
Network Working Group M. Bjorklund
Internet-Draft Tail-f Systems
Updates: 7950 (if approved) J. Schoenwaelder
Intended status: Standards Track Jacobs University
Expires: July 17, 2018 P. Shafer
 K. Watsen
 Juniper Networks
 R. Wilton
 Cisco Systems
 January 13, 2018

 Network Management Datastore Architecture
 draft-ietf-netmod-revised-datastores-10

Abstract

 Datastores are a fundamental concept binding the data models written
 in the YANG data modeling language to network management protocols
 such as NETCONF and RESTCONF. This document defines an architectural
 framework for datastores based on the experience gained with the
 initial simpler model, addressing requirements that were not well
 supported in the initial model. This document updates RFC 7950.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 17, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Bjorklund, et al. Expires July 17, 2018 [Page 1]

Internet-Draft January 2018

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Objectives . 3
 3. Terminology . 4
 4. Background . 7
 4.1. Original Model of Datastores 8
 5. Architectural Model of Datastores 9
 5.1. Conventional Configuration Datastores 10
 5.1.1. The Startup Configuration Datastore (<startup>) . . . 11
 5.1.2. The Candidate Configuration Datastore (<candidate>) . 11
 5.1.3. The Running Configuration Datastore (<running>) . . . 12
 5.1.4. The Intended Configuration Datastore (<intended>) . . 12
 5.2. Dynamic Configuration Datastores 13
 5.3. The Operational State Datastore (<operational>) 13
 5.3.1. Remnant Configuration 14
 5.3.2. Missing Resources 15
 5.3.3. System-controlled Resources 15
 5.3.4. Origin Metadata Annotation 15
 6. Implications on YANG . 17
 6.1. XPath Context . 17
 6.2. Invocation of Actions and RPCs 18
 7. YANG Modules . 18
 8. IANA Considerations . 24
 8.1. Updates to the IETF XML Registry 24
 8.2. Updates to the YANG Module Names Registry 24
 9. Security Considerations 24
 10. Acknowledgments . 25
 11. References . 25
 11.1. Normative References 26
 11.2. Informative References 26
 Appendix A. Guidelines for Defining Datastores 27
 A.1. Define which YANG modules can be used in the datastore . 27
 A.2. Define which subset of YANG-modeled data applies 28
 A.3. Define how data is actualized 28
 A.4. Define which protocols can be used 28
 A.5. Define YANG identities for the datastore 28
 Appendix B. Ephemeral Dynamic Configuration Datastore Example . 29
 Appendix C. Example Data . 30
 C.1. System Example . 30

Bjorklund, et al. Expires July 17, 2018 [Page 2]

Internet-Draft January 2018

 C.2. BGP Example . 33
 C.2.1. Datastores . 35
 C.2.2. Adding a Peer . 35
 C.2.3. Removing a Peer 36
 C.3. Interface Example . 37
 C.3.1. Pre-provisioned Interfaces 37
 C.3.2. System-provided Interface 38
 Authors’ Addresses . 39

1. Introduction

 This document provides an architectural framework for datastores as
 they are used by network management protocols such as NETCONF
 [RFC6241], RESTCONF [RFC8040] and the YANG [RFC7950] data modeling
 language. Datastores are a fundamental concept binding network
 management data models to network management protocols. Agreement on
 a common architectural model of datastores ensures that data models
 can be written in a network management protocol agnostic way. This
 architectural framework identifies a set of conceptual datastores but
 it does not mandate that all network management protocols expose all
 these conceptual datastores. This architecture is agnostic with
 regard to the encoding used by network management protocols.

 This document updates RFC 7950 by refining the definition of the
 accessible tree for some XPath context (see Section 6.1) and the
 invocation context of operations (see Section 6.2).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Objectives

 Network management data objects can often take two different values,
 the value configured by the user or an application (configuration)
 and the value that the device is actually using (operational state).
 These two values may be different for a number of reasons, e.g.,
 system internal interactions with hardware, interaction with
 protocols or other devices, or simply the time it takes to propagate
 a configuration change to the software and hardware components of a
 system. Furthermore, configuration and operational state data
 objects may have different lifetimes.

 The original model of datastores required these data objects to be
 modeled twice in the YANG schema, as "config true" objects and as
 "config false" objects. The convention adopted by the interfaces

Bjorklund, et al. Expires July 17, 2018 [Page 3]

Internet-Draft January 2018

 data model ([RFC7223]) and the IP data model ([RFC7277]) was using
 two separate branches rooted at the root of the data tree, one branch
 for configuration data objects and one branch for operational state
 data objects.

 The duplication of definitions and the ad-hoc separation of
 operational state data from configuration data leads to a number of
 problems. Having configuration and operational state data in
 separate branches in the data model is operationally complicated and
 impacts the readability of module definitions. Furthermore, the
 relationship between the branches is not machine readable and filter
 expressions operating on configuration and on related operational
 state are different.

 With the revised architectural model of datastores defined in this
 document, the data objects are defined only once in the YANG schema
 but independent instantiations can appear in different datastores,
 e.g., one for a configured value and another for an operationally
 used value. This provides a more elegant and simpler solution to the
 problem.

 The revised architectural model of datastores supports additional
 datastores for systems that support more advanced processing chains
 converting configuration to operational state. For example, some
 systems support configuration that is not currently used (so called
 inactive configuration) or they support configuration templates that
 are used to expand configuration data via a common template.

3. Terminology

 This document defines the following terminology. Some of the terms
 are revised definitions of terms originally defined in [RFC6241] and
 [RFC7950] (see also section Section 4). The revised definitions are
 semantically equivalent with the definitions found in [RFC6241] and
 [RFC7950]. It is expected that the revised definitions provided in
 this section will replace the definitions in [RFC6241] and [RFC7950]
 when these documents are revised.

 o datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof. A
 datastore maps to an instantiated YANG data tree.

 o schema node: A node in the schema tree. The formal definition is
 in RFC 7950.

Bjorklund, et al. Expires July 17, 2018 [Page 4]

Internet-Draft January 2018

 o datastore schema: The combined set of schema nodes for all modules
 supported by a particular datastore, taking into consideration any
 deviations and enabled features for that datastore.

 o configuration: Data that is required to get a device from its
 initial default state into a desired operational state. This data
 is modeled in YANG using "config true" nodes. Configuration can
 originate from different sources.

 o configuration datastore: A datastore holding configuration.

 o running configuration datastore: A configuration datastore holding
 the current configuration of the device. It may include
 configuration that requires further transformations before it can
 be applied. This datastore is referred to as "<running>".

 o candidate configuration datastore: A configuration datastore that
 can be manipulated without impacting the device’s running
 configuration datastore and that can be committed to the running
 configuration datastore. This datastore is referred to as
 "<candidate>".

 o startup configuration datastore: A configuration datastore holding
 the configuration loaded by the device into the running
 configuration datastore when it boots. This datastore is referred
 to as "<startup>".

 o intended configuration: Configuration that is intended to be used
 by the device. It represents the configuration after all
 configuration transformations to <running> have been performed and
 is the configuration that the system attempts to apply.

 o intended configuration datastore: A configuration datastore
 holding the complete intended configuration of the device. This
 datastore is referred to as "<intended>".

 o configuration transformation: The addition, modification or
 removal of configuration between the <running> and <intended>
 datastores. Examples of configuration transformations include the
 removal of inactive configuration and the configuration produced
 through the expansion of templates.

 o conventional configuration datastore: One of the following set of
 configuration datastores: <running>, <startup>, <candidate>, and
 <intended>. These datastores share a common datastore schema, and
 protocol operations allow copying data between these datastores.
 The term "conventional" is chosen as a generic umbrella term for
 these datastores.

Bjorklund, et al. Expires July 17, 2018 [Page 5]

Internet-Draft January 2018

 o conventional configuration: Configuration that is stored in any of
 the conventional configuration datastores.

 o dynamic configuration datastore: A configuration datastore holding
 configuration obtained dynamically during the operation of a
 device through interaction with other systems, rather than through
 one of the conventional configuration datastores.

 o dynamic configuration: Configuration obtained via a dynamic
 configuration datastore.

 o learned configuration: Configuration that has been learned via
 protocol interactions with other systems and that is neither
 conventional nor dynamic configuration.

 o system configuration: Configuration that is supplied by the device
 itself.

 o default configuration: Configuration that is not explicitly
 provided but for which a value defined in the data model is used.

 o applied configuration: Configuration that is actively in use by a
 device. Applied configuration originates from conventional,
 dynamic, learned, system and default configuration.

 o system state: The additional data on a system that is not
 configuration, such as read-only status information and collected
 statistics. System state is transient and modified by
 interactions with internal components or other systems. System
 state is modeled in YANG using "config false" nodes.

 o operational state: The combination of applied configuration and
 system state.

 o operational state datastore: A datastore holding the complete
 operational state of the device. This datastore is referred to as
 "<operational>".

 o origin: A metadata annotation indicating the origin of a data
 item.

 o remnant configuration: Configuration that remains part of the
 applied configuration for a period of time after it has been
 removed from the intended configuration or dynamic configuration.
 The time period may be minimal, or may last until all resources
 used by the newly-deleted configuration (e.g., network
 connections, memory allocations, file handles) have been
 deallocated.

Bjorklund, et al. Expires July 17, 2018 [Page 6]

Internet-Draft January 2018

 The following additional terms are not datastore specific but
 commonly used and thus defined here as well:

 o client: An entity that can access YANG-defined data on a server,
 over some network management protocol.

 o server: An entity that provides access to YANG-defined data to a
 client, over some network management protocol.

 o notification: A server-initiated message indicating that a certain
 event has been recognized by the server.

 o remote procedure call: An operation that can be invoked by a
 client on a server.

4. Background

 NETCONF [RFC6241] provides the following definitions:

 o datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof.

 o configuration datastore: The datastore holding the complete set of
 configuration that is required to get a device from its initial
 default state into a desired operational state.

 YANG 1.1 [RFC7950] provides the following refinements when NETCONF is
 used with YANG (which is the usual case but note that NETCONF was
 defined before YANG existed):

 o datastore: When modeled with YANG, a datastore is realized as an
 instantiated data tree.

 o configuration datastore: When modeled with YANG, a configuration
 datastore is realized as an instantiated data tree with
 configuration.

 [RFC6244] defined operational state data as follows:

 o Operational state data is a set of data that has been obtained by
 the system at runtime and influences the system’s behavior similar
 to configuration data. In contrast to configuration data,
 operational state is transient and modified by interactions with
 internal components or other systems via specialized protocols.

 Section 4.3.3 of [RFC6244] discusses operational state and among
 other things mentions the option to consider operational state as

Bjorklund, et al. Expires July 17, 2018 [Page 7]

Internet-Draft January 2018

 being stored in another datastore. Section 4.4 of [RFC6244] then
 concludes that at the time of the writing, modeling state as distinct
 leafs and distinct branches is the recommended approach.

 Implementation experience and requests from operators
 [I-D.ietf-netmod-opstate-reqs], [I-D.openconfig-netmod-opstate]
 indicate that the datastore model initially designed for NETCONF and
 refined by YANG needs to be extended. In particular, the notion of
 intended configuration and applied configuration has developed.

4.1. Original Model of Datastores

 The following drawing shows the original model of datastores as it is
 currently used by NETCONF [RFC6241]:

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 v
 operational state <--- control plane
 (cf, ro)

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote datastores

 Figure 1

 Note that this diagram simplifies the model: read-only (ro) and read-
 write (rw) is to be understood at a conceptual level. In NETCONF,
 for example, support for <candidate> and <startup> is optional and
 <running> does not have to be writable. Furthermore, <startup> can
 only be modified by copying <running> to <startup> in the
 standardized NETCONF datastore editing model. The RESTCONF protocol
 does not expose these differences and instead provides only a
 writable unified datastore, which hides whether edits are done
 through <candidate> or by directly modifying <running> or via some
 other implementation specific mechanism. RESTCONF also hides how
 configuration is made persistent. Note that implementations may also
 have additional datastores that can propagate changes to <running>.
 NETCONF explicitly mentions so called named datastores.

Bjorklund, et al. Expires July 17, 2018 [Page 8]

Internet-Draft January 2018

 Some observations:

 o Operational state has not been defined as a datastore although
 there were proposals in the past to introduce an operational state
 datastore.

 o The NETCONF <get> operation returns the contents of <running>
 together with the operational state. It is therefore necessary
 that "config false" data is in a different branch than the "config
 true" data if the operational state can have a different lifetime
 compared to configuration or if configuration is not immediately
 or successfully applied.

 o Several implementations have proprietary mechanisms that allow
 clients to store inactive data in <running>. Inactive data is
 conceptually removed before validation.

 o Some implementations have proprietary mechanisms that allow
 clients to define configuration templates in <running>. These
 templates are expanded automatically by the system, and the
 resulting configuration is applied internally.

 o Some operators have reported that it is essential for them to be
 able to retrieve the configuration that has actually been
 successfully applied, which may be a subset or a superset of the
 <running> configuration.

5. Architectural Model of Datastores

 Below is a new conceptual model of datastores extending the original
 model in order to reflect the experience gained with the original
 model.

Bjorklund, et al. Expires July 17, 2018 [Page 9]

Internet-Draft January 2018

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 | // configuration transformations,
 | // e.g., removal of nodes marked as
 | // "inactive", expansion of
 | // templates
 v
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 | // changes applied, subject to
 | // local factors, e.g., missing
 | // resources, delays
 |
 dynamic | +-------- learned configuration
 configuration | +-------- system configuration
 datastores -----+ | +-------- default configuration
 | | |
 v v v
 +---------------+
 | <operational> | <-- system state
 | (ct + cf, ro) |
 +---------------+

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote named datastores

 Figure 2

5.1. Conventional Configuration Datastores

 The conventional configuration datastores are a set of configuration
 datastores that share exactly the same datastore schema, allowing
 data to be copied between them. The term is meant as a generic
 umbrella description of these datastores. If a module does not
 contain any configuration data nodes and it is not needed to satisfy
 any imports, then it MAY be omitted from the datastore schema for the

Bjorklund, et al. Expires July 17, 2018 [Page 10]

Internet-Draft January 2018

 conventional configuration datastores. The set of datastores
 include:

 o <running>

 o <candidate>

 o <startup>

 o <intended>

 Other conventional configuration datastores may be defined in future
 documents.

 The flow of data between these datastores is depicted in Section 5.

 The specific protocols may define explicit operations to copy between
 these datastores, e.g., NETCONF defines the <copy-config> operation.

5.1.1. The Startup Configuration Datastore (<startup>)

 The startup configuration datastore (<startup>) is a configuration
 datastore holding the configuration loaded by the device when it
 boots. <startup> is only present on devices that separate the
 startup configuration from the running configuration datastore.

 The startup configuration datastore may not be supported by all
 protocols or implementations.

 On devices that support non-volatile storage, the contents of
 <startup> will typically persist across reboots via that storage. At
 boot time, the device loads the saved startup configuration into
 <running>. To save a new startup configuration, data is copied to
 <startup>, either via implicit or explicit protocol operations.

5.1.2. The Candidate Configuration Datastore (<candidate>)

 The candidate configuration datastore (<candidate>) is a
 configuration datastore that can be manipulated without impacting the
 device’s current configuration and that can be committed to
 <running>.

 The candidate configuration datastore may not be supported by all
 protocols or implementations.

 <candidate> does not typically persist across reboots, even in the
 presence of non-volatile storage. If <candidate> is stored using

Bjorklund, et al. Expires July 17, 2018 [Page 11]

Internet-Draft January 2018

 non-volatile storage, it is reset at boot time to the contents of
 <running>.

5.1.3. The Running Configuration Datastore (<running>)

 The running configuration datastore (<running>) is a configuration
 datastore that holds the current configuration of the device. It MAY
 include configuration that requires further transformation before it
 can be applied, e.g., inactive configuration, or template-mechanism-
 oriented configuration that needs further expansion. However,
 <running> MUST always be a valid configuration data tree, as defined
 in Section 8.1 of [RFC7950].

 <running> MUST be supported if the device can be configured via
 conventional configuration datastores.

 If a device does not have a distinct <startup> and non-volatile
 storage is available, the device will typically use that non-volatile
 storage to allow <running> to persist across reboots.

5.1.4. The Intended Configuration Datastore (<intended>)

 The intended configuration datastore (<intended>) is a read-only
 configuration datastore. It represents the configuration after all
 configuration transformations to <running> are performed (e.g.,
 template expansion, removal of inactive configuration), and is the
 configuration that the system attempts to apply.

 <intended> is tightly coupled to <running>. Whenever data is written
 to <running>, then <intended> MUST also be immediately updated by
 performing all necessary configuration transformations to the
 contents of <running> and then <intended> is validated.

 <intended> MAY also be updated independently of <running> if the
 effect of a configuration transformation changes, but <intended> MUST
 always be a valid configuration data tree, as defined in Section 8.1
 of [RFC7950].

 For simple implementations, <running> and <intended> are identical.

 The contents of <intended> are also related to the "config true"
 subset of <operational>, and hence a client can determine to what
 extent the intended configuration is currently in use by checking
 whether the contents of <intended> also appear in <operational>.

 <intended> does not persist across reboots; its relationship with
 <running> makes that unnecessary.

Bjorklund, et al. Expires July 17, 2018 [Page 12]

Internet-Draft January 2018

 Currently there are no standard mechanisms defined that affect
 <intended> so that it would have different content than <running>,
 but this architecture allows for such mechanisms to be defined.

 One example of such a mechanism is support for marking nodes as
 inactive in <running>. Inactive nodes are not copied to <intended>.
 A second example is support for templates, which can perform
 transformations on the configuration from <running> to the
 configuration written to <intended>.

5.2. Dynamic Configuration Datastores

 The model recognizes the need for dynamic configuration datastores
 that are, by definition, not part of the persistent configuration of
 a device. In some contexts, these have been termed ephemeral
 datastores since the information is ephemeral, i.e., lost upon
 reboot. The dynamic configuration datastores interact with the rest
 of the system through <operational>.

 The datastore schema for a dynamic configuration datastore MAY differ
 from the datastore schema used for conventional configuration
 datastores. If a module does not contain any configuration data
 nodes and it is not needed to satisfy any imports, then it MAY be
 omitted from the datastore schema for the dynamic configuration
 datastore.

5.3. The Operational State Datastore (<operational>)

 The operational state datastore (<operational>) is a read-only
 datastore that consists of all "config true" and "config false" nodes
 defined in the datastore’s schema. In the original NETCONF model the
 operational state only had "config false" nodes. The reason for
 incorporating "config true" nodes here is to be able to expose all
 operational settings without having to replicate definitions in the
 data models.

 <operational> contains system state and all configuration actually
 used by the system. This includes all applied configuration from
 <intended>, learned configuration, system-provided configuration, and
 default values defined by any supported data models. In addition,
 <operational> also contains applied configuration from dynamic
 configuration datastores.

 The datastore schema for <operational> MUST be a superset of the
 combined datastore schema used in all configuration datastores except
 that configuration data nodes supported in a configuration datastore
 MAY be omitted from <operational> if a server is not able to
 accurately report them.

Bjorklund, et al. Expires July 17, 2018 [Page 13]

Internet-Draft January 2018

 Requests to retrieve nodes from <operational> always return the value
 in use if the node exists, regardless of any default value specified
 in the YANG module. If no value is returned for a given node, then
 this implies that the node is not used by the device.

 The interpretation of what constitutes as being "in use" by the
 system is dependent on both the schema definition and the device
 implementation. Generally, functionality that is enabled and
 operational on the system would be considered as being "in use".
 Conversely, functionality that is neither enabled nor operational on
 the system is considered as not being "in use", and hence SHOULD be
 omitted from <operational>.

 <operational> SHOULD conform to any constraints specified in the data
 model, but given the principal aim of returning "in use" values, it
 is possible that constraints MAY be violated under some
 circumstances, e.g., an abnormal value is "in use", the structure of
 a list is being modified, or due to remnant configuration (see
 Section 5.3.1). Note, that deviations SHOULD be used when it is
 known in advance that a device does not fully conform to the
 <operational> schema.

 Only semantic constraints MAY be violated, these are the YANG "when",
 "must", "mandatory", "unique", "min-elements", and "max-elements"
 statements; and the uniqueness of key values.

 Syntactic constraints MUST NOT be violated, including hierarchical
 organization, identifiers, and type-based constraints. If a node in
 <operational> does not meet the syntactic constraints then it MUST
 NOT be returned, and some other mechanism should be used to flag the
 error.

 <operational> does not persist across reboots.

5.3.1. Remnant Configuration

 Changes to configuration may take time to percolate through to
 <operational>. During this period, <operational> may contain nodes
 for both the previous and current configuration, as closely as
 possible tracking the current operation of the device. Such remnant
 configuration from the previous configuration persists until the
 system has released resources used by the newly-deleted configuration
 (e.g., network connections, memory allocations, file handles).

 Remnant configuration is a common example of where the semantic
 constraints defined in the data model cannot be relied upon for
 <operational>, since the system may have remnant configuration whose
 constraints were valid with the previous configuration and that are

Bjorklund, et al. Expires July 17, 2018 [Page 14]

Internet-Draft January 2018

 not valid with the current configuration. Since constraints on
 "config false" nodes may refer to "config true" nodes, remnant
 configuration may force the violation of those constraints.

5.3.2. Missing Resources

 Configuration in <intended> can refer to resources that are not
 available or otherwise not physically present. In these situations,
 these parts of <intended> are not applied. The data appears in
 <intended> but does not appear in <operational>.

 A typical example is an interface configuration that refers to an
 interface that is not currently present. In such a situation, the
 interface configuration remains in <intended> but the interface
 configuration will not appear in <operational>.

 Note that configuration validity cannot depend on the current state
 of such resources, since that would imply that removing a resource
 might render the configuration invalid. This is unacceptable,
 especially given that rebooting such a device would cause it to
 restart with an invalid configuration. Instead we allow
 configuration for missing resources to exist in <running> and
 <intended>, but it will not appear in <operational>.

5.3.3. System-controlled Resources

 Sometimes resources are controlled by the device and the
 corresponding system controlled data appears in (and disappears from)
 <operational> dynamically. If a system controlled resource has
 matching configuration in <intended> when it appears, the system will
 try to apply the configuration, which causes the configuration to
 appear in <operational> eventually (if application of the
 configuration was successful).

5.3.4. Origin Metadata Annotation

 As configuration flows into <operational>, it is conceptually marked
 with a metadata annotation ([RFC7952]) that indicates its origin.
 The origin applies to all configuration nodes except non-presence
 containers. The "origin" metadata annotation is defined in
 Section 7. The values are YANG identities. The following identities
 are defined:

 o origin: abstract base identity from which the other origin
 identities are derived.

 o intended: represents configuration provided by <intended>.

Bjorklund, et al. Expires July 17, 2018 [Page 15]

Internet-Draft January 2018

 o dynamic: represents configuration provided by a dynamic
 configuration datastore.

 o system: represents configuration provided by the system itself.
 Examples of system configuration include applied configuration for
 an always existing loopback interface, or interface configuration
 that is auto-created due to the hardware currently present in the
 device.

 o learned: represents configuration that has been learned via
 protocol interactions with other systems, including protocols such
 as link-layer negotiations, routing protocols, DHCP, etc.

 o default: represents configuration using a default value specified
 in the data model, using either values in the "default" statement
 or any values described in the "description" statement. The
 default origin is only used when the configuration has not been
 provided by any other source.

 o unknown: represents configuration for which the system cannot
 identify the origin.

 These identities can be further refined, e.g., there could be
 separate identities for particular types or instances of dynamic
 configuration datastores derived from "dynamic".

 For all configuration data nodes in <operational>, the device SHOULD
 report the origin that most accurately reflects the source of the
 configuration that is in use by the system.

 In cases where it could be ambiguous as to which origin should be
 used, i.e. where the same data node value has originated from
 multiple sources, then the description statement in the YANG module
 SHOULD be used as guidance for choosing the appropriate origin. For
 example:

 If for a particular configuration node, the associated YANG
 description statement indicates that a protocol negotiated value
 overrides any configured value, then the origin would be reported as
 "learned", even when a learned value is the same as the configured
 value.

 Conversely, if for a particular configuration node, the associated
 YANG description statement indicates that a protocol negotiated value
 does not override an explicitly configured value, then the origin
 would be reported as "intended" even when a learned value is the same
 as the configured value.

Bjorklund, et al. Expires July 17, 2018 [Page 16]

Internet-Draft January 2018

 In the case that a device cannot provide an accurate origin for a
 particular configuration data node then it SHOULD use the origin
 "unknown".

6. Implications on YANG

6.1. XPath Context

 This section updates section 6.4.1 of RFC 7950.

 If a server implements the architecture defined in this document, the
 accessible trees for some XPath contexts are refined as follows:

 o If the XPath expression is defined in a substatement to a data
 node that represents system state, the accessible tree is all
 operational state in the server. The root node has all top-level
 data nodes in all modules as children.

 o If the XPath expression is defined in a substatement to a
 "notification" statement, the accessible tree is the notification
 instance and all operational state in the server. If the
 notification is defined on the top level in a module, then the
 root node has the node representing the notification being defined
 and all top-level data nodes in all modules as children.
 Otherwise, the root node has all top-level data nodes in all
 modules as children.

 o If the XPath expression is defined in a substatement to an "input"
 statement in an "rpc" or "action" statement, the accessible tree
 is the RPC or action operation instance and all operational state
 in the server. The root node has top-level data nodes in all
 modules as children. Additionally, for an RPC, the root node also
 has the node representing the RPC operation being defined as a
 child. The node representing the operation being defined has the
 operation’s input parameters as children.

 o If the XPath expression is defined in a substatement to an
 "output" statement in an "rpc" or "action" statement, the
 accessible tree is the RPC or action operation instance and all
 operational state in the server. The root node has top-level data
 nodes in all modules as children. Additionally, for an RPC, the
 root node also has the node representing the RPC operation being
 defined as a child. The node representing the operation being
 defined has the operation’s output parameters as children.

Bjorklund, et al. Expires July 17, 2018 [Page 17]

Internet-Draft January 2018

6.2. Invocation of Actions and RPCs

 This section updates section 7.15 of RFC 7950.

 Actions are always invoked in the context of the operational state
 datastore. The node for which the action is invoked MUST exist in
 the operational state datastore.

 Note that this document does not constrain the result of invoking an
 RPC or action in any way. For example, an RPC might be defined to
 modify the contents of some datastore.

7. YANG Modules

 <CODE BEGINS> file "ietf-datastores@2018-01-11.yang"

 module ietf-datastores {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-datastores";
 prefix ds;

 organization
 "IETF Network Modeling (NETMOD) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Author: Phil Shafer
 <mailto:phil@juniper.net>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Rob Wilton
 <rwilton@cisco.com>";

 description
 "This YANG module defines two sets of identities for datastores.
 The first identifies the datastores themselves, the second
 identifies datastore properties.

Bjorklund, et al. Expires July 17, 2018 [Page 18]

Internet-Draft January 2018

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (http://www.rfc-editor.org/info/rfcxxxx); see the RFC itself
 for full legal notices.";

 revision 2018-01-11 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Network Management Datastore Architecture";
 }

 /*
 * Identities
 */

 identity datastore {
 description
 "Abstract base identity for datastore identities.";
 }

 identity conventional {
 base datastore;
 description
 "Abstract base identity for conventional configuration
 datastores.";
 }

 identity running {
 base conventional;
 description
 "The running configuration datastore.";
 }

 identity candidate {
 base conventional;
 description
 "The candidate configuration datastore.";
 }

Bjorklund, et al. Expires July 17, 2018 [Page 19]

Internet-Draft January 2018

 identity startup {
 base conventional;
 description
 "The startup configuration datastore.";
 }

 identity intended {
 base conventional;
 description
 "The intended configuration datastore.";
 }

 identity dynamic {
 base datastore;
 description
 "Abstract base identity for dynamic configuration datastores.";
 }

 identity operational {
 base datastore;
 description
 "The operational state datastore.";
 }

 /*
 * Type definitions
 */

 typedef datastore-ref {
 type identityref {
 base datastore;
 }
 description
 "A datastore identity reference.";
 }

 }

 <CODE ENDS>

 <CODE BEGINS> file "ietf-origin@2018-01-11.yang"

 module ietf-origin {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-origin";
 prefix or;

 import ietf-yang-metadata {

Bjorklund, et al. Expires July 17, 2018 [Page 20]

Internet-Draft January 2018

 prefix md;
 }

 organization
 "IETF Network Modeling (NETMOD) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Author: Phil Shafer
 <mailto:phil@juniper.net>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Rob Wilton
 <rwilton@cisco.com>";

 description
 "This YANG module defines an ’origin’ metadata annotation, and a
 set of identities for the origin value.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (http://www.rfc-editor.org/info/rfcxxxx); see the RFC itself
 for full legal notices.";

 revision 2018-01-11 {
 description
 "Initial revision.";
 reference

Bjorklund, et al. Expires July 17, 2018 [Page 21]

Internet-Draft January 2018

 "RFC XXXX: Network Management Datastore Architecture";
 }

 /*
 * Identities
 */

 identity origin {
 description
 "Abstract base identity for the origin annotation.";
 }

 identity intended {
 base origin;
 description
 "Denotes configuration from the intended configuration
 datastore";
 }

 identity dynamic {
 base origin;
 description
 "Denotes configuration from a dynamic configuration
 datastore.";
 }

 identity system {
 base origin;
 description
 "Denotes configuration originated by the system itself.

 Examples of system configuration include applied configuration
 for an always existing loopback interface, or interface
 configuration that is auto-created due to the hardware
 currently present in the device.";
 }

 identity learned {
 base origin;
 description
 "Denotes configuration learned from protocol interactions with
 other devices, instead of via either the intended
 configuration datastore or any dynamic configuration
 datastore.

 Examples of protocols that provide learned configuration
 include link-layer negotiations, routing protocols, and
 DHCP.";

Bjorklund, et al. Expires July 17, 2018 [Page 22]

Internet-Draft January 2018

 }

 identity default {
 base origin;
 description
 "Denotes configuration that does not have an configured or
 learned value, but has a default value in use. Covers both
 values defined in a ’default’ statement, and values defined
 via an explanation in a ’description’ statement.";
 }

 identity unknown {
 base origin;
 description
 "Denotes configuration for which the system cannot identify the
 origin.";
 }

 /*
 * Type definitions
 */

 typedef origin-ref {
 type identityref {
 base origin;
 }
 description
 "An origin identity reference.";
 }

 /*
 * Metadata annotations
 */

 md:annotation origin {
 type origin-ref;
 description
 "The ’origin’ annotation can be present on any configuration
 data node in the operational state datastore. It specifies
 from where the node originated. If not specified for a given
 configuration data node then the origin is the same as the
 origin of its parent node in the data tree. The origin for
 any top level configuration data nodes must be specified.";
 }
 }

 <CODE ENDS>

Bjorklund, et al. Expires July 17, 2018 [Page 23]

Internet-Draft January 2018

8. IANA Considerations

8.1. Updates to the IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registrations are
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-datastores
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-origin
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

8.2. Updates to the YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the following
 registrations are requested:

 name: ietf-datastores
 namespace: urn:ietf:params:xml:ns:yang:ietf-datastores
 prefix: ds
 reference: RFC XXXX

 name: ietf-origin
 namespace: urn:ietf:params:xml:ns:yang:ietf-origin
 prefix: or
 reference: RFC XXXX

9. Security Considerations

 This document discusses an architectural model of datastores for
 network management using NETCONF/RESTCONF and YANG. It has no
 security impact on the Internet.

 Although this document specifies several YANG modules, these modules
 only define identities and a metadata annotation, hence the "YANG
 module security guidelines" do not apply.

 The origin metadata annotation exposes the origin of values in the
 applied configuration. Origin information may provide hints that
 certain control plane protocols are active on a device. Since origin
 information is tied to applied configuration values, it is only
 accessible to clients that have the permissions to read the applied
 configuration values. Security administrators should consider the

Bjorklund, et al. Expires July 17, 2018 [Page 24]

Internet-Draft January 2018

 sensitivity of origin information while defining access control
 rules.

10. Acknowledgments

 This document grew out of many discussions that took place since
 2010. Several Internet-Drafts ([I-D.bjorklund-netmod-operational],
 [I-D.wilton-netmod-opstate-yang], [I-D.ietf-netmod-opstate-reqs],
 [I-D.kwatsen-netmod-opstate], [I-D.openconfig-netmod-opstate]) and
 [RFC6244] touched on some of the problems of the original datastore
 model. The following people were authors to these Internet-Drafts or
 otherwise actively involved in the discussions that led to this
 document:

 o Lou Berger, LabN Consulting, L.L.C., <lberger@labn.net>

 o Andy Bierman, YumaWorks, <andy@yumaworks.com>

 o Marcus Hines, Google, <hines@google.com>

 o Christian Hopps, Deutsche Telekom, <chopps@chopps.org>

 o Balazs Lengyel, Ericsson, <balazs.lengyel@ericsson.com>

 o Acee Lindem, Cisco Systems, <acee@cisco.com>

 o Ladislav Lhotka, CZ.NIC, <lhotka@nic.cz>

 o Thomas Nadeau, Brocade Networks, <tnadeau@lucidvision.com>

 o Tom Petch, Engineering Networks Ltd, <ietfc@btconnect.com>

 o Anees Shaikh, Google, <aashaikh@google.com>

 o Rob Shakir, Google, <robjs@google.com>

 o Jason Sterne, Nokia, <jason.sterne@nokia.co>

 Juergen Schoenwaelder was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

11. References

Bjorklund, et al. Expires July 17, 2018 [Page 25]

Internet-Draft January 2018

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997, <https://www.rfc-editor.org/info/
 rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www
 .rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG", RFC
 7952, DOI 10.17487/RFC7952, August 2016, <https://www.rfc-
 editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.bjorklund-netmod-operational]
 Bjorklund, M. and L. Lhotka, "Operational Data in NETCONF
 and YANG", draft-bjorklund-netmod-operational-00 (work in
 progress), October 2012.

 [I-D.ietf-netmod-opstate-reqs]
 Watsen, K. and T. Nadeau, "Terminology and Requirements
 for Enhanced Handling of Operational State", draft-ietf-
 netmod-opstate-reqs-04 (work in progress), January 2016.

 [I-D.kwatsen-netmod-opstate]
 Watsen, K., Bierman, A., Bjorklund, M., and J.
 Schoenwaelder, "Operational State Enhancements for YANG,
 NETCONF, and RESTCONF", draft-kwatsen-netmod-opstate-02
 (work in progress), February 2016.

Bjorklund, et al. Expires July 17, 2018 [Page 26]

Internet-Draft January 2018

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-
 netmod-opstate-01 (work in progress), July 2015.

 [I-D.wilton-netmod-opstate-yang]
 Wilton, R., ""With-config-state" Capability for NETCONF/
 RESTCONF", draft-wilton-netmod-opstate-yang-02 (work in
 progress), December 2015.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
 editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
 editor.org/info/rfc6020>.

 [RFC6244] Shafer, P., "An Architecture for Network Management Using
 NETCONF and YANG", RFC 6244, DOI 10.17487/RFC6244, June
 2011, <https://www.rfc-editor.org/info/rfc6244>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <https://www.rfc-editor.org/info/rfc7223>.

 [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management", RFC
 7277, DOI 10.17487/RFC7277, June 2014, <https://www.rfc-
 editor.org/info/rfc7277>.

Appendix A. Guidelines for Defining Datastores

 The definition of a new datastore in this architecture should be
 provided in a document (e.g., an RFC) purposed to the definition of
 the datastore. When it makes sense, more than one datastore may be
 defined in the same document (e.g., when the datastores are logically
 connected). Each datastore’s definition should address the points
 specified in the sections below.

A.1. Define which YANG modules can be used in the datastore

 Not all YANG modules may be used in all datastores. Some datastores
 may constrain which data models can be used in them. If it is
 desirable that a subset of all modules can be targeted to the
 datastore, then the documentation defining the datastore must
 indicate this.

Bjorklund, et al. Expires July 17, 2018 [Page 27]

Internet-Draft January 2018

A.2. Define which subset of YANG-modeled data applies

 By default, the data in a datastore is modeled by all YANG statements
 in the available YANG modules. However, it is possible to specify
 criteria that YANG statements must satisfy in order to be present in
 a datastore. For instance, maybe only "config true" nodes, or
 "config false" nodes that also have a specific YANG extension, are
 present in the datastore.

A.3. Define how data is actualized

 The new datastore must specify how it interacts with other
 datastores.

 For example, the diagram in Section 5 depicts dynamic configuration
 datastores feeding into <operational>. How this interaction occurs
 has to be defined by the particular dynamic configuration datastores.
 In some cases, it may occur implicitly, as soon as the data is put
 into the dynamic configuration datastore while, in other cases, an
 explicit action (e.g., an RPC) may be required to trigger the
 application of the datastore’s data.

A.4. Define which protocols can be used

 By default, it is assumed that both the NETCONF and RESTCONF
 protocols can be used to interact with a datastore. However, it may
 be that only a specific protocol can be used (e.g., ForCES) or that a
 subset of all protocol operations or capabilities are available
 (e.g., no locking or no XPath-based filtering).

A.5. Define YANG identities for the datastore

 The datastore must be defined with a YANG identity that uses the
 "ds:datastore" identity, or one of its derived identities, as its
 base. This identity is necessary so that the datastore can be
 referenced in protocol operations (e.g., <get-data>).

 The datastore may also be defined with an identity that uses the
 "or:origin" identity or one its derived identities as its base. This
 identity is needed if the datastore interacts with <operational> so
 that data originating from the datastore can be identified as such
 via the "origin" metadata attribute defined in Section 7.

 An example of these guidelines in use is provided in Appendix B.

Bjorklund, et al. Expires July 17, 2018 [Page 28]

Internet-Draft January 2018

Appendix B. Ephemeral Dynamic Configuration Datastore Example

 The section defines documentation for an example dynamic
 configuration datastore using the guidelines provided in Appendix A.
 While this example is very terse, it is expected to be that a
 standalone RFC would be needed when fully expanded.

 This example defines a dynamic configuration datastore called
 "ephemeral", which is loosely modeled after the work done in the I2RS
 working group.

 +--------------+---+
 | Name | Value |
 +--------------+---+
Name	ephemeral
YANG modules	all (default)
YANG nodes	all "config true" data nodes
How applied	changes automatically propagated to <operational>
Protocols	NC/RC (default)
YANG Module	(see below)
 +--------------+---+

 The example "ephemeral" datastore properties

Bjorklund, et al. Expires July 17, 2018 [Page 29]

Internet-Draft January 2018

 module example-ds-ephemeral {
 yang-version 1.1;
 namespace "urn:example:ds-ephemeral";
 prefix eph;

 import ietf-datastores {
 prefix ds;
 }
 import ietf-origin {
 prefix or;
 }

 // datastore identity
 identity ds-ephemeral {
 base ds:dynamic;
 description
 "The ephemeral dynamic configuration datastore.";
 }

 // origin identity
 identity or-ephemeral {
 base or:dynamic;
 description
 "Denotes data from the ephemeral dynamic configuration
 datastore.";
 }
 }

Appendix C. Example Data

 The use of datastores is complex, and many of the subtle effects are
 more easily presented using examples. This section presents a series
 of example data models with some sample contents of the various
 datastores.

C.1. System Example

 In this example, the following fictional module is used:

 module example-system {
 yang-version 1.1;
 namespace urn:example:system;
 prefix sys;

 import ietf-inet-types {
 prefix inet;
 }

Bjorklund, et al. Expires July 17, 2018 [Page 30]

Internet-Draft January 2018

 container system {
 leaf hostname {
 type string;
 }

 list interface {
 key name;

 leaf name {
 type string;
 }

 container auto-negotiation {
 leaf enabled {
 type boolean;
 default true;
 }
 leaf speed {
 type uint32;
 units mbps;
 description
 "The advertised speed, in mbps.";
 }
 }

 leaf speed {
 type uint32;
 units mbps;
 config false;
 description
 "The speed of the interface, in mbps.";
 }

 list address {
 key ip;

 leaf ip {
 type inet:ip-address;
 }
 leaf prefix-length {
 type uint8;
 }
 }
 }
 }
 }

Bjorklund, et al. Expires July 17, 2018 [Page 31]

Internet-Draft January 2018

 The operator has configured the host name and two interfaces, so the
 contents of <intended> are:

 <system xmlns="urn:example:system">

 <hostname>foo.example.com</hostname>

 <interface>
 <name>eth0</name>
 <auto-negotiation>
 <speed>1000</speed>
 </auto-negotiation>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>64</prefix-length>
 </address>
 </interface>

 <interface>
 <name>eth1</name>
 <address>
 <ip>2001:db8::20</ip>
 <prefix-length>64</prefix-length>
 </address>
 </interface>

 </system>

 The system has detected that the hardware for one of the configured
 interfaces ("eth1") is not yet present, so the configuration for that
 interface is not applied. Further, the system has received a host
 name and an additional IP address for "eth0" over DHCP. In addition
 to a default value, a loopback interface is automatically added by
 the system, and the result of the "speed" auto-negotiation. All of
 this is reflected in <operational>. Note how the origin metadata
 attribute for several "config true" data nodes is inherited from
 their parent data nodes.

Bjorklund, et al. Expires July 17, 2018 [Page 32]

Internet-Draft January 2018

 <system
 xmlns="urn:example:system"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">

 <hostname or:origin="or:learned">bar.example.com</hostname>

 <interface or:origin="or:intended">
 <name>eth0</name>
 <auto-negotiation>
 <enabled or:origin="or:default">true</enabled>
 <speed>1000</speed>
 </auto-negotiation>
 <speed>100</speed>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>64</prefix-length>
 </address>
 <address or:origin="or:learned">
 <ip>2001:db8::1:100</ip>
 <prefix-length>64</prefix-length>
 </address>
 </interface>

 <interface or:origin="or:system">
 <name>lo0</name>
 <address>
 <ip>::1</ip>
 <prefix-length>128</prefix-length>
 </address>
 </interface>

 </system>

C.2. BGP Example

 Consider the following fragment of a fictional BGP module:

Bjorklund, et al. Expires July 17, 2018 [Page 33]

Internet-Draft January 2018

 container bgp {
 leaf local-as {
 type uint32;
 }
 leaf peer-as {
 type uint32;
 }
 list peer {
 key name;
 leaf name {
 type inet:ip-address;
 }
 leaf local-as {
 type uint32;
 description
 ".... Defaults to ../local-as";
 }
 leaf peer-as {
 type uint32;
 description
 "... Defaults to ../peer-as";
 }
 leaf local-port {
 type inet:port;
 }
 leaf remote-port {
 type inet:port;
 default 179;
 }
 leaf state {
 config false;
 type enumeration {
 enum init;
 enum established;
 enum closing;
 }
 }
 }
 }

 In this example model, both bgp/peer/local-as and bgp/peer/peer-as
 have complex hierarchical values, allowing the user to specify
 default values for all peers in a single location.

 The model also follows the pattern of fully integrating state
 ("config false") nodes with configuration ("config true") nodes.
 There is no separate "bgp-state" hierarchy, with the accompanying

Bjorklund, et al. Expires July 17, 2018 [Page 34]

Internet-Draft January 2018

 repetition of containment and naming nodes. This makes the model
 simpler and more readable.

C.2.1. Datastores

 Each datastore represents differing views of these nodes. <running>
 will hold the configuration provided by the operator, for example a
 single BGP peer. <intended> will conceptually hold the data as
 validated, after the removal of data not intended for validation and
 after any local template mechanisms are performed. <operational>
 will show data from <intended> as well as any "config false" nodes.

C.2.2. Adding a Peer

 If the user configures a single BGP peer, then that peer will be
 visible in both <running> and <intended>. It may also appear in
 <candidate>, if the server supports the candidate configuration
 datastore. Retrieving the peer will return only the user-specified
 values.

 No time delay should exist between the appearance of the peer in
 <running> and <intended>.

 In this scenario, we’ve added the following to <running>:

 <bgp>
 <local-as>64501</local-as>
 <peer-as>64502</peer-as>
 <peer>
 <name>2001:db8::2:3</name>
 </peer>
 </bgp>

C.2.2.1. <operational>

 The operational datastore will contain the fully expanded peer data,
 including "config false" nodes. In our example, this means the
 "state" node will appear.

 In addition, <operational> will contain the "currently in use" values
 for all nodes. This means that local-as and peer-as will be
 populated even if they are not given values in <intended>. The value
 of bgp/local-as will be used if bgp/peer/local-as is not provided;
 bgp/peer-as and bgp/peer/peer-as will have the same relationship. In
 the operational view, this means that every peer will have values for
 their local-as and peer-as, even if those values are not explicitly
 configured but are provided by bgp/local-as and bgp/peer-as.

Bjorklund, et al. Expires July 17, 2018 [Page 35]

Internet-Draft January 2018

 Each BGP peer has a TCP connection associated with it, using the
 values of local-port and remote-port from <intended>. If those
 values are not supplied, the system will select values. When the
 connection is established, <operational> will contain the current
 values for the local-port and remote-port nodes regardless of the
 origin. If the system has chosen the values, the "origin" attribute
 will be set to "system". Before the connection is established, one
 or both of the nodes may not appear, since the system may not yet
 have their values.

 <bgp or:origin="or:intended">
 <local-as>64501</local-as>
 <peer-as>64502</peer-as>
 <peer>
 <name>2001:db8::2:3</name>
 <local-as or:origin="or:default">64501</local-as>
 <peer-as or:origin="or:default">64502</peer-as>
 <local-port or:origin="or:system">60794</local-port>
 <remote-port or:origin="or:default">179</remote-port>
 <state>established</state>
 </peer>
 </bgp>

C.2.3. Removing a Peer

 Changes to configuration may take time to percolate through the
 various software components involved. During this period, it is
 imperative to continue to give an accurate view of the working of the
 device. <operational> will contain nodes for both the previous and
 current configuration, as closely as possible tracking the current
 operation of the device.

 Consider the scenario where a client removes a BGP peer. When a peer
 is removed, the operational state will continue to reflect the
 existence of that peer until the peer’s resources are released,
 including closing the peer’s connection. During this period, the
 current data values will continue to be visible in <operational>,
 with the "origin" attribute set to indicate the origin of the
 original data.

Bjorklund, et al. Expires July 17, 2018 [Page 36]

Internet-Draft January 2018

 <bgp or:origin="or:intended">
 <local-as>64501</local-as>
 <peer-as>64502</peer-as>
 <peer>
 <name>2001:db8::2:3</name>
 <local-as or:origin="or:default">64501</local-as>
 <peer-as or:origin="or:default">64502</peer-as>
 <local-port or:origin="or:system">60794</local-port>
 <remote-port or:origin="or:default">179</remote-port>
 <state>closing</state>
 </peer>
 </bgp>

 Once resources are released and the connection is closed, the peer’s
 data is removed from <operational>.

C.3. Interface Example

 In this section, we will use this simple interface data model:

 container interfaces {
 list interface {
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf mtu {
 type uint16;
 }
 leaf-list ip-address {
 type inet:ip-address;
 }
 }
 }

C.3.1. Pre-provisioned Interfaces

 One common issue in networking devices is the support of Field
 Replaceable Units (FRUs) that can be inserted and removed from the
 device without requiring a reboot or interfering with normal
 operation. These FRUs are typically interface cards, and the devices
 support pre-provisioning of these interfaces.

Bjorklund, et al. Expires July 17, 2018 [Page 37]

Internet-Draft January 2018

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point, then <intended> might contain the
 following:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 Since the interface does not exist, this data does not appear in
 <operational>.

 When a FRU containing this interface is inserted, the system will
 detect it and process the associated configuration. <operational>
 will contain the data from <intended>, as well as nodes added by the
 system, such as the current value of the interface’s MTU.

 <interfaces or:origin="or:intended">
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 </interfaces>

 If the FRU is removed, the interface data is removed from
 <operational>.

C.3.2. System-provided Interface

 Imagine if the system provides a loopback interface (named "lo0")
 with a default ip-address of "127.0.0.1" and a default ip-address of
 "::1". The system will only provide configuration for this interface
 if there is no data for it in <intended>.

 When no configuration for "lo0" appears in <intended>, then
 <operational> will show the system-provided data:

 <interfaces or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Bjorklund, et al. Expires July 17, 2018 [Page 38]

Internet-Draft January 2018

 When configuration for "lo0" does appear in <intended>, then
 <operational> will show that data with the origin set to "intended".
 If the "ip-address" is not provided, then the system-provided value
 will appear as follows:

 <interfaces or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Authors’ Addresses

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Juergen Schoenwaelder
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

 Phil Shafer
 Juniper Networks

 Email: phil@juniper.net

 Kent Watsen
 Juniper Networks

 Email: kwatsen@juniper.net

 Robert Wilton
 Cisco Systems

 Email: rwilton@cisco.com

Bjorklund, et al. Expires July 17, 2018 [Page 39]

