potentially strong impact on the use of the Mobile IPv6 protocol [RFC6275] and on the protocols for IP layer security [RFC4301].

- **Timing Advertisement:** is a new message defined in 802.11-OCB, which does not exist in 802.11a/b/g/n. This message is used by
stations to inform other stations about the value of time. It is similar to the time as delivered by a GNSS system (Galileo, GPS, ...) or by a cellular system. This message is optional for implementation. At the date of writing, an experienced reviewer considers that currently no field testing has used this message. Another implementor considers this feature implemented in an initial manner. In the future, it is speculated that this message may be useful for very simple devices which may not have their own hardware source of time (Galileo, GPS, cellular network), or by vehicular devices situated in areas not covered by such network (in tunnels, underground, outdoors but shaded by foliage or buildings, in remote areas, etc.)

- Frequency range: this is a characteristic of the PHY layer, with almost no impact to the interface between MAC and IP. However, it is worth considering that the frequency range is regulated by a regional authority (ARCEP, ETSI, FCC, etc.); as part of the regulation process, specific applications are associated with specific frequency ranges. In the case of 802.11-OCB, the regulator associates a set of frequency ranges, or slots within a band, to the use of applications of vehicular communications, in a band known as "5.9GHz". This band is "5.9GHz" which is different from the bands "2.4GHz" or "5GHz" used by Wireless LAN. However, as with Wireless LAN, the operation of 802.11-OCB in "5.9GHz" bands is exempt from owning a license in EU (in US the 5.9GHz is a licensed band of spectrum; for the fixed infrastructure an explicit FCC authorization is required; for an onboard device a 'licensed-by-rule' concept applies: rule certification conformity is required); however technical conditions are different than those of the bands "2.4GHz" or "5GHz". On one hand, the allowed power levels, and implicitly the maximum allowed distance between vehicles, is of 33dBm for 802.11-OCB (in Europe), compared to 20 dBm for Wireless LAN 802.11a/b/g/n; this leads to a maximum distance of approximately 1km, compared to approximately 50m. On the other hand, specific conditions related to congestion avoidance, jamming avoidance, and radar detection are imposed on the use of DSRC (in US) and on the use of frequencies for Intelligent Transportation Systems (in EU), compared to Wireless LAN (802.11a/b/g/n).

- Prohibition of IPv6 on some channels relevant for IEEE 802.11-OCB, as opposed to IPv6 not being prohibited on any channel on which 802.11a/b/g/n runs:
 * Some channels are reserved for safety communications; the IPv6 packets should not be sent on these channels.
At the time of writing, the prohibition is explicit at higher layer protocols providing services to the application; these higher layer protocols are specified in IEEE 1609 documents.

National or regional specifications and regulations specify the use of different channels; these regulations must be followed.

- "Half-rate" encoding: as the frequency range, this parameter is related to PHY, and thus has not much impact on the interface between the IP layer and the MAC layer.

- In vehicular communications using 802.11-OCB links, there are strong privacy requirements with respect to addressing. While the 802.11-OCB standard does not specify anything in particular with respect to MAC addresses, in these settings there exists a strong need for dynamic change of these addresses (as opposed to the non-vehicular settings - real wall protection - where fixed MAC addresses do not currently pose some privacy risks). This is further described in section Section 7. A relevant function is described in IEEE 1609.3-2016, clause 5.5.1 and IEEE 1609.4-2016, clause 6.7.

Other aspects particular to 802.11-OCB which are also particular to 802.11 (e.g. the 'hidden node' operation) may have an influence on the use of transmission of IPv6 packets on 802.11-OCB networks. The subnet structure which may be assumed in 802.11-OCB networks is strongly influenced by the mobility of vehicles.

5. Layering of IPv6 over 802.11-OCB as over Ethernet

5.1. Maximum Transmission Unit (MTU)

The default MTU for IP packets on 802.11-OCB is 1500 octets. It is the same value as IPv6 packets on Ethernet links, as specified in [RFC2464]. This value of the MTU respects the recommendation that every link in the Internet must have a minimum MTU of 1280 octets (stated in [RFC2460], and the recommendations therein, especially with respect to fragmentation). If IPv6 packets of size larger than 1500 bytes are sent on an 802.11-OCB interface card then the IP stack will fragment. In case there are IP fragments, the field "Sequence number" of the 802.11 Data header containing the IP fragment field is increased.

Non-IP packets such as WAVE Short Message Protocol (WSMP) can be delivered on 802.11-OCB links. Specifications of these packets are out of scope of this document, and do not impose any limit on the MTU size, allowing an arbitrary number of ‘containers’. Non-IP packets such as ETSI ‘geonet’ packets have an MTU of 1492 bytes.
The Equivalent Transmit Time on Channel is a concept that may be used as an alternative to the MTU concept. A rate of transmission may be specified as well. The ETTC, rate and MTU may be in direct relationship.

5.2. Frame Format

IP packets are transmitted over 802.11-OCB as standard Ethernet packets. As with all 802.11 frames, an Ethernet adaptation layer is used with 802.11-OCB as well. This Ethernet Adaptation Layer performing 802.11-to-Ethernet is described in Section 5.2.1. The Ethernet Type code (EtherType) for IPv6 is 0x86DD (hexadecimal 86DD, or otherwise #86DD).

The Frame format for transmitting IPv6 on 802.11-OCB networks is the same as transmitting IPv6 on Ethernet networks, and is described in section 3 of [RFC2464]. The frame format for transmitting IPv6 packets over Ethernet is illustrated below:

```
0   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Destination        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Ethernet          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Address           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Source           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Ethernet          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Address           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            IPv6              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            header            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            and               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            payload ...        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

(Each tic mark represents one bit.)
Ethernet II Fields:

Destination Ethernet Address
 the MAC destination address.

Source Ethernet Address
 the MAC source address.

1 0 0 0 0 1 1 1 0 1 1 1 1 0 1
 binary representation of the EtherType value 0x86DD.

IPv6 header and payload
 the IPv6 packet containing IPv6 header and payload.

5.2.1. Ethernet Adaptation Layer

In general, an ‘adaptation’ layer is inserted between a MAC layer and the Networking layer. This is used to transform some parameters between their form expected by the IP stack and the form provided by the MAC layer. For example, an 802.15.4 adaptation layer may perform fragmentation and reassembly operations on a MAC whose maximum Packet Data Unit size is smaller than the minimum MTU recognized by the IPv6 Networking layer. Other examples involve link-layer address transformation, packet header insertion/removal, and so on.

An Ethernet Adaptation Layer makes an 802.11 MAC look to IP Networking layer as a more traditional Ethernet layer. At reception, this layer takes as input the IEEE 802.11 Data Header and the Logical-Link Layer Control Header and produces an Ethernet II Header. At sending, the reverse operation is performed.

```
+---------------------+-------------+---------+
| Ethernet II Header  | IPv6 Header | Payload |
+---------------------+-------------+---------+
```

The Receiver and Transmitter Address fields in the 802.11 Data Header contain the same values as the Destination and the Source Address fields in the Ethernet II Header, respectively. The value of the Type field in the LLC Header is the same as the value of the Type field in the Ethernet II Header.

The "802.11 Trailer" contains solely a 4-byte Frame Check Sequence.

The Ethernet Adaptation Layer performs operations in relation to IP fragmentation and MTU. One of these operations is briefly described in section Section 5.1.

In OCB mode, IPv6 packets can be transmitted either as "IEEE 802.11 Data" or alternatively as "IEEE 802.11 QoS Data", as illustrated in the following figure:

\[+---------------+-------------+-------------+---------+-------------------------------+ \]
\[| 802.11 Data Header | LLC Header | IPv6 Header | Payload | .11 Trailer | \]
\[+---------------+-------------+-------------+---------+-------------------------------+ \]

\[or \]
\[+---------------+-------------+-------------+---------+-------------------------------+ \]
\[| 802.11 QoS Data Hdr | LLC Header | IPv6 Header | Payload | .11 Trailer | \]
\[+---------------+-------------+-------------+---------+-------------------------------+ \]

The distinction between the two formats is given by the value of the field "Type/Subtype". The value of the field "Type/Subtype" in the 802.11 Data header is 0x0020. The value of the field "Type/Subtype" in the 802.11 QoS header is 0x0028.

The mapping between qos-related fields in the IPv6 header (e.g. "Traffic Class", "Flow label") and fields in the "802.11 QoS Data Header" (e.g. "QoS Control") are not specified in this document. Guidance for a potential mapping is provided in [I-D.ietf-tsvwg-ieee-802-11], although it is not specific to OCB mode.

5.3. Link-Local Addresses

The link-local address of an 802.11-OCB interface is formed in the same manner as on an Ethernet interface. This manner is described in section 5 of [RFC2464].
5.4. Address Mapping

For unicast as for multicast, there is no change from the unicast and multicast address mapping format of Ethernet interfaces, as defined by sections 6 and 7 of [RFC2464].

5.4.1. Address Mapping -- Unicast

The procedure for mapping IPv6 unicast addresses into Ethernet link-layer addresses is described in [RFC4861]. The Source/Target Link-layer Address option has the following form when the link-layer is Ethernet.

```
+-----------------------------------------------+ 1
<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Ethernet</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Address</td>
</tr>
</tbody>
</table>
```

Option fields:

Type
1 for Source Link-layer address.
2 for Target Link-layer address.

Length
1 (in units of 8 octets).

Ethernet Address
The 48 bit Ethernet IEEE 802 address, in canonical bit order.

5.4.2. Address Mapping -- Multicast

IPv6 protocols often make use of IPv6 multicast addresses in the destination field of IPv6 headers. For example, an ICMPv6 link-scoped Neighbor Advertisement is sent to the IPv6 address ff02::1 denoted "all-nodes" address. When transmitting these packets on 802.11-OCB links it is necessary to map the IPv6 address to a MAC address.
The same mapping requirement applies to the link-scoped multicast addresses of other IPv6 protocols as well. In DHCPv6, the "All_DHCP_Servers" IPv6 multicast address ff02::1:2, and in OSPF the "All_SPF_Routers" IPv6 multicast address ff02::5, need to be mapped on a multicast MAC address.

An IPv6 packet with a multicast destination address DST, consisting of the sixteen octets DST[1] through DST[16], is transmitted to the IEEE 802.11-OCB MAC multicast address whose first two octets are the value 0x3333 and whose last four octets are the last four octets of DST.

```
+-----------------+-----------------+
| 0 0 1 1 0 0 1 1 | 0 0 1 1 0 0 1 1 |
+-----------------+-----------------+
+-----------------+-----------------+
| DST[15]         | DST[16]         |
+-----------------+-----------------+
```

A Group ID TBD of length 112bits may be requested from IANA; this Group ID signifies "All 80211OCB Interfaces Address". Only the least 32 significant bits of this "All 80211OCB Interfaces Address" will be mapped to and from a MAC multicast address.

Transmitting IPv6 packets to multicast destinations over 802.11 links proved to have some performance issues [I-D.perkins-intarea-multicast-ieee802]. These issues may be exacerbated in OCB mode. Solutions for these problems should consider the OCB mode of operation.

5.5. Stateless Autoconfiguration

The Interface Identifier for an 802.11-OCB interface is formed using the same rules as the Interface Identifier for an Ethernet interface; this is described in section 4 of [RFC2464]. No changes are needed, but some care must be taken when considering the use of the SLAAC procedure.

The bits in the the interface identifier have no generic meaning and the identifier should be treated as an opaque value. The bits ‘Universal’ and ‘Group’ in the identifier of an 802.11-OCB interface are significant, as this is an IEEE link-layer address. The details of this significance are described in [I-D.ietf-6man-ug].
As with all Ethernet and 802.11 interface identifiers ([RFC7721]),
the identifier of an 802.11-OCB interface may involve privacy risks.
A vehicle embarking an On-Board Unit whose egress interface is
802.11-OCB may expose itself to eavesdropping and subsequent
correlation of data; this may reveal data considered private by the
vehicle owner; there is a risk of being tracked; see the privacy
considerations described in Appendix C.

If stable Interface Identifiers are needed in order to form IPv6
addresses on 802.11-OCB links, it is recommended to follow the
recommendation in [I-D.ietf-6man-default-iids].

5.6. Subnet Structure

The 802.11 networks in OCB mode may be considered as ‘ad-hoc’
networks. The addressing model for such networks is described in
[RFC5889].

6. Example IPv6 Packet captured over a IEEE 802.11-OCB link

We remind that a main goal of this document is to make the case that
IPv6 works fine over 802.11-OCB networks. Consequently, this section
is an illustration of this concept and thus can help the implementer
when it comes to running IPv6 over IEEE 802.11-OCB. By way of
example we show that there is no modification in the headers when
transmitted over 802.11-OCB networks - they are transmitted like any
other 802.11 and Ethernet packets.

We describe an experiment of capturing an IPv6 packet on an
802.11-OCB link. In this experiment, the packet is an IPv6 Router
Advertisement. This packet is emitted by a Router on its 802.11-OCB
interface. The packet is captured on the Host, using a network
protocol analyzer (e.g. Wireshark); the capture is performed in two
different modes: direct mode and ‘monitor’ mode. The topology used
during the capture is depicted below.

```
+--------+                                +-------+
|        |        802.11-OCB Link         |       |
---| Router |--------------------------------| Host  |
|        |                                |       |
+--------+                                +-------+
```

During several capture operations running from a few moments to
several hours, no message relevant to the BSSID contexts were
captured (no Association Request/Response, Authentication Req/Resp,
Beacon). This shows that the operation of 802.11-OCB is outside the context of a BSSID.

Overall, the captured message is identical with a capture of an IPv6 packet emitted on a 802.11b interface. The contents are precisely similar.

6.1. Capture in Monitor Mode

The IPv6 RA packet captured in monitor mode is illustrated below. The radio tap header provides more flexibility for reporting the characteristics of frames. The Radiotap Header is prepended by this particular stack and operating system on the Host machine to the RA packet received from the network (the Radiotap Header is not present on the air). The implementation-dependent Radiotap Header is useful for piggybacking PHY information from the chip's registers as data in a packet understandable by userland applications using Socket interfaces (the PHY interface can be, for example: power levels, data rate, ratio of signal to noise).

The packet present on the air is formed by IEEE 802.11 Data Header, Logical Link Control Header, IPv6 Base Header and ICMPv6 Header.

Radiotap Header v0
 +-+
 |Header Revision| Header Pad | Header length |
 +-+
 | Present flags |
 +-+
 | Data Rate | Pad |
 +-+

IEEE 802.11 Data Header
 +-+
 | Type/Subtype and Frame Ctrl | Duration |
 +-+
 | Receiver Address... |
 +-+
 ... Receiver Address |
 +-+
 ... Transmitter Address |
 +-+
 | BSS Id... |
 +-+
 ... BSS Id |
 +-+
 | Frag Number and Seq Number |
 +-+
The value of the Data Rate field in the Radiotap header is set to 6 Mb/s. This indicates the rate at which this RA was received.
The value of the Transmitter address in the IEEE 802.11 Data Header is set to a 48bit value. The value of the destination address is 33:33:00:00:00:1 (all-nodes multicast address). The value of the BSS Id field is ff:ff:ff:ff:ff:ff, which is recognized by the network protocol analyzer as being "broadcast". The Fragment number and sequence number fields are together set to 0x90C6.

The value of the Organization Code field in the Logical-Link Control Header is set to 0x0, recognized as "Encapsulated Ethernet". The value of the Type field is 0x86DD (hexadecimal 86DD, or otherwise #86DD), recognized as "IPv6".

A Router Advertisement is periodically sent by the router to multicast group address ff02::1. It is an icmp packet type 134. The IPv6 Neighbor Discovery’s Router Advertisement message contains an 8-bit field reserved for single-bit flags, as described in [RFC4861].

The IPv6 header contains the link local address of the router (source) configured via EUI-64 algorithm, and destination address set to ff02::1. Recent versions of network protocol analyzers (e.g. Wireshark) provide additional informations for an IP address, if a geolocalization database is present. In this example, the geolocalization database is absent, and the "GeoIP" information is set to unknown for both source and destination addresses (although the IPv6 source and destination addresses are set to useful values). This "GeoIP" can be a useful information to look up the city, country, AS number, and other information for an IP address.

The Ethernet Type field in the logical-link control header is set to 0x86dd which indicates that the frame transports an IPv6 packet. In the IEEE 802.11 data, the destination address is 33:33:00:00:00:01 which is the corresponding multicast MAC address. The BSSID is a broadcast address of ff:ff:ff:ff:ff:ff. Due to the short link duration between vehicles and the roadside infrastructure, there is no need in IEEE 802.11-OCB to wait for the completion of association and authentication procedures before exchanging data. IEEE 802.11-OCB enabled nodes use the wildcard BSSID (a value of all 1s) and may start communicating as soon as they arrive on the communication channel.

6.2. Capture in Normal Mode

The same IPv6 Router Advertisement packet described above (monitor mode) is captured on the Host, in the Normal mode, and depicted below.
Ethernet II Header
+-+
| Destination...
+-+
| ...Destination | Source...
+-+
| ...Source
+-+
| Type |
+-+
IPv6 Base Header
+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Header | Hop Limit |
+-+
| |
+-+
| |
+-+
| |
+-+
| Source Address |
+-+
| |
+-+
| |
+-+
| |
+-+
| Destination Address |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+
Router Advertisement
+-+
| Type | Code | Checksum |
+-+
| Cur Hop Limit |M|O| Reserved | Router Lifetime |
+-+
| Reachable Time |
+-+
| Retrans Timer |
+-+
| Options ... |
+-+

One notices that the Radiotap Header is not prepended, and that the IEEE 802.11 Data Header and the Logical-Link Control Headers are not present. On another hand, a new header named Ethernet II Header is present.

The Destination and Source addresses in the Ethernet II header contain the same values as the fields Receiver Address and Transmitter Address present in the IEEE 802.11 Data Header in the "monitor" mode capture.

The value of the Type field in the Ethernet II header is 0x86DD (recognized as "IPv6"); this value is the same value as the value of the field Type in the Logical-Link Control Header in the "monitor" mode capture.

The knowledgeable experimenter will no doubt notice the similarity of this Ethernet II Header with a capture in normal mode on a pure Ethernet cable interface.

It may be interpreted that an Adaptation layer is inserted in a pure IEEE 802.11 MAC packets in the air, before delivering to the applications. In detail, this adaptation layer may consist in elimination of the Radiotap, 802.11 and LLC headers and insertion of the Ethernet II header. In this way, it can be stated that IPv6 runs naturally straight over LLC over the 802.11-OCB MAC layer, as shown by the use of the Type 0x86DD, and assuming an adaptation layer (adapting 802.11 LLC/MAC to Ethernet II header).

7. Security Considerations

Any security mechanism at the IP layer or above that may be carried out for the general case of IPv6 may also be carried out for IPv6 operating over 802.11-OCB.

802.11-OCB does not provide any cryptographic protection, because it operates outside the context of a BSS (no Association Request/Response, no Challenge messages). Any attacker can therefore just sit in the near range of vehicles, sniff the network (just set the interface card’s frequency to the proper range) and perform attacks without needing to physically break any wall. Such a link is way less protected than commonly used links (wired link or protected 802.11).

At the IP layer, IPsec can be used to protect unicast communications, and SeND can be used for multicast communications. If no protection is used by the IP layer, upper layers should be protected. Otherwise, the end-user or system should be warned about the risks they run.
As with all Ethernet and 802.11 interface identifiers, there may exist privacy risks in the use of 802.11-OCB interface identifiers. Moreover, in outdoors vehicular settings, the privacy risks are more important than in indoors settings. New risks are induced by the possibility of attacker sniffers deployed along routes which listen for IP packets of vehicles passing by. For this reason, in the 802.11-OCB deployments, there is a strong necessity to use protection tools such as dynamically changing MAC addresses. This may help mitigate privacy risks to a certain level. On another hand, it may have an impact in the way typical IPv6 address auto-configuration is performed for vehicles (SLAAC would rely on MAC addresses and would hence dynamically change the affected IP address), in the way the IPv6 Privacy addresses were used, and other effects.

8. IANA Considerations

9. Contributors

Romain Kuntz contributed extensively about IPv6 handovers between links running outside the context of a BSS (802.11-OCB links).

Tim Leinmueller contributed the idea of the use of IPv6 over 802.11-OCB for distribution of certificates.

Marios Makassikis, Jose Santa Lozano, Albin Severinson and Alexey Voronov provided significant feedback on the experience of using IP messages over 802.11-OCB in initial trials.

Michelle Wetterwald contributed extensively the MTU discussion, offered the ETSI ITS perspective, and reviewed other parts of the document.

10. Acknowledgements

The authors would like to thank Witold Klaudel, Ryuji Wakikawa, Emmanuel Baccelli, John Kenney, John Moring, Francois Simon, Dan Romascanu, Konstantin Khait, Ralph Droms, Richard ‘Dick’ Roy, Ray Hunter, Tom Kurihara, Michal Sojka, Jan de Jongh, Suresh Krishnan, Dino Farinacci, Vincent Park, Jaehoon Paul Jeong, Gloria Gwynne, Hans-Joachim Fischer, Russ Housley, Rex Buddenberg, Erik Nordmark, Bob Moskowitz, Andrew (Dryden?), Georg Mayer, Dorothy Stanley and William Whyte. Their valuable comments clarified certain issues and generally helped to improve the document.

Pierre Pfister, Rostislav Lisovy, and others, wrote 802.11-OCB drivers for linux and described how.
For the multicast discussion, the authors would like to thank Owen DeLong, Joe Touch, Jen Linkova, Erik Kline, Brian Haberman and participants to discussions in network working groups.

The authors would like to thank participants to the Birds-of-a-Feather "Intelligent Transportation Systems" meetings held at IETF in 2016.

11. References

11.1. Normative References

[I-D.ietf-6man-default-iids]
Gont, F., Cooper, A., Thaler, D., and S. LIU,
"Recommendation on Stable IPv6 Interface Identifiers",
draft-ietf-6man-default-iids-16 (work in progress),
September 2016.

[I-D.ietf-6man-ug]
Carpenter, B. and S. Jiang, "Significance of IPv6
Interface Identifiers",
draft-ietf-6man-ug-06 (work in progress),
December 2013.

[I-D.ietf-tsvwg-ieee-802-11]
Szigeti, T., Henry, J., and F. Baker,
"Diffserv to IEEE
802.11 Mapping",
draft-ietf-tsvwg-ieee-802-11-03 (work in progress),
May 2017.

[RFC1042] Postel, J. and J. Reynolds, "Standard for the transmission
of IP datagrams over IEEE 802 networks",
STD 43, RFC 1042,
DOI 10.17487/RFC1042, February 1988,

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels",
BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

(IPv6) Specification",
RFC 2460, DOI 10.17487/RFC2460,
December 1998,

Networks",
RFC 2464, DOI 10.17487/RFC2464,
December 1998,

11.2. Informative References

[etsi-302663-v1.2.1p-2013]

[etsi-draft-102492-2-v1.1.1-2006]

[fcc-cc]

[fcc-cc-172-184]

[I-D.jeong-ipwave-vehicular-networking-survey]
[I-D.perkins-intarea-multicast-ieee802]
Perkins, C., Stanley, D., Kumari, W., and J. Zuniga,
"Multicast Considerations over IEEE 802 Wireless Media",
draft-perkins-intarea-multicast-ieee802-02 (work in progress), March 2017.

[I-D.petrescu-its-scenarios-reqs]
Petrescu, A., Janneteau, C., Boc, M., and W. Klaudel,
"Scenarios and Requirements for IP in Intelligent Transportation Systems",
draft-petrescu-its-scenarios-reqs-03 (work in progress), October 2013.

[ieee16094]

[ieee802.11-2012]

[ieee802.11p-2010]

[ieeep1609.0-D2]

Appendix A. ChangeLog

The changes are listed in reverse chronological order, most recent changes appearing at the top of the list.

From draft-ietf-ipwave-ipv6-over-80211ocb-02 to draft-ietf-ipwave-ipv6-over-80211ocb-03

- Keep the previous text on multiple addresses, so remove talk about MIPv6, NEMOv6 and MCoA.
- Clarified that a ’Beacon’ is an IEEE 802.11 frame Beacon.
- Clarified the figure showing Infrastructure mode and OCB mode side by side.
- Added a reference to the IP Security Architecture RFC.
o Detailed the IPv6-per-channel prohibition paragraph which reflects the discussion at the last IETF IPWAVE WG meeting.

o Added section "Address Mapping -- Unicast".

o Added the ".11 Trailer" to pictures of 802.11 frames.

o Added text about SNAP carrying the Ethertype.

o New RSU definition allowing for it be both a Router and not necessarily a Router some times.

o Minor textual issues.

From draft-ietf-ipwave-ipv6-over-80211ocb-01 to draft-ietf-ipwave-ipv6-over-80211ocb-02

o Replaced almost all occurrences of 802.11p with 802.11-OCB, leaving only when explanation of evolution was necessary.

o Shortened by removing parameter details from a paragraph in the Introduction.

o Moved a reference from Normative to Informative.

o Added text in intro clarifying there is no handover spec at IEEE, and that 1609.2 does provide security services.

o Named the contents the fields of the EthernetII header (including the Ethertype bitstring).

o Improved relationship between two paragraphs describing the increase of the Sequence Number in 802.11 header upon IP fragmentation.

o Added brief clarification of "tracking".

From draft-ietf-ipwave-ipv6-over-80211ocb-00 to draft-ietf-ipwave-ipv6-over-80211ocb-01

o Introduced message exchange diagram illustrating differences between 802.11 and 802.11 in OCB mode.

o Introduced an appendix listing for information the set of 802.11 messages that may be transmitted in OCB mode.

o Removed appendix sections "Privacy Requirements", "Authentication Requirements" and "Security Certificate Generation".
Appendix B. Changes Needed on a software driver 802.11a to become a 802.11-OCB driver

The 802.11p amendment modifies both the 802.11 stack’s physical and MAC layers but all the induced modifications can be quite easily obtained by modifying an existing 802.11a ad-hoc stack.

Conditions for a 802.11a hardware to be 802.11-OCB compliant:

- The chip must support the frequency bands on which the regulator recommends the use of ITS communications, for example using IEEE 802.11-OCB layer, in France: 5875MHz to 5925MHz.
- The chip must support the half-rate mode (the internal clock should be able to be divided by two).
- The chip transmit spectrum mask must be compliant to the "Transmit spectrum mask" from the IEEE 802.11p amendment (but experimental environments tolerate otherwise).
- The chip should be able to transmit up to 44.8 dBm when used by the US government in the United States, and up to 33 dBm in Europe; other regional conditions apply.
Changes needed on the network stack in OCB mode:

- **Physical layer:**
 - The chip must use the Orthogonal Frequency Multiple Access (OFDM) encoding mode.
 - The chip must be set in half-mode rate mode (the internal clock frequency is divided by two).
 - The chip must use dedicated channels and should allow the use of higher emission powers. This may require modifications to the regulatory domains rules, if used by the kernel to enforce local specific restrictions. Such modifications must respect the location-specific laws.

- **MAC layer:**
 - All management frames (beacons, join, leave, and others) emission and reception must be disabled except for frames of subtype Action and Timing Advertisement (defined below).
 - No encryption key or method must be used.
 - Packet emission and reception must be performed as in ad-hoc mode, using the wildcard BSSID (ff:ff:ff:ff:ff:ff).
 - The functions related to joining a BSS (Association Request/Response) and for authentication (Authentication Request/Reply, Challenge) are not called.
 - The beacon interval is always set to 0 (zero).
 - Timing Advertisement frames, defined in the amendment, should be supported. The upper layer should be able to trigger such frames emission and to retrieve information contained in received Timing Advertisements.

Appendix C. Design Considerations

The networks defined by 802.11-OCB are in many ways similar to other networks of the 802.11 family. In theory, the encapsulation of IPv6 over 802.11-OCB could be very similar to the operation of IPv6 over other networks of the 802.11 family. However, the high mobility, strong link asymmetry and very short connection makes the 802.11-OCB link significantly different from other 802.11 networks. Also, the automotive applications have specific requirements for reliability,
security and privacy, which further add to the particularity of the 802.11-OCB link.

C.1. Vehicle ID

Automotive networks require the unique representation of each of their node. Accordingly, a vehicle must be identified by at least one unique ID. The current specification at ETSI and at IEEE 1609 identifies a vehicle by its MAC address uniquely obtained from the 802.11-OCB NIC.

A MAC address uniquely obtained from a IEEE 802.11-OCB NIC implicitly generates multiple vehicle IDs in case of multiple 802.11-OCB NICs. A mechanism to uniquely identify a vehicle irrespectively to the different NICs and/or technologies is required.

C.2. Reliability Requirements

The dynamically changing topology, short connectivity, mobile transmitter and receivers, different antenna heights, and many-to-many communication types, make IEEE 802.11-OCB links significantly different from other IEEE 802.11 links. Any IPv6 mechanism operating on IEEE 802.11-OCB link MUST support strong link asymmetry, spatio-temporal link quality, fast address resolution and transmission.

IEEE 802.11-OCB strongly differs from other 802.11 systems to operate outside of the context of a Basic Service Set. This means in practice that IEEE 802.11-OCB does not rely on a Base Station for all Basic Service Set management. In particular, IEEE 802.11-OCB SHALL NOT use beacons. Any IPv6 mechanism requiring L2 services from IEEE 802.11 beacons MUST support an alternative service.

Channel scanning being disabled, IPv6 over IEEE 802.11-OCB MUST implement a mechanism for transmitter and receiver to converge to a common channel.

Authentication not being possible, IPv6 over IEEE 802.11-OCB MUST implement an distributed mechanism to authenticate transmitters and receivers without the support of a DHCP server.

Time synchronization not being available, IPv6 over IEEE 802.11-OCB MUST implement a higher layer mechanism for time synchronization between transmitters and receivers without the support of a NTP server.

The IEEE 802.11-OCB link being symetric, IPv6 over IEEE 802.11-OCB MUST disable management mechanisms requesting acknowledgements or replies.
The IEEE 802.11-OCB link having a short duration time, IPv6 over IEEE 802.11-OCB MUST implement fast IPv6 mobility management mechanisms.

C.3. Multiple interfaces

There are considerations for 2 or more IEEE 802.11-OCB interface cards per vehicle. For each vehicle taking part in road traffic, one IEEE 802.11-OCB interface card could be fully allocated for Non IP safety-critical communication. Any other IEEE 802.11-OCB may be used for other type of traffic.

The mode of operation of these other wireless interfaces is not clearly defined yet. One possibility is to consider each card as an independent network interface, with a specific MAC Address and a set of IPv6 addresses. Another possibility is to consider the set of these wireless interfaces as a single network interface (not including the IEEE 802.11-OCB interface used by Non IP safety critical communications). This will require specific logic to ensure, for example, that packets meant for a vehicle in front are actually sent by the radio in the front, or that multiple copies of the same packet received by multiple interfaces are treated as a single packet. Treating each wireless interface as a separate network interface pushes such issues to the application layer.

The privacy requirements of [] imply that if these multiple interfaces are represented by many network interface, a single renumbering event SHALL cause renumbering of all these interfaces. If one MAC changed and another stayed constant, external observers would be able to correlate old and new values, and the privacy benefits of randomization would be lost.

The privacy requirements of Non IP safety-critical communications imply that if a change of pseudonyme occurs, renumbering of all other interfaces SHALL also occur.

C.4. MAC Address Generation

When designing the IPv6 over 802.11-OCB address mapping, we will assume that the MAC Addresses will change during well defined "renumbering events". The 48 bits randomized MAC addresses will have the following characteristics:

- Bit "Local/Global" set to "locally administered".
- Bit "Unicast/Multicast" set to "Unicast".
- 46 remaining bits set to a random value, using a random number generator that meets the requirements of [RFC4086].
The way to meet the randomization requirements is to retain 46 bits from the output of a strong hash function, such as SHA256, taking as input a 256 bit local secret, the "nominal" MAC Address of the interface, and a representation of the date and time of the renumbering event.

Appendix D. IEEE 802.11 Messages Transmitted in OCB mode

For information, at the time of writing, this is the list of IEEE 802.11 messages that may be transmitted in OCB mode, i.e. when dot11OCBActivated is true in a STA:

- The STA may send management frames of subtype Action and, if the STA maintains a TSF Timer, subtype Timing Advertisement;
- The STA may send control frames, except those of subtype PS-Poll, CF-End, and CF-End plus CFAck;
- The STA may send data frames of subtype Data, Null, QoS Data, and QoS Null.

Authors’ Addresses

Alexandre Petrescu
CEA, LIST
CEA Saclay
Gif-sur-Yvette, Ile-de-France 91190
France
Phone: +33169089223
Email: Alexandre.Petrescu@cea.fr

Nabil Benamar
Moulay Ismail University
Morocco
Phone: +212670832236
Email: benamar73@gmail.com

Jerome Haerri
Eurecom
Sophia-Antipolis 06904
France
Phone: +33493008134
Email: Jerome.Haerri@eurecom.fr
Abstract

This document provides methods and settings, for using IPv6 to communicate among nodes within range of one another over a single IEEE 802.11-OCB link. Support for these methods and settings require minimal changes to existing stacks. This document also describes limitations associated with using these methods. Optimizations and usage of IPv6 over more complex scenarios is not covered in this specification and is subject of future work.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documentsvalid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 10, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction ... 3
2. Terminology .. 3
3. Communication Scenarios where IEEE 802.11-OCB Links are Used 4
4. IPv6 over 802.11-OCB 4
 4.1. Maximum Transmission Unit (MTU) 4
 4.2. Frame Format 5
 4.3. Link-Local Addresses 5
 4.4. Stateless Autoconfiguration 5
 4.5. Address Mapping 6
 4.5.1. Address Mapping -- Unicast 6
 4.5.2. Address Mapping -- Multicast 6
 4.6. Subnet Structure 7
5. Security Considerations 8
 5.1. Privacy Considerations 8
 5.1.1. Privacy Risks of Meaningful info in Interface IDs .. 9
 5.2. MAC Address and Interface ID Generation 9
 5.3. Pseudonymization impact on confidentiality and trust .. 10
6. IANA Considerations 10
7. Contributors .. 10
8. Acknowledgements 11
9. References .. 12
 9.1. Normative References 12
 9.2. Informative References 14
Appendix A. 802.11p 16
Appendix B. Aspects introduced by the OCB mode to 802.11 16
Appendix C. Changes Needed on a software driver 802.11a to become a 802.11-OCB driver 20
Appendix D. Protocol Layering 21
Appendix E. Design Considerations 22
Appendix F. IEEE 802.11 Messages Transmitted in OCB mode 22
Appendix G. Examples of Packet Formats 23
 G.1. Capture in Monitor Mode 24
 G.2. Capture in Normal Mode 26
Appendix H. Extra Terminology 28
Appendix I. Neighbor Discovery (ND) Potential Issues in Wireless Links 29
1. Introduction

This document provides a baseline for using IPv6 to communicate among nodes in range of one another over a single IEEE 802.11-OCB link [IEEE-802.11-2016] (a.k.a., "802.11p" see Appendix A, Appendix B and Appendix C) with minimal changes to existing stacks. Moreover, the document identifies limitations of such usage. Concretely, the document describes the layering of IPv6 networking on top of the IEEE Std 802.11 MAC layer or an IEEE Std 802.3 MAC layer with a frame translation underneath. The resulting stack is derived from IPv6 over Ethernet [RFC2464], but operates over 802.11-OCB to provide at least P2P (Point to Point) connectivity using IPv6 ND and link-local addresses.

The IPv6 network layer operates on 802.11-OCB in the same manner as operating on Ethernet with the following exceptions:

- Exceptions due to different operation of IPv6 network layer on 802.11 than on Ethernet. The operation of IP on Ethernet is described in [RFC1042] and [RFC2464].

- Exceptions due to the OCB nature of 802.11-OCB compared to 802.11. This has impacts on security, privacy, subnet structure and movement detection. Security and privacy recommendations are discussed in Section 5 and Section 4.4. The subnet structure is described in Section 4.6. The movement detection on OCB links is not described in this document. Likewise, ND Extensions and IPWAVE optimizations for vehicular communications are not in scope. The expectation is that further specifications will be edited to cover more complex vehicular networking scenarios.

The reader may refer to [I-D.ietf-ipwave-vehicular-networking] for an overview of problems related to running IPv6 over 802.11-OCB. It is out of scope of this document to reiterate those.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The document makes use of the following terms: IP-OBU (Internet Protocol On-Board Unit): an IP-OBU denotes a computer situated in a vehicle such as a car, bicycle, or similar. It has at least one IP
interface that runs in mode OCB of 802.11, and that has an "OBU" transceiver. See the definition of the term "OBU" in section Appendix H.

IP-RSU (IP Road-Side Unit): an IP-RSU is situated along the road. It has at least two distinct IP-enabled interfaces. The wireless PHY/MAC layer of at least one of its IP-enabled interfaces is configured to operate in 802.11-OCB mode. An IP-RSU communicates with the IP-OBU in the vehicle over 802.11 wireless link operating in OCB mode. An IP-RSU is similar to an Access Network Router (ANR) defined in [RFC3753], and a Wireless Termination Point (WTP) defined in [RFC5415].

OCB (outside the context of a basic service set - BSS): is a mode of operation in which a STA is not a member of a BSS and does not utilize IEEE Std 802.11 authentication, association, or data confidentiality.

802.11-OCB: refers to the mode specified in IEEE Std 802.11-2016 when the MIB attribute dot11OCBActivated is ‘true’.

3. Communication Scenarios where IEEE 802.11-OCB Links are Used

The IEEE 802.11-OCB networks are used for vehicular communications, as ‘Wireless Access in Vehicular Environments’. In particular, we refer the reader to [I-D.ietf-ipwave-vehicular-networking], that lists some scenarios and requirements for IP in Intelligent Transportation Systems (ITS).

The link model is the following: STA --- 802.11-OCB --- STA. In vehicular networks, STAs can be IP-RSUs and/or IP-OBUs. All links are assumed to be P2P and multiple links can be on one radio interface. While 802.11-OCB is clearly specified, and a legacy IPv6 stack can operate on such links, the use of the operating environment (vehicular networks) brings in new perspectives.

4. IPv6 over 802.11-OCB

4.1. Maximum Transmission Unit (MTU)

The default MTU for IP packets on 802.11-OCB is inherited from [RFC2464] and is, as such, 1500 octets. As noted in [RFC8200], every link on the Internet must have a minimum MTU of 1280 octets, as well as follow the other recommendations, especially with regard to fragmentation.
4.2. Frame Format

IP packets MUST be transmitted over 802.11-OCB media as QoS Data frames whose format is specified in IEEE 802.11 spec [IEEE-802.11-2016].

The IPv6 packet transmitted on 802.11-OCB are immediately preceded by a Logical Link Control (LLC) header and an 802.11 header. In the LLC header, and in accordance with the EtherType Protocol Discrimination (EPD, see Appendix D), the value of the Type field MUST be set to 0x86DD (IPv6). The mapping to the 802.11 data service SHOULD use a 'priority' value of 1 (QoS with a 'Background' user priority), reserving higher priority values for safety-critical and time-sensitive traffic, including the ones listed in [ETSI-sec-archi].

To simplify the Application Programming Interface (API) between the operating system and the 802.11-OCB media, device drivers MAY implement IPv6-over-Ethernet as per [RFC2464] and then a frame translation from 802.3 to 802.11 in order to minimize the code changes.

4.3. Link-Local Addresses

There are several types of IPv6 addresses [RFC4291], [RFC4193], that may be assigned to an 802.11-OCB interface. Among these types of addresses only the IPv6 link-local addresses can be formed using an EUI-64 identifier, in particular during transition time, (the time spent before an interface starts using a different address than the LL one).

If the IPv6 link-local address is formed using an EUI-64 identifier, then the mechanism of forming that address is the same mechanism as used to form an IPv6 link-local address on Ethernet links. Moreover, whether or not the interface identifier is derived from the EUI-64 identifier, its length is 64 bits as is the case for Ethernet [RFC2464].

4.4. Stateless Autoconfiguration

The steps a host takes in deciding how to autoconfigure its interfaces in IPv6 are described in [RFC4862]. This section describes the formation of Interface Identifiers for IPv6 addresses of type 'Global' or 'Unique Local'. Interface Identifiers for IPv6 address of type 'Link-Local' are discussed in Section 4.3.

The RECOMMENDED method for forming stable Interface Identifiers (IIDs) is described in [RFC8064]. The method of forming IIDs described in Section 4 of [RFC2464] MAY be used during transition
time, in particular for IPv6 link-local addresses. Regardless of how to form the IID, its length is 64 bits, similarly to IPv6 over Ethernet [RFC2464].

The bits in the IID have no specific meaning and the identifier should be treated as an opaque value. The bits ‘Universal’ and ‘Group’ in the identifier of an 802.11-OCB interface are significant, as this is an IEEE link-layer address. The details of this significance are described in [RFC7136].

Semantically opaque IIDs, instead of meaningful IIDs derived from a valid and meaningful MAC address ([RFC2464], Section 4), help avoid certain privacy risks (see the risks mentioned in Section 5.1.1). If semantically opaque IIDs are needed, they may be generated using the method for generating semantically opaque IIDs with IPv6 Stateless Address Autoconfiguration given in [RFC7217]. Typically, an opaque IID is formed starting from identifiers different than the MAC addresses, and from cryptographically strong material. Thus, privacy sensitive information is absent from Interface IDs, because it is impossible to calculate back the initial value from which the Interface ID was first generated.

Some applications that use IPv6 packets on 802.11-OCB links (among other link types) may benefit from IPv6 addresses whose IIDs don’t change too often. It is RECOMMENDED to use the mechanisms described in RFC 7217 to permit the use of Stable IIDs that do not change within one subnet prefix. A possible source for the Net-Iface Parameter is a virtual interface name, or logical interface name, that is decided by a local administrator.

4.5. Address Mapping

Unicast and multicast address mapping MUST follow the procedures specified for Ethernet interfaces specified in Sections 6 and 7 of [RFC2464].

4.5.1. Address Mapping -- Unicast

This document is scoped for Address Resolution (AR) and Duplicate Address Detection (DAD) per [RFC4862].

4.5.2. Address Mapping -- Multicast

The multicast address mapping is performed according to the method specified in section 7 of [RFC2464]. The meaning of the value "3333" mentioned there is defined in section 2.3.1 of [RFC7042].
Transmitting IPv6 packets to multicast destinations over 802.11 links proved to have some performance issues
[I-D.ietf-mboned-ieee802-mcast-problems]. These issues may be exacerbated in OCB mode. A future improvement to this specification should consider solutions for these problems.

4.6. Subnet Structure

When vehicles are in close range, a subnet may be formed over 802.11-OCB interfaces (not by their in-vehicle interfaces). A Prefix List conceptual data structure ([RFC4861] Section 5.1) is maintained for each 802.11-OCB interface.

IPv6 Neighbor Discovery protocol (ND) requires reflexive properties (bidirectional connectivity) which is generally, though not always, the case for P2P OCB links. IPv6 ND also requires transitive properties for DAD and AR, so an IPv6 subnet can be mapped on an OCB network only if all nodes in the network share a single physical broadcast domain. The extension to IPv6 ND operating on a subnet that covers multiple OCB links and not fully overlapping (NBMA) is not in scope. Finally, IPv6 ND requires a permanent connectivity of all nodes in the subnet to defend their addresses, in other words very stable network conditions.

The structure of this subnet is ephemeral, in that it is strongly influenced by the mobility of vehicles: the hidden terminal effects appear; the 802.11 networks in OCB mode may be considered as ‘ad-hoc’ networks with an addressing model as described in [RFC5889]. On another hand, the structure of the internal subnets in each vehicle is relatively stable.

As recommended in [RFC5889], when the timing requirements are very strict (e.g., fast-drive-through IP-RSU coverage), no on-link subnet prefix should be configured on an 802.11-OCB interface. In such cases, the exclusive use of IPv6 link-local addresses is RECOMMENDED.

Additionally, even if the timing requirements are not very strict (e.g., the moving subnet formed by two following vehicles is stable, a fixed IP-RSU is absent), the subnet is disconnected from the Internet (i.e., a default route is absent), and the addressing peers are equally qualified (that is, it is impossible to determine that some vehicle owns and distributes addresses to others) the use of link-local addresses is RECOMMENDED.

The baseline ND protocol [RFC4861] MUST be supported over 802.11-OCB links. Transmitting ND packets may prove to have some performance issues as mentioned in Section 4.5.2, and Appendix I. These issues may be exacerbated in OCB mode. Solutions for these problems should
consider the OCB mode of operation. Future solutions to OCB should consider solutions for avoiding broadcast. The best of current knowledge indicates the kinds of issues that may arise with ND in OCB mode; they are described in Appendix I.

Protocols like Mobile IPv6 [RFC6275], [RFC3963] and DNAv6 [RFC6059], which depend on a timely movement detection, might need additional tuning work to handle the lack of link-layer notifications during handover. This is for further study.

5. Security Considerations

Any security mechanism at the IP layer or above that may be carried out for the general case of IPv6 may also be carried out for IPv6 operating over 802.11-OCB.

The OCB operation does not use existing 802.11 link-layer security mechanisms. There is no encryption applied below the network layer running on 802.11-OCB. At the application layer, the IEEE 1609.2 document [IEEE-1609.2] provides security services for certain applications to use; application-layer mechanisms are out of scope of this document. On another hand, a security mechanism provided at networking layer, such as IPsec [RFC4301], may provide data security protection to a wider range of applications.

802.11-OCB does not provide any cryptographic protection, because it operates outside the context of a BSS (no Association Request/Response, no Challenge messages). Therefore, an attacker can sniff or inject traffic while within range of a vehicle or IP-RSU (by setting an interface card’s frequency to the proper range). Also, an attacker may not heed to legal limits for radio power and can use a very sensitive directional antenna; if attackers wish to attack a given exchange they do not necessarily need to be in close physical proximity. Hence, such a link is less protected than commonly used links (wired link or aforementioned 802.11 links with link-layer security).

Therefore, any node can join a subnet, directly communicate with any nodes on the subnet to include potentially impersonating another node. This design allows for a number of threats outlined in Section 3 of [RFC6959]. While not widely deployed, SeND [RFC3971], [RFC3972] is a solution that can address Spoof-Based Attack Vectors.

5.1. Privacy Considerations

As with all Ethernet and 802.11 interface identifiers ([RFC7721]), the identifier of an 802.11-OCB interface may involve privacy, MAC address spoofing and IP hijacking risks. A vehicle embarking an IP-
OBU whose egress interface is 802.11-OCB may expose itself to eavesdropping and subsequent correlation of data. This may reveal data considered private by the vehicle owner; there is a risk of being tracked. In outdoors public environments, where vehicles typically circulate, the privacy risks are more important than in indoors settings. It is highly likely that attacker sniffers are deployed along routes which listen for IEEE frames, including IP packets, of vehicles passing by. For this reason, in the 802.11-OCB deployments, there is a strong necessity to use protection tools such as dynamically changing MAC addresses Section 5.2, semantically opaque Interface Identifiers and stable Interface Identifiers Section 4.4. An example of change policy is to change the MAC address of the OCB interface each time the system boots up. This may help mitigate privacy risks to a certain level. Furthermore, for privacy concerns, ([RFC8065]) recommends using an address generation scheme rather than addresses generated from a fixed link-layer address. However, there are some specificities related to vehicles. Since roaming is an important characteristic of moving vehicles, the use of the same Link-Local Address over time can indicate the presence of the same vehicle in different places and thus leads to location tracking. Hence, a vehicle should get hints about a change of environment (e.g., engine running, GPS, etc.) and renew the IID in its LLAs.

5.1.1. Privacy Risks of Meaningful info in Interface IDs

The privacy risks of using MAC addresses displayed in Interface Identifiers are important. The IPv6 packets can be captured easily in the Internet and on-link in public roads. For this reason, an attacker may realize many attacks on privacy. One such attack on 802.11-OCB is to capture, store and correlate Company ID information present in MAC addresses of many cars (e.g. listen for Router Advertisements, or other IPv6 application data packets, and record the value of the source address in these packets). Further correlation of this information with other data captured by other means, or other visual information (car color, others) may constitute privacy risks.

5.2. MAC Address and Interface ID Generation

In 802.11-OCB networks, the MAC addresses may change during well defined renumbering events. In the moment the MAC address is changed on an 802.11-OCB interface all the Interface Identifiers of IPv6 addresses assigned to that interface MUST change.

Implementations should use a policy dictating when the MAC address is changed on the 802.11-OCB interface. For more information on the
motivation of this policy please refer to the privacy discussion in Appendix B.

A ‘randomized’ MAC address has the following characteristics:

- Bit "Local/Global" set to "locally administered".
- Bit "Unicast/Multicast" set to "Unicast".
- The 46 remaining bits are set to a random value, using a random number generator that meets the requirements of [RFC4086].

To meet the randomization requirements for the 46 remaining bits, a hash function may be used. For example, the [SHA256] hash function may be used with input a 256 bit local secret, the ’nominal’ MAC Address of the interface, and a representation of the date and time of the renumbering event.

A randomized Interface ID has the same characteristics of a randomized MAC address, except the length in bits.

5.3. Pseudonymization impact on confidentiality and trust

Vehicles ‘and drivers’ privacy relies on pseudonymization mechanisms such as the ones described in Section 5.2. This pseudonymization means that upper-layer protocols and applications SHOULD NOT rely on layer-2 or layer-3 addresses to assume that the other participant can be trusted.

6. IANA Considerations

No request to IANA.

7. Contributors

Christian Huitema, Tony Li.

Romain Kuntz contributed extensively about IPv6 handovers between links running outside the context of a BSS (802.11-OCB links).

Tim Leinmueller contributed the idea of the use of IPv6 over 802.11-OCB for distribution of certificates.

Marios Makassikis, Jose Santa Lozano, Albin Severinson and Alexey Voronov provided significant feedback on the experience of using IP messages over 802.11-OCB in initial trials.
Michelle Wetterwald contributed extensively the MTU discussion, offered the ETSI ITS perspective, and reviewed other parts of the document.

8. Acknowledgements

The authors would like to thank Alexandre Petrescu for initiating this work and for being the lead author until the version 43 of this draft.

The authors would like to thank Pascal Thubert for reviewing, proofreading and suggesting modifications of this document.

The authors would like to thank Mohamed Boucadair for proofreading and suggesting modifications of this document.

The authors would like to thank Eric Vyncke for reviewing suggesting modifications of this document.

The authors would like to thank Witold Klaudel, Ryuji Wakikawa, Emmanuel Baccelli, John Kenney, John Moring, Francois Simon, Dan Romascun, Konstantin Khait, Ralph Droms, Richard 'Dick' Roy, Ray Hunter, Tom Kurihara, Michal Sojka, Jan de Jongh, Suresh Krishnan, Dino Farinacci, Vincent Park, Jaehoon Paul Jeong, Gloria Gwynne, Hans-Joachim Fischer, Russ Housley, Rex Buddenberg, Erik Nordmark, Bob Moskowitz, Andrew Dryden, Georg Mayer, Dorothy Stanley, Sandra Cespedes, Mariano Falcitelli, Sri Gundavelli, Abdussalam Baryun, Margaret Cullen, Erik Kline, Carlos Jesus Bernardos Cano, Ronald in ’t Velt, Katrin Sjoberg, Roland Bless, Tijink Jasja, Kevin Smith, Brian Carpenter, Julian Reschke, Mikael Abrahamsson, Dirk von Hugo, Lorenzo Colitti, Pascal Thubert, Ole Troan, Jinmei Tatuya, Joel Halpern, Eric Gray and William Whyte. Their valuable comments clarified particular issues and generally helped to improve the document.

Pierre Pfister, Rostislav Lisovy, and others, wrote 802.11-OCB drivers for linux and described how.

For the multicast discussion, the authors would like to thank Owen DeLong, Joe Touch, Jen Linkova, Erik Kline, Brian Haberman and participants to discussions in network working groups.

The authors would like to thank participants to the Birds-of-a-Feather "Intelligent Transportation Systems" meetings held at IETF in 2016.

Human Rights Protocol Considerations review by Amelia Andersdotter.
9. References

9.1. Normative References

[IEEE-802.11-2016] "IEEE Standard 802.11-2016 - IEEE Standard for Information Technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Status - Active Standard. Description retrieved freely; the document itself is also freely available, but with some difficulty (requires registration); description and document retrieved on April 8th, 2019, starting from URL https://standards.ieee.org/findstds/standard/802.11-2016.html".

9.2. Informative References

[ETSI-sec-archi]

[I-D.ietf-ipwave-vehicular-networking]

[I-D.ietf-mboned-ieee802-mcast-problems]

[IEEE-1609.2]

[IEEE-1609.3]
[IEEE-1609.4]

[IEEE-802.11p-2010]

RFC 3963, DOI 10.17487/RFC3963, January 2005,

DOI 10.17487/RFC3971, March 2005,

[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,

RFC 6959, DOI 10.17487/RFC6959, May 2013,
Appendix A. 802.11p

The term "802.11p" is an earlier definition. The behaviour of
"802.11p" networks is rolled in the document IEEE Std 802.11-2016.
In that document the term 802.11p disappears. Instead, each 802.11p
feature is conditioned by the IEEE Management Information Base (MIB)
attribute "OCBActivated" [IEEE-802.11-2016]. Whenever OCBActivated
is set to true the IEEE Std 802.11-OCB state is activated. For
example, an 802.11 STA operating outside the context of a basic
service set has the OCBActivated flag set. Such a station, when it
has the flag set, uses a BSS identifier equal to ff:ff:ff:ff:ff:ff.

Appendix B. Aspects introduced by the OCB mode to 802.11

In the IEEE 802.11-OCB mode, all nodes in the wireless range can
directly communicate with each other without involving authentication
or association procedures. In OCB mode, the manner in which channels
are selected and used is simplified compared to when in BSS mode.
Contrary to BSS mode, at link layer, it is necessary to set
statically the same channel number (or frequency) on two stations
that need to communicate with each other (in BSS mode this channel
set operation is performed automatically during 'scanning'). The
manner in which stations set their channel number in OCB mode is not
specified in this document. Stations STA1 and STA2 can exchange IP
packets only if they are set on the same channel. At IP layer, they
then discover each other by using the IPv6 Neighbor Discovery
protocol. The allocation of a particular channel for a particular
use is defined statically in standards authored by ETSI (in Europe),
FCC in America, and similar organisations in South Korea, Japan and
other parts of the world.

Briefly, the IEEE 802.11-OCB mode has the following properties:
The use by each node of a ‘wildcard’ BSSID (i.e., each bit of the BSSID is set to 1)
No IEEE 802.11 Beacon frames are transmitted
No authentication is required in order to be able to communicate
No association is needed in order to be able to communicate
No encryption is provided in order to be able to communicate
Flag dot11OCBActivated is set to true

All the nodes in the radio communication range (IP-OBU and IP-RSU) receive all the messages transmitted (IP-OBU and IP-RSU) within the radio communications range. The eventual conflict(s) are resolved by the MAC CDMA function.

The message exchange diagram in Figure 1 illustrates a comparison between traditional 802.11 and 802.11 in OCB mode. The ‘Data’ messages can be IP packets such as HTTP or others. Other 802.11 management and control frames (non IP) may be transmitted, as specified in the 802.11 standard. For information, the names of these messages as currently specified by the 802.11 standard are listed in Appendix F.

STA AP STA1 STA2
<------- Beacon -------> | |<------ Data -------->|
---- Probe Req. -------> | |<------ Data -------->|
<---- Probe Res. -------> | |<------ Data -------->|
---- Auth Req. -------> | |<------ Data -------->|
<---- Auth Res. -------> | |<------ Data -------->|
---- Asso Req. -------> | |<------ Data -------->|
<---- Asso Res. -------> | |<------ Data -------->|
<------ Data --------> | |<------ Data -------->|
<------ Data --------> | |<------ Data -------->|

(i) 802.11 Infrastructure mode (ii) 802.11-OCB mode

Figure 1: Difference between messages exchanged on 802.11 (left) and 802.11-OCB (right)
The interface 802.11-OCB was specified in IEEE Std 802.11p (TM) -2010 [IEEE-802.11p-2010] as an amendment to IEEE Std 802.11 (TM) -2007, titled "Amendment 6: Wireless Access in Vehicular Environments". Since then, this amendment has been integrated in IEEE 802.11(TM) -2012 and -2016 [IEEE-802.11-2016].

In document 802.11-2016, anything qualified specifically as "OCBActivated", or "outside the context of a basic service" set to be true, then it is actually referring to OCB aspects introduced to 802.11.

In order to delineate the aspects introduced by 802.11-OCB to 802.11, we refer to the earlier [IEEE-802.11p-2010]. The amendment is concerned with vehicular communications, where the wireless link is similar to that of Wireless LAN (using a PHY layer specified by 802.11a/b/g/n), but which needs to cope with the high mobility factor inherent in scenarios of communications between moving vehicles, and between vehicles and fixed infrastructure deployed along roads. While ‘p’ is a letter identifying the Amendment, just like ‘a, b, g’, and ‘n’ are, ‘p’ is concerned more with MAC modifications, and a little with PHY modifications; the others are mainly about PHY modifications. It is possible in practice to combine a ‘p’ MAC with an ‘a’ PHY by operating outside the context of a BSS with OFDM at 5.4GHz and 5.9GHz.

The 802.11-OCB links are specified to be compatible as much as possible with the behaviour of 802.11a/b/g/n and future generation IEEE WLAN links. From the IP perspective, an 802.11-OCB MAC layer offers practically the same interface to IP as the 802.11a/b/g/n and 802.3. A packet sent by an IP-OBU may be received by one or multiple IP-RSUs. The link-layer resolution is performed by using the IPv6 Neighbor Discovery protocol.

To support this similarity statement (IPv6 is layered on top of LLC on top of 802.11-OCB, in the same way that IPv6 is layered on top of LLC on top of 802.11a/b/g/n (for WLAN) or layered on top of LLC on top of 802.3 (for Ethernet)) it is useful to analyze the differences between 802.11-OCB and 802.11 specifications. During this analysis, we note that whereas 802.11-OCB lists relatively complex and numerous changes to the MAC layer (and very little to the PHY layer), there are only a few characteristics which may be important for an implementation transmitting IPv6 packets on 802.11-OCB links.

The most important 802.11-OCB point which influences the IPv6 functioning is the OCB characteristic; an additional, less direct influence, is the maximum bandwidth afforded by the PHY modulation/demodulation methods and channel access specified by 802.11-OCB. The maximum bandwidth theoretically possible in 802.11-OCB is 54 Mbit/s.
(when using, for example, the following parameters: 20 MHz channel; modulation 64-QAM; coding rate R is 3/4); in practice of IP-over-802.11-OCB a commonly observed figure is 12Mbit/s; this bandwidth allows the operation of a wide range of protocols relying on IPv6.

- **Operation Outside the Context of a BSS (OCB):** the (earlier 802.11p) 802.11-OCB links are operated without a Basic Service Set (BSS). This means that the frames IEEE 802.11 Beacon, Association Request/Response, Authentication Request/Response, and similar, are not used. The used identifier of BSS (BSSID) has a hexadecimal value always 0xffffffffffff (48 '1' bits, represented as MAC address ff:ff:ff:ff:ff:ff, or otherwise the 'wildcard' BSSID), as opposed to an arbitrary BSSID value set by administrator (e.g. 'My-Home-AccessPoint'). The OCB operation – namely the lack of beacon-based scanning and lack of authentication – should be taken into account when the Mobile IPv6 protocol [RFC6275] and the protocols for IP layer security [RFC4301] are used. The way these protocols adapt to OCB is not described in this document.

- **Timing Advertisement:** is a new message defined in 802.11-OCB, which does not exist in 802.11a/b/g/n. This message is used by stations to inform other stations about the value of time. It is similar to the time as delivered by a GNSS system (Galileo, GPS, ...) or by a cellular system. This message is optional for implementation.

- **Frequency range:** this is a characteristic of the PHY layer, with almost no impact on the interface between MAC and IP. However, it is worth considering that the frequency range is regulated by a regional authority (ARCEP, ECC/CEPT based on ENs from ETSI, FCC, etc.); as part of the regulation process, specific applications are associated with specific frequency ranges. In the case of 802.11-OCB, the regulator associates a set of frequency ranges, or slots within a band, to the use of applications of vehicular communications, in a band known as "5.9GHz". The 5.9GHz band is different from the 2.4GHz and 5GHz bands used by Wireless LAN. However, as with Wireless LAN, the operation of 802.11-OCB in "5.9GHz" bands is exempt from owning a license in EU (in US the 5.9GHz is a licensed band of spectrum; for the fixed infrastructure an explicit FCC authorization is required; for an on-board device a 'licensed-by-rule' concept applies: rule certification conformity is required.) Technical conditions are different than those of the bands "2.4GHz" or "5GHz". The allowed power levels, and implicitly the maximum allowed distance between vehicles, is of 33dBm for 802.11-OCB (in Europe), compared to 20 dBm for Wireless LAN 802.11a/b/g/n; this leads to a maximum distance of approximately 1km, compared to approximately 50m.
Additionally, specific conditions related to congestion avoidance, jamming avoidance, and radar detection are imposed on the use of DSRC (in US) and on the use of frequencies for Intelligent Transportation Systems (in EU), compared to Wireless LAN (802.11a/b/g/n).

- "Half-rate" encoding: as the frequency range, this parameter is related to PHY, and thus has not much impact on the interface between the IP layer and the MAC layer.

- In vehicular communications using 802.11-OCB links, there are strong privacy requirements with respect to addressing. While the 802.11-OCB standard does not specify anything in particular with respect to MAC addresses, in these settings there exists a strong need for dynamic change of these addresses (as opposed to the non-vehicular settings - real wall protection - where fixed MAC addresses do not currently pose some privacy risks). This is further described in Section 5. A relevant function is described in documents IEEE 1609.3-2016 [IEEE-1609.3] and IEEE 1609.4-2016 [IEEE-1609.4].

Appendix C. Changes Needed on a software driver 802.11a to become a 802.11-OCB driver

The 802.11p amendment modifies both the 802.11 stack’s physical and MAC layers but all the induced modifications can be quite easily obtained by modifying an existing 802.11a ad-hoc stack.

Conditions for a 802.11a hardware to be 802.11-OCB compliant:

- The PHY entity shall be an orthogonal frequency division multiplexing (OFDM) system. It must support the frequency bands on which the regulator recommends the use of ITS communications, for example using IEEE 802.11-OCB layer, in France: 5875MHz to 5925MHz.

- The OFDM system must provide a "half-clocked" operation using 10 MHz channel spacings.

- The chip transmit spectrum mask must be compliant to the "Transmit spectrum mask" from the IEEE 802.11p amendment (but experimental environments tolerate otherwise).

- The chip should be able to transmit up to 44.8 dBm when used by the US government in the United States, and up to 33 dBm in Europe; other regional conditions apply.

Changes needed on the network stack in OCB mode:
Physical layer:

* The chip must use the Orthogonal Frequency Multiple Access (OFDM) encoding mode.
* The chip must be set in half-mode rate mode (the internal clock frequency is divided by two).
* The chip must use dedicated channels and should allow the use of higher emission powers. This may require modifications to the local computer file that describes regulatory domains rules, if used by the kernel to enforce local specific restrictions. Such modifications to the local computer file must respect the location-specific regulatory rules.

MAC layer:

* All management frames (beacons, join, leave, and others) emission and reception must be disabled except for frames of subtype Action and Timing Advertisement (defined below).
* No encryption key or method must be used.
* Packet emission and reception must be performed as in ad-hoc mode, using the wildcard BSSID (ff:ff:ff:ff:ff:ff).
* The functions related to joining a BSS (Association Request/Response) and for authentication (Authentication Request/Reply, Challenge) are not called.
* The beacon interval is always set to 0 (zero).
* Timing Advertisement frames, defined in the amendment, should be supported. The upper layer should be able to trigger such frames emission and to retrieve information contained in received Timing Advertisements.

Appendix D. Protocol Layering

A more theoretical and detailed view of layer stacking, and interfaces between the IP layer and 802.11-OCB layers, is illustrated in Figure 2. The IP layer operates on top of the EtherType Protocol Discrimination (EPD); this Discrimination layer is described in IEEE Std 802.3-2012; the interface between IPv6 and EPD is the LLC_SAP (Link Layer Control Service Access Point).
Figure 2: EtherType Protocol Discrimination

Appendix E. Design Considerations

The networks defined by 802.11-OCB are in many ways similar to other networks of the 802.11 family. In theory, the transportation of IPv6 over 802.11-OCB could be very similar to the operation of IPv6 over other networks of the 802.11 family. However, the high mobility, strong link asymmetry and very short connection makes the 802.11-OCB link significantly different from other 802.11 networks. Also, the automotive applications have specific requirements for reliability, security and privacy, which further add to the particularity of the 802.11-OCB link.

Appendix F. IEEE 802.11 Messages Transmitted in OCB mode

For information, at the time of writing, this is the list of IEEE 802.11 messages that may be transmitted in OCB mode, i.e. when dot11OCBActivated is true in a STA:

- The STA may send management frames of subtype Action and, if the STA maintains a TSF Timer, subtype Timing Advertisement;
- The STA may send control frames, except those of subtype PS-Poll, CF-End, and CF-End plus CFAck;
- The STA MUST send data frames of subtype QoS Data.
Appendix G. Examples of Packet Formats

This section describes an example of an IPv6 Packet captured over a IEEE 802.11-OCB link.

By way of example we show that there is no modification in the headers when transmitted over 802.11-OCB networks - they are transmitted like any other 802.11 and Ethernet packets.

We describe an experiment of capturing an IPv6 packet on an 802.11-OCB link. In topology depicted in Figure 3, the packet is an IPv6 Router Advertisement. This packet is emitted by a Router on its 802.11-OCB interface. The packet is captured on the Host, using a network protocol analyzer (e.g. Wireshark); the capture is performed in two different modes: direct mode and 'monitor' mode. The topology used during the capture is depicted below.

The packet is captured on the Host. The Host is an IP-OBU containing an 802.11 interface in format PCI express (an ITRI product). The kernel runs the ath5k software driver with modifications for OCB mode. The capture tool is Wireshark. The file format for save and analyze is ‘pcap’. The packet is generated by the Router. The Router is an IP-RSU (ITRI product).

--- | Router | 802.11-OCB Link | Host |
\---+\---+\---+\---+

Figure 3: Topology for capturing IP packets on 802.11-OCB

During several capture operations running from a few moments to several hours, no message relevant to the BSSID contexts were captured (no Association Request/Response, Authentication Req/Resp, Beacon). This shows that the operation of 802.11-OCB is outside the context of a BSSID.

Overall, the captured message is identical with a capture of an IPv6 packet emitted on a 802.11b interface. The contents are precisely similar.
G.1. Capture in Monitor Mode

The IPv6 RA packet captured in monitor mode is illustrated below. The radio tap header provides more flexibility for reporting the characteristics of frames. The Radiotap Header is prepended by this particular stack and operating system on the Host machine to the RA packet received from the network (the Radiotap Header is not present on the air). The implementation-dependent Radiotap Header is useful for piggybacking PHY information from the chip’s registers as data in a packet understandable by userland applications using Socket interfaces (the PHY interface can be, for example: power levels, data rate, ratio of signal to noise).

The packet present on the air is formed by IEEE 802.11 Data Header, Logical Link Control Header, IPv6 Base Header and ICMPv6 Header.

Radiotap Header v0

+-----------------+-----------------+-----------------+-----------------+
| Header Revision | Header Pad | Header length |
+-----------------+-----------------+-----------------+
| | | |
+-----------------+-----------------+-----------------+
| Present flags | | |
+-----------------+-----------------+-----------------+
| Data Rate | Pad | |
+-----------------+-----------------+-----------------+

IEEE 802.11 Data Header

+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| Type/Subtype and Frame Ctrl | Duration |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| Receiver Address... |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| ... Receiver Address | Transmitter Address... |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| ... Transmitter Address |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| ... BSS Id... |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| ... BSS Id | Frag Number and Seq Number |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+

Logical-Link Control Header

+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| DSAP |I| SSAP |C| Control field | Org. code... |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| ... Organizational Code | Type |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
The value of the Data Rate field in the Radiotap header is set to 6 Mb/s. This indicates the rate at which this RA was received.

The value of the Transmitter address in the IEEE 802.11 Data Header is set to a 48bit value. The value of the destination address is 33:33:00:00:00:1 (all-nodes multicast address). The value of the BSS Id field is ff:ff:ff:ff:ff:ff, which is recognized by the network protocol analyzer as being "broadcast". The Fragment number and sequence number fields are together set to 0x90C6.
The value of the Organization Code field in the Logical-Link Control Header is set to 0x0, recognized as "Encapsulated Ethernet". The value of the Type field is 0x86DD (hexadecimal 86DD, or otherwise #86DD), recognized as "IPv6".

A Router Advertisement is periodically sent by the router to multicast group address ff02::1. It is an icmp packet type 134. The IPv6 Neighbor Discovery’s Router Advertisement message contains an 8-bit field reserved for single-bit flags, as described in [RFC4861].

The IPv6 header contains the link local address of the router (source) configured via EUI-64 algorithm, and destination address set to ff02::1.

The Ethernet Type field in the logical-link control header is set to 0x86dd which indicates that the frame transports an IPv6 packet. In the IEEE 802.11 data, the destination address is 33:33:00:00:00:01 which is the corresponding multicast MAC address. The BSS id is a broadcast address of ff:ff:ff:ff:ff:ff. Due to the short link duration between vehicles and the roadside infrastructure, there is no need in IEEE 802.11-OCB to wait for the completion of association and authentication procedures before exchanging data. IEEE 802.11-OCB enabled nodes use the wildcard BSSID (a value of all 1s) and may start communicating as soon as they arrive on the communication channel.

G.2. Capture in Normal Mode

The same IPv6 Router Advertisement packet described above (monitor mode) is captured on the Host, in the Normal mode, and depicted below.
One notices that the Radiotap Header, the IEEE 802.11 Data Header and the Logical-Link Control Headers are not present. On the other hand, a new header named Ethernet II Header is present.

The Destination and Source addresses in the Ethernet II header contain the same values as the fields Receiver Address and Transmitter Address present in the IEEE 802.11 Data Header in the "monitor" mode capture.

The value of the Type field in the Ethernet II header is 0x86DD (recognized as "IPv6"); this value is the same value as the value of the field Type in the Logical-Link Control Header in the "monitor" mode capture.

The knowledgeable experimenter will no doubt notice the similarity of this Ethernet II Header with a capture in normal mode on a pure Ethernet cable interface.

A frame translation is inserted on top of a pure IEEE 802.11 MAC layer, in order to adapt packets, before delivering the payload data to the applications. It adapts 802.11 LLC/MAC headers to Ethernet II headers. In further detail, this adaptation consists in the elimination of the Radiotap, 802.11 and LLC headers, and in the insertion of the Ethernet II header. In this way, IPv6 runs straight over LLC over the 802.11-OCB MAC layer; this is further confirmed by the use of the unique Type 0x86DD.

Appendix H. Extra Terminology

The following terms are defined outside the IETF. They are used to define the main terms in the main terminology Section 2.

DSRC (Dedicated Short Range Communication): a term defined outside the IETF. The US Federal Communications Commission (FCC) Dedicated Short Range Communication (DSRC) is defined in the Code of Federal Regulations (CFR) 47, Parts 90 and 95. This Code is referred in the definitions below. At the time of the writing of this Internet Draft, the last update of this Code was dated October 1st, 2010.

DSRCS (Dedicated Short-Range Communications Services): a term defined outside the IETF. The use of radio techniques to transfer data over short distances between roadside and mobile units, between mobile units, and between portable and mobile units to perform operations related to the improvement of traffic flow, traffic safety, and other intelligent transportation service applications in a variety of environments. DSRCS systems may also transmit status and instructional messages related to the units involve. [Ref. 47 CFR 90.7 - Definitions]
OBU (On-Board Unit): a term defined outside the IETF. An On-Board Unit is a DSRC transceiver that is normally mounted in or on a vehicle, or which in some instances may be a portable unit. An OBU can be operational while a vehicle or person is either mobile or stationary. The OBUs receive and contend for time to transmit on one or more radio frequency (RF) channels. Except where specifically excluded, OBU operation is permitted wherever vehicle operation or human passage is permitted. The OBUs mounted in vehicles are licensed by rule under part 95 of the respective chapter and communicate with Roadside Units (RSUs) and other OBUs. Portable OBUs are also licensed by rule under part 95 of the respective chapter. OBU operations in the Unlicensed National Information Infrastructure (UNII) Bands follow the rules in those bands. - [CFR 90.7 - Definitions].

RSU (Road-Side Unit): a term defined outside of IETF. A Roadside Unit is a DSRC transceiver that is mounted along a road or pedestrian passageway. An RSU may also be mounted on a vehicle or is hand carried, but it may only operate when the vehicle or hand-carried unit is stationary. Furthermore, an RSU operating under the respective part is restricted to the location where it is licensed to operate. However, portable or hand-held RSUs are permitted to operate where they do not interfere with a site-licensed operation. A RSU broadcasts data to OBUs or exchanges data with OBUs in its communications zone. An RSU also provides channel assignments and operating instructions to OBUs in its communications zone, when required. - [CFR 90.7 - Definitions].

Appendix I. Neighbor Discovery (ND) Potential Issues in Wireless Links

IPv6 Neighbor Discovery (IPv6 ND) [RFC4861][RFC4862] was designed for point-to-point and transit links such as Ethernet, with the expectation of a cheap and reliable support for multicast from the lower layer. Section 3.2 of RFC 4861 indicates that the operation on Shared Media and on non-broadcast multi-access (NBMA) networks require additional support, e.g., for Address Resolution (AR) and duplicate address detection (DAD), which depend on multicast. An infrastructureless radio network such as OCB shares properties with both Shared Media and NBMA networks, and then adds its own complexity, e.g., from movement and interference that allow only transient and non-transitive reachability between any set of peers.

The uniqueness of an address within a scoped domain is a key pillar of IPv6 and the base for unicast IP communication. RFC 4861 details the DAD method to avoid that an address is duplicated. For a link local address, the scope is the link, whereas for a Globally Reachable address the scope is much larger. The underlying assumption for DAD to operate correctly is that the node that owns an
IPv6 address can reach any other node within the scope at the time it claims its address, which is done by sending a NS multicast message, and can hear any future claim for that address by another party within the scope for the duration of the address ownership.

In the case of OCB, there is a potentially a need to define a scope that is compatible with DAD, and that cannot be the set of nodes that a transmitter can reach at a particular time, because that set varies all the time and does not meet the DAD requirements for a link local address that could possibly be used anytime, anywhere. The generic expectation of a reliable multicast is not ensured, and the operation of DAD and AR (Address Resolution) as specified by RFC 4861 cannot be guaranteed. Moreover, multicast transmissions that rely on broadcast are not only unreliable but are also often detrimental to unicast traffic (see [draft-ietf-mboned-ieee802-mcast-problems]).

Early experience indicates that it should be possible to exchange IPv6 packets over OCB while relying on IPv6 ND alone for DAD and AR (Address Resolution) in good conditions. In the absence of a correct DAD operation, a node that relies only on IPv6 ND for AR and DAD over OCB should ensure that the addresses that it uses are unique by means others than DAD. It must be noted that deriving an IPv6 address from a globally unique MAC address has this property but may yield privacy issues.

RFC 8505 provides a more recent approach to IPv6 ND and in particular DAD. RFC 8505 is designed to fit wireless and otherwise constrained networks whereby multicast and/or continuous access to the medium may not be guaranteed. RFC 8505 Section 5.6 "Link-Local Addresses and Registration" indicates that the scope of uniqueness for a link local address is restricted to a pair of nodes that use it to communicate, and provides a method to assert the uniqueness and resolve the link-Layer address using a unicast exchange.

RFC 8505 also enables a router (acting as a 6LR) to own a prefix and act as a registrar (acting as a 6LBR) for addresses within the associated subnet. A peer host (acting as a 6LN) registers an address derived from that prefix and can use it for the lifetime of the registration. The prefix is advertised as not onlink, which means that the 6LN uses the 6LR to relay its packets within the subnet, and participation to the subnet is constrained to the time of reachability to the 6LR. Note that RSU that provides internet connectivity MAY announce a default router preference [RFC4191], whereas a car that does not provide that connectivity MUST NOT do so. This operation presents similarities with that of an access point, but at Layer-3. This is why RFC 8505 well-suited for wireless in general.
Support of RFC 8505 may be implemented on OCB. OCB nodes that support RFC 8505 SHOULD support the 6LN operation in order to act as a host, and may support the 6LR and 6LBR operations in order to act as a router and in particular own a prefix that can be used by RFC 8505-compliant hosts for address autoconfiguration and registration.

Authors’ Addresses

Nabil Benamar
Moulay Ismail University of Meknes
Morocco

Phone: +212670832236
Email: n.benamar@est.umi.ac.ma

Jerome Haerri
Eurecom
Sophia-Antipolis 06904
France

Phone: +33493008134
Email: Jerome.Haerri@eurecom.fr

Jong-Hyok Lee
Sangmyung University
31, Sangmyeongdae-gil, Dongnam-gu
Cheonan 31066
Republic of Korea

Email: jonghyouk@smu.ac.kr

Thierry Ernst
YoGoKo
France

Email: thierry.ernst@yogoko.fr
Abstract

This document provides a problem statement for IP Wireless Access in Vehicular Environments (IPWAVE), that is, vehicular networks. This document addresses the extension of IPv6 as the network layer protocol in vehicular networks. It deals with networking issues in one-hop communication between a Road-Side Unit (RSU) and a vehicle, that is, "vehicle-to-infrastructure" (V2I) communication. It also deals with one-hop communication between two neighboring vehicles, that is, "vehicle-to-vehicle" (V2V) communication. Major issues about IPv6 in vehicular networks include neighbor discovery protocol, stateless address autoconfiguration, and DNS configuration for Internet connectivity. When a vehicle and an RSU have an internal network (respectively), the document discusses internetworking issues between two internal networks through either V2I or V2V communication. Those issues include prefix discovery, prefix exchange, service discovery, security, and privacy.

Status of This Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction ... 3
2. Requirements Language 4
3. Terminology ... 4
4. Overview .. 5
5. Internetworking between Vehicle Network and RSU Network ... 6
 5.1. V2I-Based Internetworking 6
 5.2. The Use Cases of V2I-Based Internetworking 7
6. Internetworking between Two Vehicle Networks 8
 6.1. V2V-Based Internetworking 8
 6.2. The Use Cases of V2V-Based Internetworking 9
7. IPv6 Addressing .. 10
8. Neighbor Discovery 10
9. IP Address Autoconfiguration 11
10. DNS Naming Service 11
11. IP Mobility Management 12
12. Service Discovery 12
13. Security Considerations 13
14. Contributors .. 13
15. Acknowledgments .. 13
16. References ... 14
 16.1. Normative References 14
 16.2. Informative References 15
1. Introduction

Recently, Vehicular Ad Hoc Networks (VANET) have been focusing on intelligent services in road networks, such as driving safety, efficient driving, and entertainment. For VANET, Dedicated Short-Range Communications (DSRC) [DSRC-WAVE] was standardized as Wireless Access in Vehicular Environments (WAVE) standards by IEEE. The WAVE standards include IEEE 802.11p [IEEE-802.11p] for WAVE Media Access Control (MAC) and Physical Layer (PHY), IEEE 1609.0 for WAVE architecture [WAVE-1609.0], IEEE 1609.2 for WAVE security services [WAVE-1609.2], IEEE 1609.3 for WAVE networking services [WAVE-1609.3], and IEEE 1609.4 for WAVE multi-channel operation [WAVE-1609.4]. 802.11p extends IEEE 802.11a [IEEE-802.11a] by consideration of vehicular characteristics such as a vehicle’s velocity and collision avoidance. IEEE 802.11p has been published as IEEE 802.11 Outside the Context of a Basic Service Set (OCB) [IEEE-802.11-OCB] in 2012.

Now the deployment of VANET is indicated in real road environments along with the popularity of smart devices (e.g., smartphone and tablet). Many automobile vendors (e.g., Benz, BMW, Ford, Honda, and Toyota) now consider automobiles as computer systems instead of mechanical machines, since many current vehicles are operating with many sensors and software. Google has advanced self-driving vehicles with many special software modules and hardware devices to support computer-vision-based object recognition, machine-learning-based decision-making, and GPS navigation.

Vehicular networking research is enabling vehicles to communicate with each other and infrastructure nodes in the Internet by using TCP/IP, IP address autoconfiguration, routing, handover, and mobility management [ID-VN-Survey]. IPv6 [RFC2460] is suitable for vehicular networks since the protocol has abundant address space and autoconfiguration features, and can be extended by way of new protocol headers.

This document identifies issues of IPv6-based vehicle-to-infrastructure (V2I) networking and vehicle-to-vehicle (V2V) networking, such as IPv6 addressing [RFC4291], neighbor discovery [RFC4861], address autoconfiguration [RFC4862], and DNS naming service [RFC8106][RFC3646][ID-DNSNA]. This document also identifies issues of internetworking between two internal networks when a vehicle and/or an RSU have an internal network. Those issues include prefix discovery, prefix exchange, and service discovery in the inter-connected internal networks. In addition, the document analyzes the characteristics of vehicular networks to consider the design of V2I or V2V networking.
2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Terminology

This document uses the terminology described in [RFC4861] and [RFC4862]. In addition, five new terms are defined below:

- **Road-Side Unit (RSU):** A node that has a wireless communication device (e.g., DSRC) to communicate with vehicles and is connected to the Internet as a router or switch for packet forwarding. An RSU is deployed either at an intersection or in a road segment.

- **On-Board Unit (OBU):** A node that has a wireless communication device (e.g., DSRC) to communicate with other OBUs and RSUs. An OBU is mounted on a vehicle. It is assumed that a radio navigation receiver (e.g., Global Positioning System (GPS)) is included in a vehicle with an OBU for efficient navigation.

- **Fixed Network:** An RSU can have an internal network consisting of multiple subnets. This internal network is a fixed network since the RSU is fixed in the road network.

- **Moving Network:** A vehicle can have an internal network consisting of multiple subnets. This internal network is called a moving network since the vehicle is moving in the road network.

- **Traffic Control Center (TCC):** A node that maintains road infrastructure information (e.g., RSUs, traffic signals, and loop detectors), vehicular traffic statistics (e.g., average vehicle speed and vehicle inter-arrival time per road segment), and vehicle information (e.g., a vehicle’s identifier, position, direction, speed, and trajectory as a navigation path). TCC is included in a vehicular cloud for vehicular networks. Exemplary functions of TCC include the management of evacuation routes, the monitoring of pedestrians and bike traffic, the monitoring of real-time transit operations, and real-time responsive traffic signal systems. Thus, TCC is the nerve center of most freeway management systems such that data is collected, processed, and fused with other operational and control data, and is also synthesized to produce "information" distributed to stakeholders, other agencies, and traveling public. TCC is called Traffic Management Center (TMC) in the US. TCC can communicate with road infrastructure nodes (e.g., RSUs, traffic signals, and loop detectors) to share measurement data and management information by
4. Overview

This document provides a problem statement of IPv6-based V2I and V2V networking. The main focus is one-hop networking between a vehicle and an RSU or between two neighboring vehicles. However, this document does not address all multi-hop networking scenarios of vehicles and RSUs. Also, the problems focus on the network layer (i.e., IPv6 protocol stack) rather than the MAC layer and the transport layer (e.g., TCP, UDP, and SCTP).

Figure 1 shows a network configuration for V2I and V2V networking in a road network. The two RSUs (RSU1 and RSU2) are deployed in the road network and are connected to a Vehicular Cloud through the Internet. TCC is connected to the Vehicular Cloud and the two vehicles (Vehicle1 and Vehicle2) are wirelessly connected to RSU1, and the last vehicle (Vehicle3) is wirelessly connected to RSU2. Vehicle1 can communicate with Vehicle2 via V2V communication, and Vehicle2 can communicate with Vehicle3 via V2V communication. Vehicle1 can communicate with Vehicle3 via RSU1 and RSU2 via V2I communication.

Figure 1: The Network Configuration for Vehicular Networking
5. Internetworking between Vehicle Network and RSU Network

This section discusses the internetworking between a vehicle’s moving network and an RSU’s fixed network.

5.1. V2I-Based Internetworking

As shown in Figure 2, the vehicle’s moving network and the RSU’s fixed network are internal networks having multiple subnets and having an edge router for the communication with another vehicle or RSU. The method of prefix assignment for each subnet inside the vehicle’s mobile network and the RSU’s fixed network is out of scope for this document. The internetworking between two internal networks via either V2I or V2V communication requires an exchange of network prefix and other parameters.

The network parameter discovery collects networking information for an IP communication between a vehicle and an RSU or between two neighboring vehicles, such as link layer, MAC layer, and IP layer information. The link layer information includes wireless link layer parameters, such as wireless media (e.g., IEEE 802.11 OCB, LTE D2D, Bluetooth, and LiFi) and a transmission power level. The MAC layer information includes the MAC address of an external network interface for the internetworking with another vehicle or RSU. The IP layer information includes the IP address and prefix of an external network interface for the internetworking with another vehicle or RSU.

Once the network parameter discovery and prefix exchange operations are performed, unicast of packets can be supported between the vehicle’s moving network and the RSU’s fixed network. The DNS naming service should be supported for the DNS name resolution for hosts or servers residing either in the vehicle’s moving network or the RSU’s fixed network.

Figure 2 shows internetworking between the vehicle’s moving network and the RSU’s fixed network. There exists an internal network (Moving Network1) inside Vehicle1. Vehicle1 has the DNS Server (RDNSS1), the two hosts (Host1 and Host2), and the two routers (Router1 and Router2). There exists another internal network (Fixed Network1) inside RSU1. RSU1 has the DNS Server (RDNSS2), one host (Host3), the two routers (Router3 and Router4), and the collection of servers (Server1 to ServerN) for various services in the road networks, such as the emergency notification and navigation. Vehicle1’s Router1 and RSU1’s Router3 use 2001:DB8:1:1::/64 for an external link (e.g., DSRC) for I2V networking.

This document addresses the internetworking between the vehicle’s moving network and the RSU’s fixed network in Figure 2 and the
required enhancement of IPv6 protocol suite for the V2I networking service.

Figure 2: Internetworking between Vehicle Network and RSU Network

5.2. The Use Cases of V2I-Based Internetworking

The use cases of V2I networking include navigation service, fuel-efficient speed recommendation service, and accident notification service.

A navigation service, such as Self-Adaptive Interactive Navigation Tool (called SAINT) [SAINT], using V2I networking interacts with TCC for the global road traffic optimization and can guide individual vehicles for appropriate navigation paths in real time. The enhanced SAINT (called SAINT+) [SAINTplus] can give the fast moving paths for emergency vehicles (e.g., ambulance and fire engine) toward accident spots while providing efficient detour paths to vehicles around the accidents spots.

The emergency communication between accident vehicles (or emergency
vehicles) and TCC can be performed via either RSU or 4G-LTE networks. The First Responder Network Authority (FirstNet) [FirstNet] is provided by the US government to establish, operate, and maintain an interoperable public safety broadband network for safety and security network services, such as emergency calls. The current RAN is mainly constructed by 4G-LTE, but DSRC-based vehicular networks can be used in near future.

A pedestrian protection service, such as Safety-Aware Navigation Application (called SANA) [SANA], using V2I networking can reduce the collision of a pedestrian and a vehicle, which have a smartphone, in a road network. Vehicles and pedestrians can communicate with each other via an RSU that delivers scheduling information for wireless communication to save the smartphones' battery.

6. Internetworking between Two Vehicle Networks

This section discusses the internetworking between the moving networks of two neighboring vehicles.

6.1. V2V-Based Internetworking

In Figure 3, the prefix assignment for each subnet inside each vehicle's mobile network is done through a prefix delegation protocol.
Figure 3 shows internetworking between the moving networks of two neighboring vehicles. There exists an internal network (Moving Network1) inside Vehicle1. Vehicle1 has the DNS Server (RDNSS1), the two hosts (Host1 and Host2), and the two routers (Router1 and Router2). There exists another internal network (Moving Network2) inside Vehicle2. Vehicle2 has the DNS Server (RDNSS2), the two hosts (Host3 and Host4), and the two routers (Router3 and Router4). Vehicle1’s Router1 and Vehicle2’s Router3 use 2001:DB8:1:1::/64 for an external link (e.g., DSRC) for V2V networking.

This document describes the internetworking between the moving networks of two neighboring vehicles in Figure 3 and the required enhancement of IPv6 protocol suite for the V2V networking service.

6.2. The Use Cases of V2V-Based Internetworking

The use cases of V2V networking include context-aware navigator for driving safety, cooperative adaptive cruise control in an urban roadway, and platooning in a highway. These are three techniques
that will be important elements for self-driving.

Context-Aware Safety Driving (CASD) navigator [CASD] can help drivers to drive safely by letting the drivers recognize dangerous obstacles and situations, including neighboring vehicles that might cause a collision.

Cooperative Adaptive Cruise Control (CACC) [CA-Cruise-Control] helps vehicles to adapt their speed autonomously according to the mobility of their predecessor and successor vehicles in an urban roadway or a highway.

Platooning [Truck-Platooning] allows a series of vehicles (e.g., trucks) to move together with a very short inter-distance. This platooning can maximize the throughput of vehicular traffic in a highway.

7. IPv6 Addressing

This section discusses IP addressing for the V2I and V2V networking. There are two approaches for IPv6 addressing in vehicular networks. The first is to use unique local IPv6 unicast addresses (ULAs) for vehicular networks [RFC4193]. The other is to use global IPv6 addresses for the interoperability with the Internet [RFC4291]. The former approach is often used by Mobile Ad Hoc Networks (MANET) for an isolated subnet. This approach can support the emergency notification service and navigation service in road networks. However, for general Internet services (e.g., email access, web surfing and entertainment services), the latter approach is required.

For global IP addresses, there are two choices: a multi-link subnet approach for multiple RSUs and a single subnet approach per RSU. In the multi-link subnet approach, which is similar to ULA for MANET, RSUs play a role of layer-2 (L2) switches and the router interconnected with the RSUs is required. The router maintains the location of each vehicle belonging to an RSU for L2 switching. In the single subnet approach per RSU, which is similar to the legacy subnet in the Internet, each RSU plays the role of a (layer-3) router.

8. Neighbor Discovery

Neighbor Discovery (ND) is a core part of IPv6 protocol suite [RFC4861]. This section discusses an extension of ND for V2I networking. The vehicles are moving fast within the communication coverage of an RSU. The external link between the vehicle and the RSU can be used for V2I networking, as shown in Figure 2.
ND time-related parameters such as router lifetime and Neighbor Advertisement (NA) interval should be adjusted for high-speed vehicles and vehicle density. As vehicles move faster, the NA interval should decrease for the NA messages to reach the neighboring vehicles promptly. Also, as vehicle density is higher, the NA interval should increase for the NA messages to collide with other NA messages with lower collision probability.

9. IP Address Autoconfiguration

This section discusses IP address autoconfiguration for V2I networking. For IP address autoconfiguration, high-speed vehicles should also be considered. The legacy IPv6 stateless address autoconfiguration [RFC4862], as shown in Figure 1, may not perform well. This is because vehicles can travel through the communication coverage of the RSU faster than the completion of address autoconfiguration (with Router Advertisement and Duplicate Address Detection (DAD) procedures).

To mitigate the impact of vehicle speed on address configuration, the RSU can perform IP address autoconfiguration including the DAD proactively as an ND proxy on behalf of the vehicles. If vehicles periodically report their movement information (e.g., position, trajectory, speed, and direction) to TCC, TCC can coordinate the RSUs under its control for the proactive IP address configuration of the vehicles with the mobility information of the vehicles. DHCPv6 (or Stateless DHCPv6) can be used for the IP address autoconfiguration [RFC3315][RFC3736].

In the case of a single subnet per RSU, the delay to change IPv6 address through DHCPv6 procedure is not suitable since vehicles move fast. Some modifications are required for the high-speed vehicles that quickly crosses the communication coverages of multiple RSUs. Some modifications are required for both stateless address autoconfiguration and DHCPv6. Mobile IPv6 (MIPv6) can be used for the fast update of a vehicle’s care-of address for the current RSU to communicate with the vehicle [RFC6275].

10. DNS Naming Service

This section suggests a DNS naming service for V2I networking. The DNS naming service consists of the DNS name resolution and DNS name autoconfiguration.

The DNS name resolution translates a DNS name into the corresponding IPv6 address through a recursive DNS server (RDNSS) within the vehicle’s moving network and DNS servers in the Internet [RFC1034][RFC1035], which are located outside the VANET. The RDNSSes
can be advertised by RA DNS Option or DHCP DNS Option into the subnets within the vehicle’s moving network.

The DNS name autoconfiguration makes a unique DNS name for hosts within a vehicle’s moving network and registers it into a DNS server within the vehicle’s moving network [ID-DNSNA]. With Vehicle Identification Number (VIN), a unique DNS suffix can be constructed as a DNS domain for the vehicle’s moving network. Each host can generate its DNS name and register it into the local RDNSS in the vehicle’s moving network.

11. IP Mobility Management

This section discusses an IP mobility support in V2I networking. In a single subnet per RSU, vehicles continually cross the communication coverages of adjacent RSUs. During this crossing, TCP/UDP sessions can be maintained through IP mobility support, such as MIPv6 [RFC6275], Proxy MIPv6 [RFC5213][RFC5949], and Distributed Mobility Management (DMM) [RFC7333][RFC7429]. Since vehicles move fast along roadways, high speed should be enabled by the parameter configuration in the IP mobility management. With the periodic reports of the movement information from the vehicles, TCC can coordinate RSUs and other network components under its control for the proactive mobility management of the vehicles along the movement of the vehicles.

To support the mobility of a vehicle’s moving network, Network Mobility Basic Support Protocol (NEMO) can be used [RFC3963]. Like MIPv6, the high speed of vehicles should be considered for a parameter configuration in NEMO.

12. Service Discovery

Vehicles need to discover services (e.g., road condition notification, navigation service, and entertainment) provided by infrastructure nodes in a fixed network via RSU, as shown in Figure 2. During the passing of an intersection or road segment with an RSU, vehicles should perform this service discovery quickly.

Since with the existing service discovery protocols, such as DNS-based Service Discovery (DNS-SD) [RFC6763] and Multicast DNS (mDNS) [RFC6762], the service discovery will be performed with message exchanges, the discovery delay may hinder the prompt service usage of the vehicles from the fixed network via RSU. One feasible approach is a piggyback service discovery during the prefix exchange of network prefixes for the networking between a vehicle’s moving network and an RSU’s fixed network. That is, the message of the prefix exchange can include service information, such as each service’s IP address, transport layer protocol, and port number.
IPv6 ND can be extended for the prefix and service discovery [ID-Vehicular-ND]. Vehicles and RSUs can announce the network prefixes and services in their internal network via ND messages containing ND options with the prefix and service information. Since it does not need any additional service discovery protocol in the application layer, this ND-based approach can provide vehicles and RSUs with the rapid discovery of the network prefixes and services.

13. Security Considerations

Security and privacy are paramount in the V2I and V2V networking in VANET. Only authorized vehicles should be allowed to use the V2I and V2V networking in VANET. A Vehicle Identification Number (VIN) and a user certificate along with in-vehicle device’s identifier generation can be used to authenticate a vehicle and the user through a road infrastructure node, such as an RSU connected to an authentication server in TCC. Transport Layer Security (TLS) certificates can also be used for secure vehicle communications.

A security scheme providing authentication and access control should be provided in vehicular networks [VN-Security]. With this scheme, the security and privacy can be supported for safe and reliable data services in vehicular networks.

To prevent an adversary from tracking a vehicle by with its MAC address or IPv6 address, each vehicle should periodically update its MAC address and the corresponding IPv6 address as suggested in [RFC4086][RFC4941]. Such an update of the MAC and IPv6 addresses should not interrupt the communications between a vehicle and an RSU.

To protect packets exchanged between a vehicle and an RSU, packets should be encrypted. To assure confidentiality, efficient encryption and decryption algorithms can be used along with a key management scheme such as Internet Key Exchange version 2 (IKEv2) and Internet Protocol Security (IPsec) [Securing-VCOMM].

14. Contributors

IPWAVE is a group effort. The following people actively contributed to the problem statement text: Nabil Benamar (Moulay Ismail University), Rex Buddenberg (Naval Postgraduate School), Sandra Cespedes (Universidad de Chile), Thierry Ernst (YoGoKo), Jerome Haerri (Eurecom), Richard Roy (MIT), and Francois Simon (Pilot).

15. Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of

16. References

16.1. Normative References

Jeong, et al. Expires January 4, 2018
Internet-Draft IPWAVE Problem Statement July 2017

16.2. Informative References

Moustafa, H., Bourdon, G., and Y. Gourhant, "Providing Authentication and Access Control in

Jeong, et al. Expires January 4, 2018

[CA-Cuise-Control] California Partners for Advanced Transportation Technology (PATH), "Cooperative Adaptive Cruise
Internet-Draft IPWAVE Problem Statement July 2017

www.path.berkeley.edu/research/
automated-and-connected-vehicles/

[Truck-Platooning] California Partners for Advanced Transportation
Technology (PATH), "Automated Truck Platooning",
research/automated-and-connected-vehicles/

Authors’ Addresses

Jaehoon Paul Jeong
Department of Software
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon, Gyeonggi-Do 440-746
Republic of Korea

Phone: +82 31 299 4957
Fax: +82 31 290 7996
EMail: pauljeong@skku.edu
URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

Alex Petrescu
CEA, LIST
CEA Saclay
Gif-sur-Yvette, Ile-de-France 91190
France

Phone: +33169089223
EMail: Alexandre.Petrescu@cea.fr

Tae (Tom) Oh
Department of Information Sciences and Technologies
Rochester Institute of Technology
One Lomb Memorial Drive
Rochester, NY 14623-5603
USA

Phone: +1 585 475 7642
EMail: Tom.Oh@rit.edu
Survey on IP-based Vehicular Networking for Intelligent Transportation Systems
draft-ietf-ipwave-vehicular-networking-survey-00

Abstract

This document surveys the general problem area on IP-based vehicular networks, which are considered a key component of Intelligent Transportation Systems (ITS). The main topics of vehicular networking are vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-to-vehicle (I2V) networking. This document deals with some critical aspects in vehicular networking, such as IP address autoconfiguration, vehicular network architecture, routing, mobility management, and security. This document also surveys standard activities for vehicular networks. In addition, this document surveys the use cases of IP-based vehicular networking for ITS. Finally, this document summarizes and analyzes the previous research activities that use IPv4 or IPv6 for vehicular networking.

Status of This Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
Table of Contents

1. Introduction ... 4
2. Requirements Language 4
3. Terminology .. 4
4. IP Address Autoconfiguration 5
 4.1. Automatic IP Address Configuration in VANETs 5
 4.2. Routing and Address Assignment using Lane/Position
 Information in a Vehicular Ad-hoc Network 6
 4.3. GeoSAC: Scalable Address Autoconfiguration for VANET
 Using Geographic Networking Concepts 6
 4.4. Cross-layer Identities Management in ITS Stations ... 7
 4.5. Key Observations 8
5. Vehicular Network Architecture 8
 5.1. VIP-WAVE: On the Feasibility of IP Communica-
 tions in 802.11p Vehicular Networks 8
 5.2. IPv6 Operation for WAVE - Wireless Access in Vehicular
 Environments ... 9
 5.3. A Framework for IP and non-IP Multicast Services for
 Vehicular Networks 10
 5.4. Joint IP Networking and Radio Architecture for
 Vehicular Networks 11
 5.5. Mobile Internet Access in FleetNet 12
 5.6. A Layered Architecture for Vehicular Delay-Tolerant
 Networks ... 13
 5.7. Key Observations 13
6. Vehicular Network Routing 14
 6.1. An IP Passing Protocol for Vehicular Ad Hoc Networks with Network Fragmentation 14
 6.2. Experimental Evaluation for IPv6 over VANET Geographic Routing ... 15
 6.3. Key Observations ... 15
7. Mobility Management in Vehicular Networks 16
 7.1. A Hybrid Centralized-Distributed Mobility Management for Supporting Highly Mobile Users 16
 7.2. A Hybrid Centralized-Distributed Mobility Management Architecture for Network Mobility 16
 7.3. NEMO-Enabled Localized Mobility Support for Internet Access in Automotive Scenarios 17
 7.4. Network Mobility Protocol for Vehicular Ad Hoc Networks ... 18
 7.5. Performance Analysis of PMIPv6-Based Network Mobility for Intelligent Transportation Systems 18
 7.6. A Novel Mobility Management Scheme for Integration of Vehicular Ad Hoc Networks and Fixed IP Networks 19
 7.7. SDN-based Distributed Mobility Management for 5G Networks .. 19
 7.8. IP Mobility Management for Vehicular Communication Networks: Challenges and Solutions 21
 7.9. Key Observations ... 22
8. Vehicular Network Security 22
 8.1. Securing Vehicular IPv6 Communications 22
 8.2. Providing Authentication and Access Control in Vehicular Network Environment 23
 8.3. Key Observations ... 23
9. Standard Activities for Vehicular Networks 24
 9.4. ISO Intelligent Transport Systems: Communications Access for Land Mobiles (CALM) Using IPv6 Networking ... 26
10. The Use Cases of Vehicular Networking 26
 10.1. The Use Cases of V2I Networking 26
 10.2. The Use Cases of V2V Networking 27
11. Summary and Analysis ... 28
12. Security Considerations 29
13. Contributors .. 29
14. Acknowledgements ... 29
15. References .. 29
 15.1. Normative References 29
 15.2. Informative References 30
1. Introduction

Nowadays vehicular networks have been focused on the driving safety, driving efficiency, and entertainment in road networks. For the driving safety, IEEE has standardized Wireless Access in Vehicular Environments (WAVE) standards, such as IEEE 802.11p [IEEE-802.11p], IEEE 1609.2 [WAVE-1609.2], IEEE 1609.3 [WAVE-1609.3], and IEEE 1609.4 [WAVE-1609.4]. Note that IEEE 802.11p has been finalized as IEEE 802.11 Outside the Context of a Basic Service Set (OCB) [IEEE-802.11-OCB] in 2012. Along with these WAVE standards, IPv6 and Mobile IP protocols (e.g., MIPv4 and MIPv6) can be extended to vehicular networks.

This document surveys the general problem area on IP-based vehicular networking for Intelligent Transportation Systems (ITS), such as IP address autoconfiguration, vehicular network architecture, vehicular network routing (for multi-hop V2V, V2I, and I2V), mobility management, and security. Also, this document surveys standard activities for vehicular networks. In addition, this document surveys the use cases of IP-based vehicular networking for ITS. Finally, this document summarizes and analyzes the previous research activities using IPv4 or IPv6 for vehicular networking.

Based on the survey of this document, we can specify the requirements for vehicular networks for the intended purposes, such as the driving safety, driving efficiency, and entertainment. As a consequence, this will make it possible to design the network architecture and protocols for vehicular networking.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Terminology

This document defines the following new terms:

- Road-Side Unit (RSU): A node that has Dedicated Short-Range Communications (DSRC) device for wireless communications with vehicles and is also connected to the Internet as a router or switch for packet forwarding. An RSU is deployed either at an intersection or in a road segment.

- On-Board Unit (OBU): A node that has a DSRC device for wireless communications with other OBUs and RSUs. An OBU is mounted on a vehicle. It is assumed that a radio navigation receiver (e.g.,
Global Positioning System (GPS)) is included in a vehicle with an OBU for efficient navigation.

- Traffic Control Center (TCC): A node that maintains road infrastructure information (e.g., RSUs, traffic signals, and loop detectors), vehicular traffic statistics (e.g., average vehicle speed and vehicle inter-arrival time per road segment), and vehicle information (e.g., a vehicle’s identifier, position, direction, speed, and trajectory as a navigation path). TCC is included in a vehicular cloud for vehicular networks. Exemplary functions of TCC include the management of evacuation routes, the monitoring of pedestrians and bike traffic, the monitoring of real-time transit operations, and real-time responsive traffic signal systems. Thus, TCC is the nerve center of most freeway management systems such that data is collected, processed, and fused with other operational and control data, and is also synthesized to produce "information" distributed to stakeholders, other agencies, and traveling public. TCC is called Traffic Management Center (TMC) in the US. TCC can communicate with road infrastructure nodes (e.g., RSUs, traffic signals, and loop detectors) to share measurement data and management information by an application-layer protocol.

4. IP Address Autoconfiguration

This section surveys IP address autoconfiguration schemes for vehicular networks.

4.1. Automatic IP Address Configuration in VANETs

Fazio et al. proposed a vehicular address configuration called VAC for automatic IP address configuration in Vehicular Ad Hoc Networks (VANET) [Address-Autoconf]. VAC uses a distributed dynamic host configuration protocol (DHCP). This scheme uses a leader playing a role of a DHCP server within a cluster having connected vehicles within a VANET. In a connected VANET, vehicles are connected with each other with the communication range. In this VANET, VAC dynamically elects a leader-vehicle to quickly provide vehicles with unique IP addresses. The leader-vehicle maintains updated information on configured addressed in its connected VANET. It aims at the reduction of the frequency of IP address reconfiguration due to mobility.

VAC defines the concept of SCOPE as a delimited geographic area where IP addresses are guaranteed to be unique. When it is allocated an IP address from a leader-vehicle with a scope, a vehicle is guaranteed to have a unique IP address while moving within the scope of the leader-vehicle. If it moves out of the scope of the leader vehicle,
it needs to ask for another IP address from another leader-vehicle so that its IP address can be unique within the scope of the new leader-vehicle. This approach may allow for less frequent change of an IP address than the address allocation from a fixed Internet gateway. Thus, VAC can support a feasible address autoconfiguration for V2V scenarios, but the overhead to guarantee the uniqueness of IP addresses is not ignorable under high-speed mobility.

4.2. Routing and Address Assignment using Lane/Position Information in a Vehicular Ad-hoc Network

Kato et al. proposed an IPv6 address assignment scheme using lane and position information [Address-Assigment]. In this addressing scheme, each lane of a road segment has a unique IPv6 prefix. When it moves in a lane in a road segment, a vehicle autoconfigures its IPv6 address with its MAC address and the prefix assigned to the lane. A group of vehicles constructs a connected VANET within the same subnet such that their IPv6 addresses have the same prefix. Whenever it moves to another lane, a vehicle updates its IPv6 address with the prefix corresponding to the new lane and also joins the group corresponding to the lane.

However, this address autoconfiguration scheme may have much overhead in the case where vehicles change their lanes frequently in highway.

4.3. GeoSAC: Scalable Address Autoconfiguration for VANET Using Geographic Networking Concepts

Baldessari et al. proposed an IPv6 scalable address autoconfiguration scheme called GeoSAC for vehicular networks [GeoSAC]. GeoSAC uses geographic networking concepts such that it combines the standard IPv6 Neighbor Discovery (ND) and geographic routing functionality. It matches geographically-scoped network partitions to individual IPv6 multicast-capable links. In the standard IPv6, all nodes within the same link must communicate with each other, but due to the characteristics of wireless links, this concept of a link is not clear in vehicular networks. GeoSAC defines a link as a geographic area having a network partition. This geographic area can have a connected VANET. Thus, vehicles within the same VANET in a specific geographic area are regarded as staying in the same link, that is, an IPv6 multicast link.

This paper identifies four key requirements of IPv6 address autoconfiguration for vehicular networks: (i) the configuration of globally valid addresses, (ii) a low complexity for address autoconfiguration, (iii) a minimum signaling overhead of address autoconfiguration, (iv) the support of network mobility through
movement detection, (v) an efficient gateway selection from multiple RSUs, (vi) a fully distributed address autoconfiguration for network security, (vii) the authentication and integrity of signaling messages, and (viii) the privacy protection of vehicles’ users.

To support the proposed link concept, GeoSAC performs ad hoc routing for geographic networking in a sub-IP layer called Car-to-Car (C2C) NET. Vehicles within the same link can receive an IPv6 router advertisement (RA) message transmitted by an RSU as a router, so they can autoconfigure their IPv6 address based on the IPv6 prefix contained in the RA and perform Duplicate Address Detection (DAD) to verify the uniqueness of the autoconfigured IP address by the help of the geographic routing within the link.

For location-based applications, to translate between a geographic area and an IPv6 prefix belonging to an RSU, this paper takes advantage of an extended DNS service, using GPS-based addressing and routing along with geographic IPv6 prefix format [GeoSAC].

Thus, GeoSAC can support the IPv6 link concept through geographic routing within a specific geographic area.

4.4. Cross-layer Identities Management in ITS Stations

ITS and vehicular networks are built on the concept of an ITS station (e.g., vehicle and RSU), which is a common reference model inspired from the Open Systems Interconnection (OSI) standard [Identities-Management]. In vehicular networks using multiple access network technologies through a cross-layer architecture, a vehicle with an OBU may have multiple identities corresponding to the access network interfaces. Wetterwald et al. conducted a comprehensive study of the cross-layer identity management in vehicular networks using multiple access network technologies, which constitutes a fundamental element of the ITS architecture [Identities-Management].

Besides considerations related to the case where ETSI GeoNetworking [ETSI-GeoNetworking] is used, this paper analyzes the major requirements and constraints weighing on the identities of ITS stations, e.g., privacy and compatibility with safety applications and communications. The concerns related to security and privacy of the users need to be addressed for vehicular networking, considering all the protocol layers simultaneously. In other words, for security and privacy constraints to be met, the IPv6 address of a vehicle should be derived from a pseudonym-based MAC address and renewed simultaneously with that changing MAC address. This dynamically changing IPv6 address can prevent the ITS station from being tracked by a hacker. However, this address renewal cannot be applied at any time because in some situations, the continuity of the knowledge...
about the surrounding vehicles is required.

Also, this paper defines a cross-layer framework that fulfills the requirements on the identities of ITS stations and analyzes systematically, layer by layer, how an ITS station can be identified uniquely and safely, whether it is a moving station (e.g., car and bus using temporary trusted pseudonyms) or a static station (e.g., RSU and central station). This paper has been applied to the specific case of the ETSI GeoNetworking as the network layer, but an identical reasoning should be applied to IPv6 over 802.11 in Outside the Context of a Basic Service Set (OCB) mode now.

4.5. Key Observations

High-speed mobility should be considered for a light-overhead address autoconfiguration. A cluster leader can have an IPv6 prefix [Address-Autoconf]. Each lane in a road segment can have an IPv6 prefix [Address-Assigment]. A geographic region under the communication range of an RSU can have an IPv6 prefix [GeoSAC]. IPv6 ND should be extended to support the concept of a link for an IPv6 prefix in terms of multicast. Ad Hoc routing is required for the multicast in a connected VANET with the same IPv6 prefix [GeoSAC]. A rapid DAD should be supported to prevent or reduce IPv6 address conflicts.

In the ETSI GeoNetworking, for the sake of security and privacy, an ITS station (e.g., vehicle) can use pseudonyms for its network interface identities and the corresponding IPv6 addresses [Identities-Management]. For the continuity of an end-to-end transport session, the cross-layer identity management should be performed carefully.

5. Vehicular Network Architecture

This section surveys vehicular network architectures based on IP along with various radio technologies.

5.1. VIP-WAVE: On the Feasibility of IP Communications in 802.11p Vehicular Networks

Cespedes et al. proposed a vehicular IP in WAVE called VIP-WAVE for I2V and V2I networking [VIP-WAVE]. IEEE 1609.3 specified a WAVE stack of protocols and includes IPv6 as a network layer protocol in data plane [WAVE-1609.3]. The standard WAVE does not support DAD, seamless communications for Internet services, and multi-hop communications between a vehicle and an infrastructure node (e.g., RSU). To overcome these limitations of the standard WAVE for IP-
Based networking, VIP-WAVE enhances the standard WAVE by the following three schemes: (i) an efficient mechanism for the IPv6 address assignment and DAD, (ii) on-demand IP mobility based on Proxy Mobile IPv6 (PMIPv6), and (iii) one-hop and two-hop communications for I2V and V2I networking.

In WAVE, IPv6 ND protocol is not recommended due to the overhead of ND against the timely and prompt communications in vehicular networking. By WAVE service advertisement (WAS) management frame, an RSU can provide vehicles with IP configuration information (e.g., IPv6 prefix, prefix length, gateway, router lifetime, and DNS server) without using ND. However, WAVE devices may support readdressing to provide pseudonymity, so a MAC address of a vehicle may be changed or randomly generated. This update of the MAC address may lead to the collision of an IPv6 address based on a MAC address, so VIP-WAVE includes a light-weight, on-demand ND to perform DAD.

For IP-based Internet services, VIP-WAVE adopts PMIPv6 for network-based mobility management in vehicular networks. In VIP-WAVE, RSU plays a role of mobile anchor gateway (MAG) of PMIPv6, which performs the detection of a vehicle as a mobile node in a PMIPv6 domain and registers it into the PMIPv6 domain. For PMIPv6 operations, VIP-WAVE requires a central node called local mobility anchor (LMA), which assigns IPv6 prefixes to vehicles as mobile nodes and forwards data packets to the vehicles moving in the coverage of RSUs under its control through tunnels between MAGs and itself.

For two-hop communications between a vehicle and an RSU, VIP-WAVE allows an intermediate vehicle between the vehicle and the RSU to play a role of a packet relay for the vehicle. When it becomes out of the communication range of an RSU, a vehicle searches for another vehicle as a packet relay by sending a relay service announcement. When it receives this relay service announcement and is within the communication range of an RSU, another vehicle registers itself into the RSU as a relay and notifies the relay-requester vehicle of a relay maintenance announcement.

Thus, VIP-WAVE is a good candidate for I2V and V2I networking, supporting an enhanced ND, handover, and two-hop communications through a relay.

5.2. IPv6 Operation for WAVE - Wireless Access in Vehicular Environments

Baccelli et al. provided an analysis of the operation of IPv6 as it has been described by the IEEE WAVE standards 1609 [IPv6-WAVE]. Although the main focus of WAVE has been the timely delivery of safety related information, the deployment of IP-based entertainment
applications is also considered. Thus, in order to support entertainment traffic, WAVE supports IPv6 and transport protocols such as TCP and UDP.

In the analysis provided in [IPv6-WAVE], it is identified that the IEEE 1609.3 standard’s recommendations for IPv6 operation over WAVE are rather minimal. Protocols on which the operation of IPv6 relies for IP address configuration and IP-to-link-layer address translation (e.g., IPv6 NP protocol) are not recommended in the standard. Additionally, IPv6 works under certain assumptions for the link model that do not necessarily hold in WAVE. For instance, IPv6 assumes symmetry in the connectivity among neighboring interfaces. However, interference and different levels of transmission power may cause unidirectional links to appear in a WAVE link model. Also, in an IPv6 link, it is assumed that all interfaces which are configured with the same subnet prefix are on the same IP link. Hence, there is a relationship between link and prefix, besides the different scopes that are expected from the link-local and global types of IPv6 addresses. Such a relationship does not hold in a WAVE link model due to node mobility and highly dynamic topology.

Baccellii et al. concluded that the use of the standard IPv6 protocol stack, as the IEEE 1609 family of specifications stipulate, is not sufficient. Instead, the addressing assignment should follow considerations for ad-hoc link models, defined in [RFC5889], which are similar to the characteristics of the WAVE link model. In terms of the supporting protocols for IPv6, such as ND, DHCP, or stateless auto-configuration, which rely largely on multicast, do not operate as expected in the case where the WAVE link model does not have the same behavior expected for multicast IPv6 traffic due to nodes’ mobility and link variability. Additional challenges such as the support of pseudonymity through MAC address change along with the suitability of traditional TCP applications are discussed by the authors since they require the design of appropriate solutions.

5.3. A Framework for IP and non-IP Multicast Services for Vehicular Networks

Jemaa et al. presented a framework that enables deploying multicast services for vehicular networks in Infrastructure-based scenarios [Vehicular-Network-Framework]. This framework deals with two phases: (i) Initialization or bootstrapping phase that includes a geographic multicast auto-configuration process and a group membership building method and (ii) Multicast traffic dissemination phase that includes a network selecting mechanism on the transmission side and a receiver-based multicast delivery in the reception side. To this end, authors define a distributed mechanism that allows the vehicles to configure a common multicast address: Geographic Multicast Address Auto-
configuration (GMAA), which allows a vehicle to configure its own
address without signaling. A vehicle may also be able to change the
multicast address to which it is subscribed when it changes its
location.

This framework suggests a network selecting approach that allows IP
and non-IP multicast data delivery in the sender side. Then, to meet
the challenges of multicast address auto-configuration, the authors
propose a distributed geographic multicast auto-addressing mechanism
for multicast groups of vehicles, and a simple multicast data
delivery scheme in hybrid networks from a server to the group of
moving vehicles. However, this study lacks simulations related to
performance assessment.

5.4. Joint IP Networking and Radio Architecture for Vehicular Networks

Petrescu et al. defined the joined IP networking and radio
architecture for V2V and V2I communication in [Joint-IP-Networking].
The paper proposes to consider an IP topology in a similar way as a
radio link topology, in the sense that an IP subnet would correspond
to the range of 1-hop vehicular communication. The paper defines
three types of vehicles: Leaf Vehicle (LV), Range Extending Vehicle
(REV), and Internet Vehicle (IV). The first class corresponds to the
largest set of communicating vehicles (or network nodes within a
vehicle), while the role of the second class is to build an IP relay
between two IP-subnet and two sub-IP networks. Finally, the last
class corresponds to vehicles being connected to Internet. Based on
these three classes, the paper defines six types of IP topologies
corresponding to V2V communication between two LVs in direct range,
or two LVs over a range extending vehicle, or V2I communication again
either directly via an IV, via another vehicles being IV, or via an
REV connecting to an IV.

Considering a toy example of a vehicular train, where LV would be in-
wagon communicating nodes, REV would be inter-wagon relays, and IV
would be one node (e.g., train head) connected to Internet. Petrescu
et al. defined the required mechanisms to build subnetworks, and
evaluated the protocol time that is required to build such networks.
Although no simulation-based evaluation is conducted, the initial
analysis shows a long initial connection overhead, which should be
alleviated once the multi-wagon remains stable. However, this
approach does not describe what would happen in the case of a dynamic
multi-hop vehicular network, where such overhead would end up being
too high for V2V/V2I IP-based vehicular applications.

One other aspect described in this paper is to join the IP-layer
relaying with radio-link channels. This paper suggests to separate
different subnetworks in different WiFi/ITS-G5 channels, which could
be advertised by the REV. Accordingly, the overall interference could be controlled within each subnetwork. This statement is similar to multi-channel topology management proposals in multi-hop sensor networks, yet adapted to an IP topology.

In conclusion, this paper proposes to classify an IP multi-hop vehicular network in three classes of vehicles: Leaf Vehicle (LV), Range Extending Vehicle (REV), and Internet Vehicle (IV). It suggests that the generally complex multi-hop IP vehicular topology could be represented by only six different topologies, which could be further analyzed and optimized. A prefix dissemination protocol is proposed for one of the topologies.

5.5. Mobile Internet Access in FleetNet

Bechler et al. described the FleetNet project approach to integrate Internet Access in future vehicular networks [FleetNet]. The paper is most probably one of the first papers to address this aspect, and in many ways, introduces concepts that will be later used in MIPv6 or other subsequent IP mobility management schemes. The paper describes a V2I architecture consisting of Vehicles, Internet Gateways (IGW), Proxy, and Corresponding Nodes (CN). Considering that vehicular networks are required to use IPv6 addresses and also the new wireless access technology ITS-G5 (new at that time), one of the challenges is to bridge the two different networks (i.e., VANET and IPv4/IPv6 Internet). Accordingly, the paper introduces a Fleetnet Gateway (FGW), which allows vehicles in IPv6 to access the IPv4 Internet and to bridge two types of networks and radio access technologies. Another challenge is to keep the active addressing and flows while vehicles move between FGWs. Accordingly, the paper introduces a proxy node, a cranked-up MIP Home Agent, which can re-route flows to the new FGW as well as acting as a local IPv4-IPv6 NAT.

The authors from the paper mostly observed two issues that VANET brings into the traditional IP mobility. First, VANET vehicles must mostly be addressed from the Internet directly, and do not specifically have a Home Network. Accordingly, VANET vehicles require a globally (predefined) unique IPv6 address, while an IPv6 co-located care-of address (CCoA) is a newly allocated IPv6 address every time a vehicle would enter a new IGW radio range. Second, VANET links are known to be unreliable and short, and the extensive use of IP tunneling on-the-air was judged not efficient. Accordingly, the first major architecture innovation proposed in this paper is to re-introduce a foreign agent (FA) in MIP located at the IGW, so that the IP-tunneling would be kept in the back-end (between a Proxy and an IGW) and not on the air. Second, the proxy has been extended to build an IP tunnel and be connected to the right FA/IGW for an IP flow using a global IPv6 address.
This is a pioneer paper, which contributed to changing MIP and led to the new IPv6 architecture currently known as Proxy-MIP and the subsequent DMM-PMIP. Three key messages can be yet kept in mind. First, unlike the Internet, vehicles can be more prominently directly addressed than the Internet traffic, and do not have a Home Network in the traditional MIP sense. Second, IP tunneling should be avoided as much as possible over the air. Third, the protocol-based mobility (induced by the physical mobility) must be kept hidden to both the vehicle and the correspondent node (CN).

5.6. A Layered Architecture for Vehicular Delay-Tolerant Networks

Soares et al. addressed the case of delay tolerant vehicular network [Vehicular-DTN]. For delay tolerant or disruption tolerant networks, rather than building a complex VANET-IP multi-hop route, vehicles may also be used to carry packets closer to the destination or directly to the destination. The authors built the well-accepted DTN Bundle architecture and protocol to propose a VANET extension. They introduced three types of VANET nodes: (i) terminal nodes (requiring data), (ii) mobile nodes (carrying data along their routes), and (iii) relay nodes (storing data at cross-roads of mobile nodes as data hotspot).

The major innovation in this paper is to propose a DTN VANET architecture separating a Control plane and a Data plane. The authors claimed it to be designed to allow full freedom to select the most appropriate technology, as well as allow to use out-of-band communication for small Control plane packets and use DTN in-band for the Data plane. The paper then further describes the different layers from the Control and the Data planes. One interesting aspect is the positioning of the Bundle layer between L2 and L3, rather than above TCP/IP as for the DTN Bundle architecture. The authors claimed this to be required first to keep bundle aggregation/disaggregation transparent to IP, as well as to allow bundle transmission over multiple access technologies (described as MACPHY layers in the paper).

Although the DTN architectures evolved since the paper has been written, this paper addresses IP mobility management from a different approach. An important aspect is to separate the Control plane from the Data plane to allow a large flexibility in a Control plane to coordinate a heterogeneous radio access technology (RAT) Data plane.

5.7. Key Observations

Unidirectional links exist and must be considered. Control Plane must be separated from Data Plane. ID/Pseudonym change requires a lightweight DAD. IP tunneling should be avoided. Vehicles do not
have a Home Network. Protocol-based mobility must be kept hidden to both the vehicle and the correspondent node (CN). An ITS architecture may be composed of three types of vehicles: Leaf Vehicle, Range Extending Vehicle, and Internet Vehicle.

6. Vehicular Network Routing

This section surveys routing in vehicular networks.

6.1. An IP Passing Protocol for Vehicular Ad Hoc Networks with Network Fragmentation

Chen et al. tackled the issue of network fragmentation in VANET environments [IP-Passing-Protocol]. The paper proposes a protocol that can postpone the time to release IP addresses to the DHCP server and select a faster way to get the vehicle’s new IP address, when the vehicle density is low or the speeds of vehicles are varied. In such circumstances, the vehicle may not be able to communicate with the intended vehicle either directly or through multi-hop relays as a consequence of network fragmentation.

The paper claims that although the existing IP passing and mobility solutions may reduce handoff delay, but they cannot work properly on VANET especially with network fragmentation. This is due to the fact that messages cannot be transmitted to the intended vehicles. When network fragmentation occurs, it may incur longer handoff latency and higher packet loss rate. The main goal of this study is to improve existing works by proposing an IP passing protocol for VANET with network fragmentation.

The paper makes the assumption that on the highway, when a vehicle moves to a new subnet, the vehicle will receive broadcast packet from the target Base Station (BS), and then perform the handoff procedure. The handoff procedure includes two parts, such as the layer-2 handoff (new frequency channel) and the layer-3 handover (a new IP address). The handoff procedure contains movement detection, DAD procedure, and registration. In the case of IPv6, the DAD procedure is time consuming and may cause the link to be disconnected.

This paper proposes another handoff mechanism. The handoff procedure contains the following phases. The first is the information collecting phase, where each mobile node (vehicle) will broadcast its own and its neighboring vehicles’ locations, moving speeds, and directions periodically. The remaining phases are, the fast IP acquiring phase, the cooperation of vehicle phase, the make before break phase, and the route redirection phase.

Simulations results show that for the proposed protocol, network
fragmentation ratio incurs less impact. Vehicle speed and density has great impact on the performance of the IP passing protocol because vehicle speed and vehicle density will affect network fragmentation ratio. A longer IP lifetime can provide a vehicle with more chances to acquire its IP address through IP passing. Simulation results show that the proposed scheme can reduce IP acquisition time and packet loss rate, so extend IP lifetime with extra message overhead.

6.2. Experimental Evaluation for IPv6 over VANET Geographic Routing

Tsukada et al. presented a work that aims at combining IPv6 networking and a Car-to-Car Network routing protocol (called C2CNet) proposed by the Car2Car Communication Consortium (C2C-CC), which is an architecture using a geographic routing protocol [VANET-Geo-Routing]. In C2C-CC architecture, C2CNet layer is located between IPv6 and link layers. Thus, an IPv6 packet is delivered with outer C2CNet header, which introduces the challenge of how to support the communication types defined in C2CNet in IPv6 layer.

The main goal of GeoNet is to enhance these specifications and create a prototype software implementation interfacing with IPv6. C2CNet is specified in C2C-CC as a geographic routing protocol.

In order to assess the performance of this protocol, the authors measured the network performance with UDP and ICMPv6 traffic using iperf and ping6. The test results show that IPv6 over C2CNet does not have too much delay (less than 4ms with a single hop) and is feasible for vehicle communication. In the outdoor testbed, they developed AnaVANET to enable hop-by-hop performance measurement and position trace of the vehicles.

The combination of IPv6 multicast and GeoBroadcast was implemented, however, the authors did not evaluate the performance with such a scenario. One of the reasons is that a sufficiently high number of receivers are necessary to properly evaluate multicast but experimental evaluation is limited in the number of vehicles (4 in this study).

6.3. Key Observations

IP address autoconfiguration should be manipulated to support the efficient networking. Due to network fragmentation, vehicles cannot communicate with each other temporarily. IPv6 ND should consider the temporary network fragmentation. IPv6 link concept can be supported by Geographic routing to connect vehicles with the same IPv6 prefix.
7. Mobility Management in Vehicular Networks

This section surveys mobility management schemes in vehicular networks to support handover.

7.1. A Hybrid Centralized-Distributed Mobility Management for Supporting Highly Mobile Users

Nguyen et al. proposed a hybrid centralized-distributed mobility management called H-DMM to support highly mobile vehicles [H-DMM]. The legacy DMM is not suitable for high-speed scenarios because it requires additional registration delay proportional to the distance between a vehicle and its anchor network. H-DMM is designed to satisfy a set of requirements, such as service disruption time, end-to-end delay, packet delivery cost, and tunneling cost.

H-DMM adopts a central node called central mobility anchor (CMA), which plays the role of a local mobility anchor (LMA) in PMIPv6. When it enters a mobile access router (MAR) as an access router, a vehicle obtains a prefix from the MAR (called MAR-prefix) according to the legacy DMM protocol. In addition, it obtains another prefix from the CMA (called LMA-prefix) for a PMIPv6 domain. Whenever it performs a handover between the subnets for two adjacent MARs, a vehicle keeps the LMA-prefix while obtaining a new prefix from the new MAR. For a new data exchange with a new CN, the vehicle can select the MAR-prefix or the LMA-prefix for its own source IPv6 address. If the number of active prefixes is greater than a threshold, the vehicle uses the LMA-prefix-based IPv6 address as its source address. In addition, it can continue receiving data packets with the destination IPv6 addresses based on the previous prefixes through the legacy DMM protocol.

Thus, H-DMM can support an efficient tunneling for a high-speed vehicle that moves fast across the subnets of two adjacent MARs. However, when H-DMM asks a vehicle to perform DAD for the uniqueness test of its configured IPv6 address in the subnet of the next MAR, the activation of the configured IPv6 address for networking will take a delay. This indicates that a proactive DAD by a network component (i.e., MAR and LMA) can shorten the address configuration delay of the current DAD triggered by a vehicle.

7.2. A Hybrid Centralized-Distributed Mobility Management Architecture for Network Mobility

Nguyen et al. proposed H-NEMO, a hybrid centralized-distributed mobility management scheme to handle IP mobility of moving vehicles [H-NEMO]. The standard Network Mobility (NEMO) basic support, which is a centralized scheme for network mobility, provides IP mobility
for a group of users in a moving vehicle, but also inherits the drawbacks from Mobile IPv6, such as suboptimal routing and signaling overhead in nested scenarios as well as reliability and scalability issues. On the contrary, distributed schemes such as the recently proposed Distributed Mobility Management (DMM) locates the mobility anchor at the network edge and enables mobility support only to traffic flows that require such support. However, in high speed moving vehicles, DMM may suffer from high signaling cost and high handover latency.

The proposed H-NEMO architecture is not designed for a specific wireless technology. Instead, it defines a general architecture and signaling protocol so that a mobile node can obtain mobility from fixed locations or mobile platforms, and also allows the use of DMM or Proxy Mobile IPv6 (PMIPv6), depending on flow characteristics and mobility patterns of the node. For IP addressing allocation, a mobile router (MR) or the mobile node (MN) connected to an MR in a NEMO obtain two sets of prefixes: one from the central mobility anchor and one from the mobile access router (MAR). In this way, the MR/MN may choose a more stable prefix for long-lived flows to be routed via the central mobility anchor and the MAR-prefix for short-lived flows to be routed following the DMM concept. The multi-hop scenario is considered under the concept of a nested-NEMO.

Nguyen et al. did not provide simulation-based evaluations, but they provided an analytical evaluation that considered signaling and packet delivery costs, and showed that H-NEMO outperforms the previous proposals, which are either centralized or distributed ones with NEMO support. In particular cases, such as the signaling cost, H-NEMO is more costly than centralized schemes when the velocity of the node is increasing, but behaves better in terms of packet delivery cost and handover delay.

7.3. NEMO-Enabled Localized Mobility Support for Internet Access in Automotive Scenarios

In [NEMO-LMS], authors proposed an architecture to enable IP mobility for moving networks in a network-based mobility scheme based on PMIPv6. In PMIPv6, only mobile terminals are provided with IP mobility. Different from host-based mobility, PMIPv6 shifts the signaling to the network side, so that the mobile access gateway (MAG) is in charge of detecting connection/disconnection of the mobile node, upon which the signaling to the Local Mobility Anchor (LMA) is triggered to guarantee a stable IP addressing assignment when the mobile node performs handover to a new MAG.

Soto et al. proposed NEMO support in PMIPv6 (N-PMIP). In this scheme, the functionality of the MAG is extended to the mobile router...
Internet-Draft IP-based Vehicular Networking Survey July 2017

(MR), also called a mobile MAG (mMAG). The functionality of the mobile terminal remains unchanged, but it can receive an IPv6 prefix belonging to the PMIPv6 domain through the new functionality of the mMAG. Therefore, in N-PMIP, the mobile terminal connects to the MR as if it is connecting to a fixed MAG, and the MR connects to the fixed MAG with the standardized signaling of PMIPv6. When the mobile terminal roams to a new MAG or a new MR, the network forwards the packets through the LMA. Hence, N-PMIP defines an extended functionality in the LMA that enables a recursive lookup. First, it locates the binding entry corresponding to the mMAGr. Next, it locates the entry corresponding to the fixed MAG, after which the LMA can encapsulate packets to the mMAG to which the mobile terminal is currently connected.

The performance of N-PMIP was evaluated through simulations and compared to a NEMO+MIPv6+PMIPv6 scheme, with better results obtained in N-PMIP. The work did not consider the case of multi-hop connectivity in the vehicular scenario. In addition, since the MR should be a trusted entity in the PMIP domain, it requires specific security associations that were not addressed in [NEMO-LMS].

7.4. Network Mobility Protocol for Vehicular Ad Hoc Networks

Chen et al. proposed a network mobility protocol to reduce handoff delay and maintain Internet connectivity to moving vehicles in a highway [NEMO-VANET]. In this work, vehicles can acquire IP addresses from other vehicles through V2V communications. At the time the vehicle goes out of the coverage of the base station, another vehicle may assist the roaming car to acquire a new IP address. Also, cars on the same or opposite lane are entitled to assist the vehicle to perform a pre-handoff.

Authors assumed that the wireless connectivity is provided by WiFi and WiMAX access networks. Also, they considered scenarios in which a single vehicle, i.e., a bus, may need two mobile routers in order to have an effective pre-handoff procedure. Evaluations are performed through simulations and the comparison schemes are the standard NEMO Basic Support protocol and the fast NEMO Basic Support protocol. Authors did not mention applicability of the scheme in other scenarios such as in urban transport schemes.

7.5. Performance Analysis of PMIPv6-Based Network MObility for Intelligent Transportation Systems

Lee et al. proposed P-NEMO, which is an IP mobility management scheme to maintain the Internet connectivity at the vehicle as a mobile network, and provides a make-before-break mechanism when vehicles switch to a new access network [PMIPv6-NEMO-Analysis]. Since the
standard PMIPv6 only supports mobility for a single node, the solution in [PMIPv6-NEMO-Analysis] adapts the protocol to reduce the signaling when a local network is to be served by the in-vehicle mobile router. To achieve this, P-NEMO extends the binding update lists at both MAG and LMA, so that the mobile router (MR) can receive a home network prefix (HNP) and a mobile network prefix (MNP). The latter prefix enables mobility for the moving network, instead of a single node as in the standard PMIPv6.

An additional feature is proposed by Lee et al. named fast P-NEMO (FP-NEMO). It adopts the fast handover approach standardized for PMIPv6 in [RFC5949] with both predictive and reactive modes. The difference of the proposed feature with the standard version is that by using the extensions provided by P-NEMO, the predictive transferring of the context from the old MAG to the new MAG also includes information for the moving network, i.e., the MNP, so that mobility support can be achieved not only for the mobile router, but also for mobile nodes traveling with the vehicle.

The performance of P-NEMO and F-NEMO is only evaluated through an analytical model that is compared to the standard NEMO-BS. No comparison was provided to other schemes that enable network mobility in PMIPv6 domains, such as the one presented in [NEMO-LMS].

7.6. A Novel Mobility Management Scheme for Integration of Vehicular Ad Hoc Networks and Fixed IP Networks

Peng et al. proposed a novel mobility management scheme for integration of VANET and fixed IP networks [Vehicular-Network-MM]. The proposed scheme deals with mobility of vehicles based on a street layout instead of a general two dimensional ad hoc network. This scheme makes use of the information provided by vehicular networks to reduce mobility management overhead. It allows multiple base stations that are close to a destination vehicle to discover the connection to the vehicle simultaneously, which leads to an improvement of the connectivity and data delivery ratio without redundant messages. The performance was assessed by using a road traffic simulator called SUMO (Simulation of Urban Mobility).

7.7. SDN-based Distributed Mobility Management for 5G Networks

Nguyen et al. extended their previous works on a vehicular adapted DMM considering a Software-Defined Networking (SDN) architecture [SDN-DMM]. On one hand, in their previous work, Nguyen et al. proposed DMM-PMIP and DMM-MIP architectures for VANET. The major innovation behind DMM is to distribute the Mobility Functions (MF) through the network instead of concentrating them in one bottleneck MF, or in a hierarchically organized backbone of MF. Highly mobile

Jeong, et al. Expires January 4, 2018
vehicular networks impose frequent IP route optimizations that lead to suboptimal routes (detours) between CN and vehicles. The suboptimality critically increases by nested or hierarchical MF nodes. Therefore, flattening the IP mobility architecture significantly reduces detours, as it is the role of the last MF to get the closest next MF (in most cases nearby). Yet, with an MF being distributed throughout the network, a Control plane becomes necessary in order to provide a solution for CN to address vehicles. The various solutions developed by Nguyen et al. not only showed the large benefit of a DMM approach for IPv6 mobility management, but also emphasized the critical role of an efficient Control plane.

One the other hand, SDN recently appeared and gained a big attention from the Internet Networking community due to its capacity to provide a significantly higher scalability of highly dynamic flows, which is required by future 5G dynamic networks. In particular, SDN also suggests a strict separation between a Control plane (SDN-Controller) and a Data plane (OpenFlow Switches) based on the OpenFlow standard. Such an architecture has two advantages that are critical for IP mobility management in VANET. First, unlike traditional routing mechanisms, OpenFlow focuses on flows rather than optimized routes. Accordingly, they can optimize routing based on flows (grouping multiple flows in one route, or allowing one flow to have different routes), and can detect broken flows much earlier than the traditional networking solutions. Second, SDN controllers may dynamically reprogram (reconfigure) OpenFlow Switches (OFS) to always keep an optimal route between CN and a vehicular node.

Nguyen et. al observed the mutual benefits IPv6 DMM could obtain from an SDN architecture, and then proposed an SDN-based DMM for VANET. In their proposed architecture, a PMIP-DMM is used, where MF is OFS for the Data plane, and one or more SDN controllers handle the Control plane. The evaluation and prototype in the paper prove that the proposed architecture can provide a higher scalability than the standard DMM.

This paper makes several observations leading to a strong suggestions that IP mobility management should be based on an SDN architecture. First, SDN will be integrated into future Internet and 5G in a near future. Second, after separating the Identity and Routing addressing, IP mobility management further requires to separate the Control from the Data plane if it needs to remain scalable for VANET. Finally, Flow-based routing (in particular OpenFlow standard) will be required in future heterogeneous vehicular networks (e.g., multi-RAT and multi-protocol) and the SDN coupled with DMM provides a double benefit of dynamic flow detection/reconfiguration and short(-er) route optimizations.
7.8. IP Mobility Management for Vehicular Communication Networks: Challenges and Solutions

Cespedes et al. provided a survey of the challenges for NEMO Basic Support for VANET [Vehicular-IP-MM]. NEMO allows the management of a group of nodes (a mobile network) rather than a single node. However, although a vehicle and even a platoon of vehicles could be seen as a group of nodes, NEMO has not been designed considering the particularities of VANET. For example, NEMO builds a tunnel between an MR (on board of a vehicle) and its HA, which in a VANET context is suboptimal, for instance due to over-the-air tunneling cost, the detour taken to pass by the MR’s HA even if the CN is nearby, or the route optimization when the MR moves to a new AR.

Cespedes et al. first summarize the requirements of IP mobility management, such as reduced power at end-device, reduced handover event, reduced complexity, or reduced bandwidth consumption. VANET adds the following requirements, such as minimum signaling for route optimization (RO), per-flow separability, security and binding privacy protection, multi-homing, and switching HA. As observed, these provide several challenges to IP mobility and NEMO BS for VANET.

Cespedes et al. then describe various optimization schemes available for NEMO BS. Considering a single hop connection to CN, one major optimization direction is to avoid the HA detour and reach the CN directly. In that direction, a few optimizations are proposed, such as creating an IP tunnel between the MR and the CR directly, creating an IP tunnel between the MR and a CR (rather than the HA), a delegation mechanism allowing Visiting Nodes to use MIPv6 directly rather than NEMO or finally intra-NEMO optimization for a direct path within NEMO bypassing HAs.

Specific to VANET, multi-hop connection is possible to the fixed network. In that case, NEMO BS must be enhanced to avoid that the path to immediate neighbors must pass by the respective HAs instead of directly. More specifically, two approaches are proposed to rely on VANET sub-IP multi-hop routing to hide a NEMO complex topology (e.g., Nested NEMO) and provide a direct route between two VANET nodes. Generally, one major challenge is security and privacy when opening a multi-hop route between a VANET and a CN. Heterogeneous multi-hop in a VANET (e.g., relying on various access technologies) corresponds to another challenge for NEMO BS as well.

Cespedes et al. conclude their paper with an overview of critical research challenges, such as Anchor Point location, the optimized usage of geographic information at the subIP as well as at the IP level to improve NEMO BS, security and privacy, and the addressing
allocation schema for NEMO.

In summary, this paper illustrates that NEMO BS for VANET should avoid the HA detour as well as opening IP tunnels over the air. Also, NEMO BS could use geographic information for subIP routing when a direct link between vehicles is required to reach an AR, but also anticipate handovers and optimize ROs. From an addressing perspective, dynamic MNP assignments should be preferred, but should be secured in particular during binding update (BU).

7.9. Key Observations

Mobility Management (MM) solution design varies, depending on scenarios: highway vs. urban roadway. Hybrid schemes (NEMO + PMIP, PMIP + DMM, etc.) usually show better performance than pure schemes. Most schemes assume that IP address configuration is already set up. Most schemes have been tested only at either simulation or analytical level. SDN can be considered as a player in the MM solution.

8. Vehicular Network Security

This section surveys security in vehicular networks.

8.1. Securing Vehicular IPv6 Communications

Fernandez et al. proposed a secure vehicular IPv6 communication scheme using Internet Key Exchange version 2 (IKEv2) and Internet Protocol Security (IPsec) [Securing-VCOMM]. This scheme aims at the security support for IPv6 Network Mobility (NEMO) for in-vehicle devices inside a vehicle via a Mobile Router (MR). An MR has multiple wireless interfaces, such as 3G, IEEE 802.11p, WiFi, and WiMAX. The proposed architecture consists of Vehicle ITS Station (Vehicle ITS-S), Roadside ITS Station (Roadside ITS-S), and Central ITS Station (Central ITS-S). Vehicle ITS-S is a vehicle having a mobile Network along with an MR. Roadside ITS-S is an RSU as a gateway to connect vehicular networks to the Internet. Central ITS-S is a TCC as a Home Agent (HA) for the location management of vehicles having their MR.

The proposed secure vehicular IPv6 communication scheme sets up IPsec secure sessions for control and data traffic between the MR in a Vehicle ITS-S and the HA in a Central ITS-S. Roadside ITS-S plays a role of an Access Router (AR) for Vehicle ITS-S’s MR to provide the Internet connectivity for Vehicle ITS-S via wireless interfaces, such as IEEE 802.11p, WiFi, and WiMAX. In the case where Roadside ITS-S is not available to Vehicle ITS-S, Vehicle ITS-S communicates with Central ITS-S via cellular networks (e.g., 3G). The secure communication scheme enhances the NEMO protocol that interworks with
IKEv2 and IPsec in network mobility in vehicular networks.

The authors implemented their scheme and evaluated its performance in a real testbed. This testbed supports two wireless networks, such as IEEE 802.11p and 3G. The in-vehicle devices (or hosts) in Vehicle ITS-S are connected to an MR of Vehicle ITS-S via IEEE 802.11g. The test results show that their scheme supports promising secure IPv6 communications with a low impact on communication performance.

8.2. Providing Authentication and Access Control in Vehicular Network Environment

Moustafa et al. proposed a security scheme providing authentication, authorization, and accounting (AAA) services in vehicular networks [VNET-AAA]. This security scheme aims at the support of safe and reliable data services in vehicular networks. It authenticates vehicles as mobile clients to use the network access and various services that are provided by service providers. Also, it ensures a confidential data transfer between communicating parties (e.g., vehicle and infrastructure node) by using IEEE 802.11i (i.e., WPA2) for secure layer-2 links.

The authors proposed a vehicular network architecture consisting of three entities, such as Access network, Wireless mobile ad hoc networks (MANETs), and Access Points (APs). Access network is the fixed network infrastructure forming the back-end of the architecture. Wireless MANETs are constructed by moving vehicles forming the front-end of the architecture. APs is the IEEE 802.11 WLAN infrastructure forming the interface between the front-end and back-end of the architecture.

For AAA services, the proposed architecture uses a Kerberos authentication model that authenticates vehicles at the entry point with the AP and also authorizes them to the access of various services. Since vehicles are authenticated by a Kerberos Authentication Server (AS) only once, the proposed security scheme can minimize the load on the AS and reduce the delay imposed by layer 2 using IEEE 802.11i.

8.3. Key Observations

The security for vehicular networks should provide vehicles with AAA services in an efficient way. It should consider not only horizontal handover, but also vertical handover since vehicles have multiple wireless interfaces.
9. Standard Activities for Vehicular Networks

This section surveys standard activities for vehicular networks in standards developing organizations.

IEEE 1609 is a suite of standards for Wireless Access in Vehicular Environments (WAVE) developed in the IEEE Vehicular Technology Society (VTS). They define an architecture and a complementary standardized set of services and interfaces that collectively enable secure vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications.

IEEE 1609.0 provides a description of the WAVE system architecture and operations (called WAVE reference model) [WAVE-1609.0]. The reference model of a typical WAVE device includes two data plane protocol stacks (sharing a common lower stack at the data link and physical layers): (i) the standard Internet Protocol Version 6 (IPv6) and (ii) the WAVE Short Message Protocol (WSMP) designed for optimized operation in a wireless vehicular environment. WAVE Short Messages (WSM) may be sent on any channel. IP traffic is only allowed on service channels (SCHs), so as to offload high-volume IP traffic from the control channel (CCH).

The Layer 2 protocol stack distinguishes between the two upper stacks by the Ethertype field. Ethertype is a 2-octet field in the Logical Link Control (LLC) header, used to identify the networking protocol to be employed above the LLC protocol. In particular, it specifies the use of two Ethertype values (i.e., two networking protocols), such as IPv6 and WSMP.

Regarding the upper layers, while WAVE communications use standard port numbers for IPv6-based protocols (e.g., TCP, UDP), they use a Provider Service Identifier (PSID) as an identifier in the context of WSMP.

IEEE 1609.3 defines services operating at the network and transport layers, in support of wireless connectivity among vehicle-based devices, and between fixed roadside devices and vehicle-based devices using the 5.9 GHz Dedicated Short-Range Communications/Wireless Access in Vehicular Environments (DSRC/WAVE) mode [WAVE-1609.3].

WAVE Networking Services represent layer 3 (networking) and layer 4
(transport) of the OSI communications stack. The purpose is then to provide addressing and routing services within a WAVE system, enabling multiple stacks of upper layers above WAVE Networking Services and multiple lower layers beneath WAVE Networking Services. Upper layer support includes in-vehicle applications offering safety and convenience to users.

The WAVE standards support IPv6. IPv6 was selected over IPv4 because IPv6 is expected to be a viable protocol into the foreseeable future. Although not described in the WAVE standards, IPv4 has been tunnelled over IPv6 in some WAVE trials.

The document provides requirements for IPv6 configuration, in particular for the address setting. It specifies the details of the different service primitives, among which is the WAVE Routing Advertisement (WRA), part of the WAVE Service Advertisement (WSA). When present, the WRA provides information about infrastructure internetwork connectivity, allowing receiving devices to be configured to participate in the advertised IPv6 network. For example, an RSU can broadcast in the WRA portion of its WSA all the information necessary for an OBU to access an application-service available over IPv6 through the RSU as a router. This feature removes the need for an IPv6 Router Advertisement message, which are based on ICMPv6.

ETSI published a standard specifying the transmission of IPv6 packets over the ETSI GeoNetworking (GN) protocol [ETSI-GeoNetworking] [ETSI-GeoNetwork-IPv6]. IPv6 packet transmission over GN is defined in ETSI EN 302 636-6-1 [ETSI-GeoNetwork-IPv6] using a protocol adaptation sub-layer called "GeoNetworking to IPv6 Adaptation Sub-Layer (GN6ASL)". It enables an ITS station (ITS-S) running the GN protocol and an IPv6-compliant protocol layer to: (i) exchange IPv6 packets with other ITS-S; (ii) acquire globally routable IPv6 unicast addresses and communicate with any IPv6 host located in the Internet by having the direct connectivity to the Internet or via other relay ITS stations; (iii) perform operations as a Mobile Router for network mobility [RFC3963].

The document introduces three types of virtual link, the first one providing symmetric reachability by means of stable geographically scoped boundaries and two others that can be used when the dynamic definition of the broadcast domain is required. The combination of these three types of virtual link in the same station allows running the IPv6 ND protocol including Stateless Address Autoconfiguration (SLAAC) [RFC4862] as well as distributing other IPv6 link-local
multicast traffic and, at the same time, reaching nodes that are outside specific geographic boundaries. The IPv6 virtual link types are provided by the GN6ASL to IPv6 in the form of virtual network interfaces.

The document also describes how to support bridging on top of the GN6ASL, how IPv6 packets are encapsulated in GN packets and delivered, as well as the support of IPv6 multicast and anycast traffic, and neighbor discovery. For latency reasons, the standard strongly recommends to use SLAAC for the address configuration.

Finally, the document includes the required operations to support the change of pseudonym, e.g., changing IPv6 addresses when the GN address is changed, in order to prevent attackers from tracking the ITS-S.

ISO published a standard specifying the IPv6 network protocols and services [ISO-ITS-IPv6]. These services are necessary to support the global reachability of ITS-S, the continuous Internet connectivity for ITS-S, and the handover functionality required to maintain such connectivity. This functionality also allows legacy devices to effectively use an ITS-S as an access router to connect to the Internet. Essentially, this specification describes how IPv6 is configured to support ITS-S and provides the associated management functionality.

The requirements apply to all types of nodes implementing IPv6: personal, vehicle, roadside, or central node. The standard defines IPv6 functional modules that are necessary in an IPv6 ITS-S, covering IPv6 forwarding, interface between IPv6 and lower layers (e.g., LAN interface), mobility management, and IPv6 security. It defines the mechanisms to be used to configure the IPv6 address for static nodes as well as for mobile nodes, while maintaining the addressing reachability from the Internet.

10. The Use Cases of Vehicular Networking

This section surveys the use cases of IP-based vehicular networking for ITS.

10.1. The Use Cases of V2I Networking

The use cases of V2I networking include navigation service, fuel-efficient speed recommendation service, and accident notification service.
A navigation service, such as Self-Adaptive Interactive Navigation Tool (called SAINT) [SAINT], using V2I networking interacts with TCC for the global road traffic optimization and can guide individual vehicles for appropriate navigation paths in real time. The enhanced SAINT (called SAINT+) [SAINTplus] can give the fast moving paths for emergency vehicles (e.g., ambulance and fire engine) toward accident spots while providing efficient detour paths to vehicles around the accidents spots.

The emergency communication between accident vehicles (or emergency vehicles) and TCC can be performed via either RSU or 4G-LTE networks. The First Responder Network Authority (FirstNet) [FirstNet] is provided by the US government to establish, operate, and maintain an interoperable public safety broadband network for safety and security network services, such as emergency calls. The construction of the nationwide FirstNet network requires each state in the US to have a Radio Access Network (RAN) that will connect to FirstNet’s network core. The current RAN is mainly constructed by 4G-LTE, but DSRC-based vehicular networks can be used in near future.

A pedestrian protection service, such as Safety-Aware Navigation Application (called SANA) [SANA], using V2I networking can reduce the collision of a pedestrian and a vehicle, which have a smartphone, in a road network. Vehicles and pedestrians can communicate with each other via an RSU that delivers scheduling information for wireless communication to save the smartphones’ battery.

10.2. The Use Cases of V2V Networking

The use cases of V2V networking include context-aware navigator for driving safety, cooperative adaptive cruise control in an urban roadway, and platooning in a highway. These are three techniques that will be important elements for self-driving.

Context-Aware Safety Driving (CASD) navigator [CASD] can help drivers to drive safely by letting the drivers recognize dangerous obstacles and situations. That is, CASD navigator displays obstacles or neighboring vehicles relevant to possible collisions in real-time through V2V networking. CASD provides vehicles with a class-based automatic safety action plan, which considers three situations, such as the Line-of-Sight unsafe, Non-Line-of-Sight unsafe and safe situations. This action plan can be performed among vehicles through V2V networking.

Cooperative Adaptive Cruise Control (CACC) [CA-Cruise-Control] helps vehicles to adapt their speed autonomously through V2V communication among vehicles according to the mobility of their predecessor and successor vehicles in an urban roadway or a highway. CACC can help
adjacent vehicles to efficiently adjust their speed in a cascade way through V2V networking.

Platooning [Truck-Platooning] allows a series of vehicles (e.g., trucks) to move together with a very short inter-distance. Trucks can use V2V communication in addition to forward sensors in order to maintain constant clearance between two consecutive vehicles at very short gaps (from 3 meters to 10 meters). This platooning can maximize the throughput of vehicular traffic in a highway and reduce the gas consumption because the leading vehicle can help the following vehicles to experience less air resistance.

11. Summary and Analysis

This document surveyed state-of-the-arts technologies for IP-based vehicular networks, such as IP address autoconfiguration, vehicular network architecture, vehicular network routing, and mobility management.

Through this survey, it is learned that IPv6-based vehicular networking can be well-aligned with IEEE WAVE standards for various vehicular network applications, such as driving safety, efficient driving, and entertainment. However, since the IEEE WAVE standards do not recommend to use the IPv6 ND protocol for the communication efficiency under high-speed mobility, it is necessary to adapt the ND for vehicular networks with such high-speed mobility.

The concept of a link in IPv6 does not match that of a link in VANET because of the physical separation of communication ranges of vehicles in a connected VANET. That is, in a linear topology of three vehicles (Vehicle-1, Vehicle-2, and Vehicle-3), Vehicle-1 and Vehicle-2 can communicate directly with each other. Vehicle-2 and Vehicle-3 can communicate directly with each other. However, Vehicle-1 and Vehicle-3 cannot communicate directly with each other due to the out-of-communication range. For the link in IPv6, all of three vehicles are on a link, so they can communicate directly with each other. On the other hand, in VANET, this on-link communication concept is not valid in VANET. Thus, the IPv6 ND should be extended to support this multi-link subnet of a connected VANET through either ND proxy or VANET routing.

For IP-based networking, IP address autoconfiguration is a prerequisite function. Since vehicles can communicate intermittently with TCC via RSUs through V2I communications, TCC can play a role of a DHCP server to allocate unique IPv6 addresses to the vehicles. This centralized address allocation can remove the delay of the DAD procedure for testing the uniqueness of IPv6 addresses.
For routing and mobility management, most of vehicles are equipped with a GPS navigator as a dedicated navigation system or a smartphone App. With this GPS navigator, vehicles can share their current position and trajectory (i.e., navigation path) with TCC. TCC can predict the future positions of the vehicles with their mobility information (i.e., the current position, speed, direction, and trajectory). With the prediction of the vehicle mobility, TCC supports RSUs to perform data packet routing and handover proactively.

12. Security Considerations

Security and privacy are important aspects in vehicular networks. Only valid vehicles should be allowed to participate in vehicular networking. Vehicle Identification Number (VIN) and user certificate can be used to authenticate a vehicle and user through road infrastructure, such as Road-Side Unit (RSU) connected to an authentication server in Traffic Control Center (TCC).

13. Contributors

IPWAVE is a group effort. The following people actively contributed to the survey text: Rex Buddenberg (Naval Postgraduate School), Thierry Ernst (YoGoKo), Bokor Laszlo (Budapest University of Technology and Economics), Jose Santa Lozanoi (Universidad of Murcia), and Richard Roy (MIT).

14. Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1B1A1B03035885). This work was supported in part by the Global Research Laboratory Program (2013K1A1A2A02078326) through NRF and the DGIST Research and Development Program (CPS Global Center) funded by the Ministry of Science, ICT & Future Planning. This work was supported in part by the French research project DataTweet (ANR-13-INFR-0008) and in part by the HIGHTS project funded by the European Commission I (636537-H2020).

15. References

15.1. Normative References

[RFC5889] Baccelli, E. and M. Townsley, "IP
15.2. Informative References

[SDN-DMM] Nguyen, T., Bonnet, C., and J. Harri, "SDN-based Distributed Mobility Management for 5G Networks"

[WAVE-1609.3] IEEE 1609 Working Group, "IEEE

Intelligent Transportation Systems, June 2017.

Authors’ Addresses

Jaehoon Paul Jeong
Department of Software
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon, Gyeonggi-Do 440-746
Republic of Korea

Phone: +82 31 299 4957
Fax: +82 31 290 7996
EMail: pauljeong@skku.edu
URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

Sandra Cespedes
Department of Electrical Engineering
Universidad de Chile
Av. Tupper 2007, Of. 504
Santiago, 8370451
Chile

Phone: +56 2 29784093
EMail: scespede@niclabs.cl

Nabil Benamar
Department of Computer Sciences
High School of Technology of Meknes
Moulay Ismail University
Morocco

Phone: +212 6 70 83 22 36
EMail: benamar73@gmail.com

Jerome Haerri
Communication Systems Department
EURECOM
Sophia-Antipolis
France

Phone: +33 4 93 00 81 34
EMail: jerome.haerri@eurecom.fr
Michelle Wetterwald
FBConsulting
21, Route de Luxembourg
Wasserbillig, Luxembourg L-6633
Luxembourg

EMail: Michelle.Wetterwald@gmail.com