
Network Working Group M. Bjorklund
Internet-Draft Tail-f Systems
Intended status: Standards Track L. Lhotka
Expires: January 6, 2018 CZ.NIC
 July 5, 2017

 YANG Schema Mount
 draft-ietf-netmod-schema-mount-06

Abstract

 This document defines a mechanism to combine YANG modules into the
 schema defined in other YANG modules.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bjorklund & Lhotka Expires January 6, 2018 [Page 1]

Internet-Draft YANG Schema Mount July 2017

Table of Contents

 1. Introduction . 2
 2. Terminology and Notation 5
 2.1. Glossary of New Terms 6
 2.2. Namespace Prefixes 6
 3. Schema Mount . 6
 3.1. Mount Point Definition 7
 3.2. Specification of the Mounted Schema 7
 3.3. Multiple Levels of Schema Mount 9
 4. Referring to Data Nodes in the Parent Schema 9
 5. RPC operations and Notifications 10
 6. Implementation Notes . 11
 7. Data Model . 11
 8. Schema Mount YANG Module 13
 9. IANA Considerations . 18
 10. Security Considerations 18
 11. Contributors . 18
 12. References . 19
 12.1. Normative References 19
 12.2. Informative References 19
 Appendix A. Example: Device Model with LNEs and NIs 20
 A.1. Physical Device . 21
 A.2. Logical Network Elements 22
 A.3. Network Instances . 25
 A.4. Invoking an RPC Operation 26
 Authors’ Addresses . 27

1. Introduction

 Modularity and extensibility were among the leading design principles
 of the YANG data modeling language. As a result, the same YANG
 module can be combined with various sets of other modules and thus
 form a data model that is tailored to meet the requirements of a
 specific use case. Server implementors are only required to specify
 all YANG modules comprising the data model (together with their
 revisions and other optional choices) in the YANG library data
 ([RFC7895], and Section 5.6.4 of [RFC7950]) implemented by the
 server. Such YANG modules appear in the data model "side by side",
 i.e., top-level data nodes of each module - if there are any - are
 also top-level nodes of the overall data model.

 Furthermore, YANG has two mechanisms for contributing a schema
 hierarchy defined elsewhere to the contents of an internal node of
 the schema tree; these mechanisms are realized through the following
 YANG statements:

Bjorklund & Lhotka Expires January 6, 2018 [Page 2]

Internet-Draft YANG Schema Mount July 2017

 o The "uses" statement explicitly incorporates the contents of a
 grouping defined in the same or another module. See Section 4.2.6
 of [RFC7950] for more details.

 o The "augment" statement explicitly adds contents to a target node
 defined in the same or another module. See Section 4.2.8 of
 [RFC7950] for more details.

 With both mechanisms, the source or target YANG module explicitly
 defines the exact location in the schema tree where the new nodes are
 placed.

 In some cases these mechanisms are not sufficient; it is often
 necessary that an existing module (or a set of modules) is added to
 the data model starting at a non-root location. For example, YANG
 modules such as "ietf-interfaces" [RFC7223] are often defined so as
 to be used in a data model of a physical device. Now suppose we want
 to model a device that supports multiple logical devices
 [I-D.ietf-rtgwg-lne-model], each of which has its own instantiation
 of "ietf-interfaces", and possibly other modules, but, at the same
 time, we want to be able to manage all these logical devices from the
 master device. Hence, we would like to have a schema like this:

 +--rw interfaces
 | +--rw interface* [name]
 | ...
 +--rw logical-device* [name]
 +--rw name
 | ...
 +--rw interfaces
 +--rw interface* [name]
 ...

 With the "uses" approach, the complete schema tree of
 "ietf-interfaces" would have to be wrapped in a grouping, and then
 this grouping would have to be used at the top level (for the master
 device) and then also in the "logical-device" list (for the logical
 devices). This approach has several disadvantages:

 o It is not scalable because every time there is a new YANG module
 that needs to be added to the logical device model, we have to
 update the model for logical devices with another "uses" statement
 pulling in contents of the new module.

 o Absolute references to nodes defined inside a grouping may break
 if the grouping is used in different locations.

Bjorklund & Lhotka Expires January 6, 2018 [Page 3]

Internet-Draft YANG Schema Mount July 2017

 o Nodes defined inside a grouping belong to the namespace of the
 module where it is used, which makes references to such nodes from
 other modules difficult or even impossible.

 o It would be difficult for vendors to add proprietary modules when
 the "uses" statements are defined in a standard module.

 With the "augment" approach, "ietf-interfaces" would have to augment
 the "logical-device" list with all its nodes, and at the same time
 define all its nodes at the top level. The same hierarchy of nodes
 would thus have to be defined twice, which is clearly not scalable
 either.

 This document introduces a new generic mechanism, denoted as schema
 mount, that allows for mounting one data model consisting of any
 number of YANG modules at a specified location of another (parent)
 schema. Unlike the "uses" and "augment" approaches discussed above,
 the mounted modules needn’t be specially prepared for mounting and,
 consequently, existing modules such as "ietf-interfaces" can be
 mounted without any modifications.

 The basic idea of schema mount is to label a data node in the parent
 schema as the mount point, and then define a complete data model to
 be attached to the mount point so that the labeled data node
 effectively becomes the root node of the mounted data model.

 In principle, the mounted schema can be specified at three different
 phases of the data model life cycle:

 1. Design-time: the mounted schema is defined along with the mount
 point in the parent YANG module. In this case, the mounted
 schema has to be the same for every implementation of the parent
 module.

 2. Implementation-time: the mounted schema is defined by a server
 implementor and is as stable as YANG library information, i.e.,
 it may change after an upgrade of server software but not after
 rebooting the server. Also, a client can learn the entire schema
 together with YANG library data.

 3. Run-time: the mounted schema is defined by instance data that is
 part of the mounted data model. If there are multiple instances
 of the same mount point (e.g., in multiple entries of a list),
 the mounted data model may be different for each instance.

 The schema mount mechanism defined in this document provides support
 only for the latter two cases. Design-time mounts are outside the

Bjorklund & Lhotka Expires January 6, 2018 [Page 4]

Internet-Draft YANG Schema Mount July 2017

 scope of this document, and could be possibly dealt with in a future
 revision of the YANG data modeling language.

 Schema mount applies to the data model, and specifically does not
 assume anything about the source of instance data for the mounted
 schemas. It may be implemented using the same instrumentation as the
 rest of the system, or it may be implemented by querying some other
 system. Future specifications may define mechanisms to control or
 monitor the implementation of specific mount points.

 This document allows mounting of complete data models only. Other
 specifications may extend this model by defining additional
 mechanisms such as mounting sub-hierarchies of a module.

2. Terminology and Notation

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o client

 o notification

 o server

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o action

 o configuration data

 o container

 o list

 o operation

 The following terms are defined in [RFC7223] and are not redefined
 here:

 o system-controlled interface

Bjorklund & Lhotka Expires January 6, 2018 [Page 5]

Internet-Draft YANG Schema Mount July 2017

 Tree diagrams used in this document follow the notation defined in
 [I-D.ietf-netmod-yang-tree-diagrams].

2.1. Glossary of New Terms

 o inline schema: a mounted schema whose definition is provided as
 part of the mounted data, using YANG library [RFC7895].

 o mount point: container or list node whose definition contains the
 "mount-point" extension statement. The argument of the
 "mount-point" statement defines the name of the mount point.

 o parent schema (of a particular mounted schema): the schema that
 contains the mount point for the mounted schema.

 o top-level schema: a schema according to [RFC7950] in which schema
 trees of each module (except augments) start at the root node.

2.2. Namespace Prefixes

 In this document, names of data nodes, YANG extensions, actions and
 other data model objects are often used without a prefix, as long as
 it is clear from the context in which YANG module each name is
 defined. Otherwise, names are prefixed using the standard prefix
 associated with the corresponding YANG module, as shown in Table 1.

 +---------+------------------------+-----------+
 | Prefix | YANG module | Reference |
 +---------+------------------------+-----------+
 | yangmnt | ietf-yang-schema-mount | Section 8 |
 | inet | ietf-inet-types | [RFC6991] |
 | yang | ietf-yang-types | [RFC6991] |
 | yanglib | ietf-yang-library | [RFC7895] |
 +---------+------------------------+-----------+

 Table 1: Namespace Prefixes

3. Schema Mount

 The schema mount mechanism defined in this document provides a new
 extensibility mechanism for use with YANG 1.1. In contrast to the
 existing mechanisms described in Section 1, schema mount defines the
 relationship between the source and target YANG modules outside these
 modules. The procedure consists of two separate steps that are
 described in the following subsections.

Bjorklund & Lhotka Expires January 6, 2018 [Page 6]

Internet-Draft YANG Schema Mount July 2017

3.1. Mount Point Definition

 A "container" or "list" node becomes a mount point if the
 "mount-point" extension (defined in the "ietf-yang-schema-mount"
 module) is used in its definition. This extension can appear only as
 a substatement of "container" and "list" statements.

 The argument of the "mount-point" extension is a YANG identifier that
 defines the name of the mount point. A module MAY contain multiple
 "mount-point" statements having the same argument.

 It is therefore up to the designer of the parent schema to decide
 about the placement of mount points. A mount point can also be made
 conditional by placing "if-feature" and/or "when" as substatements of
 the "container" or "list" statement that represents the mount point.

 The "mount-point" statement MUST NOT be used in a YANG version 1
 module. Note, however, that modules written in any YANG version,
 including version 1, can be mounted under a mount point.

3.2. Specification of the Mounted Schema

 Mounted schemas for all mount points in the parent schema are
 determined from state data in the "yangmnt:schema-mounts" container.
 Data in this container is intended to be as stable as data in the
 top-level YANG library [RFC7895]. In particular, it SHOULD NOT
 change during the same management session.

 Generally, the modules that are mounted under a mount point have no
 relation to the modules in the parent schema; specifically, if a
 module is mounted it may or may not be present in the parent schema
 and, if present, its data will generally have no relationship to the
 data of the parent. Exceptions are possible and such needs to be
 defined in the model defining the exception, e.g., the interface
 module in [I-D.ietf-rtgwg-lne-model].

 The "schema-mounts" container has the "mount-point" list as one of
 its children. Every entry of this list refers through its key to a
 mount point and specifies the mounted schema.

 If a mount point is defined in the parent schema but does not have an
 entry in the "mount-point" list, then the mounted schema is void,
 i.e., instances of that mount point MUST NOT contain any data above
 those that are defined in the parent schema.

 If multiple mount points with the same name are defined in the same
 module - either directly or because the mount point is defined in a
 grouping and the grouping is used multiple times - then the

Bjorklund & Lhotka Expires January 6, 2018 [Page 7]

Internet-Draft YANG Schema Mount July 2017

 corresponding "mount-point" entry applies equally to all such mount
 points.

 The "config" property of mounted schema nodes is overridden and all
 nodes in the mounted schema are read-only ("config false") if at
 least one of the following conditions is satisfied for a mount point:

 o the mount point is itself defined as "config false"

 o the "config" leaf in the corresponding entry of the "mount-point"
 list is set to "false".

 An entry of the "mount-point" list can specify the mounted schema in
 two different ways:

 1. by stating that the schema is available inline, i.e., in run-time
 instance data; or

 2. by referring to one or more entries of the "schema" list in the
 same instance of "schema-mounts".

 In case 1, the mounted schema is determined at run time: every
 instance of the mount point that exists in the parent tree MUST
 contain a copy of YANG library data [RFC7895] that defines the
 mounted schema exactly as for a top-level data model. A client is
 expected to retrieve this data from the instance tree, possibly after
 creating the mount point. Instances of the same mount point MAY use
 different mounted schemas.

 In case 2, the mounted schema is defined by the combination of all
 "schema" entries referred to in the "use-schema" list. In this case,
 the mounted schema is specified as implementation-time data that can
 be retrieved together with YANG library data for the parent schema,
 i.e., even before any instances of the mount point exist. However,
 the mounted schema has to be the same for all instances of the mount
 point. Note, that in this case a mount point may include a mounted
 YANG library module and the data contained in the mounted module MUST
 exactly match the data contained in the "schema" entries associated
 with the mount point.

 Each entry of the "schema" list contains:

 o a list in the YANG library format specifying all YANG modules (and
 revisions etc.) that are implemented or imported in the mounted
 schema. Note that this includes modules that solely augment other
 listed modules;

Bjorklund & Lhotka Expires January 6, 2018 [Page 8]

Internet-Draft YANG Schema Mount July 2017

 o (optionally) a new "mount-point" list that applies to mount points
 defined within the mounted schema.

3.3. Multiple Levels of Schema Mount

 YANG modules in a mounted schema MAY again contain mount points under
 which subschemas can be mounted. Consequently, it is possible to
 construct data models with an arbitrary number of schema levels. A
 subschema for a mount point contained in a mounted module can be
 specified in one of the following ways:

 o by implementing "ietf-yang-library" and "ietf-yang-schema-mount"
 modules in the mounted schema, and specifying the subschemas
 exactly as it is done in the top-level schema

 o by using the "mount-point" list inside the corresponding "schema"
 entry.

 The former method is applicable to both "inline" and "use-schema"
 cases whereas the latter requires the "use-schema" case. On the
 other hand, the latter method allows for a compact representation of
 a multi-level schema the does not rely on the presence of any
 instance data.

4. Referring to Data Nodes in the Parent Schema

 A fundamental design principle of schema mount is that the mounted
 data model works exactly as a top-level data model, i.e., it is
 confined to the "mount jail". This means that all paths in the
 mounted data model (in leafrefs, instance-identifiers, XPath
 expressions, and target nodes of augments) are interpreted with the
 mount point as the root node. YANG modules of the mounted schema as
 well as corresponding instance data thus cannot refer to schema nodes
 or instance data outside the mount jail.

 However, this restriction is sometimes too severe. A typical example
 is network instances (NI) [I-D.ietf-rtgwg-ni-model], where each NI
 has its own routing engine but the list of interfaces is global and
 shared by all NIs. If we want to model this organization with the NI
 schema mounted using schema mount, the overall schema tree would look
 schematically as follows:

Bjorklund & Lhotka Expires January 6, 2018 [Page 9]

Internet-Draft YANG Schema Mount July 2017

 +--rw interfaces
 | +--rw interface* [name]
 | ...
 +--rw network-instances
 +--rw network-instance* [name]
 +--rw name
 +--rw root
 +--rw routing
 ...

 Here, the "root" node is the mount point for the NI schema. Routing
 configuration inside an NI often needs to refer to interfaces (at
 least those that are assigned to the NI), which is impossible unless
 such a reference can point to a node in the parent schema (interface
 name).

 Therefore, schema mount also allows for such references. For every
 schema mounted using the "use-schema" method, it is possible to
 specify a leaf-list named "parent-reference" that contains zero or
 more XPath 1.0 expressions. Each expression is evaluated with the
 root of the parent data tree as the context node and the result MUST
 be a nodeset (see the description of the "parent-reference" node for
 a complete definition of the evaluation context). For the purposes
 of evaluating XPath expressions within the mounted data tree, the
 union of all such nodesets is added to the accessible data tree.

 It is worth emphasizing that

 o The nodes specified in "parent-reference" leaf-list are available
 in the mounted schema only for XPath evaluations. In particular,
 they cannot be accessed there via network management protocols
 such as NETCONF [RFC6241] or RESTCONF [RFC8040].

 o The mechanism of referencing nodes in the parent schema is not
 available for schemas mounted using the "inline" method.

5. RPC operations and Notifications

 If a mounted YANG module defines an RPC operation, clients can invoke
 this operation by representing it as an action defined for the
 corresponding mount point, see Section 7.15 of ^RFC7950. An example
 of this is given in Appendix A.4.

 Similarly, if the server emits a notification defined at the top
 level of any mounted module, it MUST be represented as if the
 notification was connected to the mount point, see Section 7.16 of
 [RFC7950].

Bjorklund & Lhotka Expires January 6, 2018 [Page 10]

Internet-Draft YANG Schema Mount July 2017

 Note, inline actions and notifications will not work when they are
 contained within a list node without a "key" statement (see section
 7.15 and 7.16 of [RFC7950]). Therefore, to be useful, mount points
 which contain modules with RPCs, actions, and notifications SHOULD
 NOT have any ancestor node that is a list node without a "key"
 statement. This requirement applies to the definition of modules
 using the "mount-point" extension statement.

6. Implementation Notes

 Network management of devices that use a data model with schema mount
 can be implemented in different ways. However, the following
 implementations options are envisioned as typical:

 o shared management: instance data of both parent and mounted
 schemas are accessible within the same management session.

 o split management: one (master) management session has access to
 instance data of both parent and mounted schemas but, in addition,
 an extra session exists for every instance of the mount point,
 having access only to the mounted data tree.

7. Data Model

 This document defines the YANG 1.1 module [RFC7950]
 "ietf-yang-schema-mount", which has the following structure:

Bjorklund & Lhotka Expires January 6, 2018 [Page 11]

Internet-Draft YANG Schema Mount July 2017

 module: ietf-yang-schema-mount
 +--ro schema-mounts
 +--ro namespace* [prefix]
 | +--ro prefix yang:yang-identifier
 | +--ro uri? inet:uri
 +--ro mount-point* [module name]
 | +--ro module yang:yang-identifier
 | +--ro name yang:yang-identifier
 | +--ro config? boolean
 | +--ro (schema-ref)?
 | +--:(inline)
 | | +--ro inline? empty
 | +--:(use-schema)
 | +--ro use-schema* [name]
 | +--ro name
 | | -> /schema-mounts/schema/name
 | +--ro parent-reference* yang:xpath1.0
 +--ro schema* [name]
 +--ro name string
 +--ro module* [name revision]
 | +--ro name yang:yang-identifier
 | +--ro revision union
 | +--ro schema? inet:uri
 | +--ro namespace inet:uri
 | +--ro feature* yang:yang-identifier
 | +--ro deviation* [name revision]
 | | +--ro name yang:yang-identifier
 | | +--ro revision union
 | +--ro conformance-type enumeration
 | +--ro submodule* [name revision]
 | +--ro name yang:yang-identifier
 | +--ro revision union
 | +--ro schema? inet:uri
 +--ro mount-point* [module name]
 +--ro module yang:yang-identifier
 +--ro name yang:yang-identifier
 +--ro config? boolean
 +--ro (schema-ref)?
 +--:(inline)
 | +--ro inline? empty
 +--:(use-schema)
 +--ro use-schema* [name]
 +--ro name
 | -> /schema-mounts/schema/name
 +--ro parent-reference* yang:xpath1.0

Bjorklund & Lhotka Expires January 6, 2018 [Page 12]

Internet-Draft YANG Schema Mount July 2017

8. Schema Mount YANG Module

 This module references [RFC6991] and [RFC7895].

 <CODE BEGINS> file "ietf-yang-schema-mount@2017-06-16.yang"

 module ietf-yang-schema-mount {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount";
 prefix yangmnt;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 7895: YANG Module Library";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <https://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Editor: Ladislav Lhotka
 <mailto:lhotka@nic.cz>";

 description
 "This module defines a YANG extension statement that can be used
 to incorporate data models defined in other YANG modules in a
 module. It also defines operational state data that specify the
 overall structure of the data model.

Bjorklund & Lhotka Expires January 6, 2018 [Page 13]

Internet-Draft YANG Schema Mount July 2017

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and
 ’OPTIONAL’ in the module text are to be interpreted as described
 in RFC 2119 (https://tools.ietf.org/html/rfc2119).

 This version of this YANG module is part of RFC XXXX
 (https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
 full legal notices.";

 revision 2017-06-16 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: YANG Schema Mount";
 }

 /*
 * Extensions
 */

 extension mount-point {
 argument name;
 description
 "The argument ’name’ is a YANG identifier, i.e., it is of the
 type ’yang:yang-identifier’.

 The ’mount-point’ statement MUST NOT be used in a YANG
 version 1 module, neither explicitly nor via a ’uses’
 statement.

 The ’mount-point’ statement MAY be present as a substatement
 of ’container’ and ’list’, and MUST NOT be present elsewhere.

 If a mount point is defined in a grouping, its name is bound
 to the module where the grouping is used.

 A mount point defines a place in the node hierarchy where
 other data models may be attached. A server that implements a

Bjorklund & Lhotka Expires January 6, 2018 [Page 14]

Internet-Draft YANG Schema Mount July 2017

 module with a mount point populates the
 /schema-mounts/mount-point list with detailed information on
 which data models are mounted at each mount point.";
 }

 /*
 * Groupings
 */

 grouping mount-point-list {
 description
 "This grouping is used inside the ’schema-mounts’ container and
 inside the ’schema’ list.";
 list mount-point {
 key "module name";
 description
 "Each entry of this list specifies a schema for a particular
 mount point.

 Each mount point MUST be defined using the ’mount-point’
 extension in one of the modules listed in the corresponding
 YANG library instance with conformance type ’implement’. The
 corresponding YANG library instance is:

 - standard YANG library state data as defined in RFC 7895,
 if the ’mount-point’ list is a child of ’schema-mounts’,

 - the contents of the sibling ’yanglib:modules-state’
 container, if the ’mount-point’ list is a child of
 ’schema’.";
 leaf module {
 type yang:yang-identifier;
 description
 "Name of a module containing the mount point.";
 }
 leaf name {
 type yang:yang-identifier;
 description
 "Name of the mount point defined using the ’mount-point’
 extension.";
 }
 leaf config {
 type boolean;
 default "true";
 description
 "If this leaf is set to ’false’, then all data nodes in the
 mounted schema are read-only (config false), regardless of
 their ’config’ property.";

Bjorklund & Lhotka Expires January 6, 2018 [Page 15]

Internet-Draft YANG Schema Mount July 2017

 }
 choice schema-ref {
 description
 "Alternatives for specifying the schema.";
 leaf inline {
 type empty;
 description
 "This leaf indicates that the server has mounted
 ’ietf-yang-library’ and ’ietf-schema-mount’ at the mount
 point, and their instantiation (i.e., state data
 containers ’yanglib:modules-state’ and ’schema-mounts’)
 provides the information about the mounted schema.";
 }
 list use-schema {
 key "name";
 description
 "Each entry of this list contains a reference to a schema
 defined in the /schema-mounts/schema list.";
 leaf name {
 type leafref {
 path "/schema-mounts/schema/name";
 }
 description
 "Name of the referenced schema.";
 }
 leaf-list parent-reference {
 type yang:xpath1.0;
 description
 "Entries of this leaf-list are XPath 1.0 expressions
 that are evaluated in the following context:

 - The context node is the root node of the parent data
 tree.

 - The accessible tree is the parent data tree
 without any nodes defined in modules that are
 mounted inside the parent schema.

 - The context position and context size are both equal
 to 1.

 - The set of variable bindings is empty.

 - The function library is the core function library
 defined in [XPath] and the functions defined in
 Section 10 of [RFC7950].

 - The set of namespace declarations is defined by the

Bjorklund & Lhotka Expires January 6, 2018 [Page 16]

Internet-Draft YANG Schema Mount July 2017

 ’namespace’ list under ’schema-mounts’.

 Each XPath expression MUST evaluate to a nodeset
 (possibly empty). For the purposes of evaluating XPath
 expressions whose context nodes are defined in the
 mounted schema, the union of all these nodesets
 together with ancestor nodes are added to the
 accessible data tree.";
 }
 }
 }
 }
 }

 /*
 * State data nodes
 */

 container schema-mounts {
 config false;
 description
 "Contains information about the structure of the overall
 mounted data model implemented in the server.";
 list namespace {
 key "prefix";
 description
 "This list provides a mapping of namespace prefixes that are
 used in XPath expressions of ’parent-reference’ leafs to the
 corresponding namespace URI references.";
 leaf prefix {
 type yang:yang-identifier;
 description
 "Namespace prefix.";
 }
 leaf uri {
 type inet:uri;
 description
 "Namespace URI reference.";
 }
 }
 uses mount-point-list;
 list schema {
 key "name";
 description
 "Each entry specifies a schema that can be mounted at a mount
 point. The schema information consists of two parts:

 - an instance of YANG library that defines YANG modules used

Bjorklund & Lhotka Expires January 6, 2018 [Page 17]

Internet-Draft YANG Schema Mount July 2017

 in the schema,

 - mount-point list with content identical to the top-level
 mount-point list (this makes the schema structure
 recursive).";
 leaf name {
 type string;
 description
 "Arbitrary name of the schema entry.";
 }
 uses yanglib:module-list;
 uses mount-point-list;
 }
 }
 }

 <CODE ENDS>

9. IANA Considerations

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-yang-schema-mount
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount
 prefix: yangmnt
 reference: RFC XXXX

10. Security Considerations

 TBD

11. Contributors

 The idea of having some way to combine schemas from different YANG
 modules into one has been proposed independently by several groups of
 people: Alexander Clemm, Jan Medved, and Eric Voit
 ([I-D.clemm-netmod-mount]); and Lou Berger and Christian Hopps:

Bjorklund & Lhotka Expires January 6, 2018 [Page 18]

Internet-Draft YANG Schema Mount July 2017

 o Lou Berger, LabN Consulting, L.L.C., <lberger@labn.net>

 o Alexander Clemm, Huawei, <alexander.clemm@huawei.com>

 o Christian Hopps, Deutsche Telekom, <chopps@chopps.org>

 o Jan Medved, Cisco, <jmedved@cisco.com>

 o Eric Voit, Cisco, <evoit@cisco.com>

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC
 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <http://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

12.2. Informative References

 [I-D.clemm-netmod-mount]
 Clemm, A., Voit, E., and J. Medved, "Mounting YANG-Defined
 Information from Remote Datastores", draft-clemm-netmod-
 mount-06 (work in progress), March 2017.

Bjorklund & Lhotka Expires January 6, 2018 [Page 19]

Internet-Draft YANG Schema Mount July 2017

 [I-D.ietf-isis-yang-isis-cfg]
 Litkowski, S., Yeung, D., Lindem, A., Zhang, Z., and L.
 Lhotka, "YANG Data Model for IS-IS protocol", draft-ietf-
 isis-yang-isis-cfg-17 (work in progress), March 2017.

 [I-D.ietf-netmod-yang-tree-diagrams]
 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-
 ietf-netmod-yang-tree-diagrams-01 (work in progress), June
 2017.

 [I-D.ietf-rtgwg-device-model]
 Lindem, A., Berger, L., Bogdanovic, D., and C. Hopps,
 "Network Device YANG Logical Organization", draft-ietf-
 rtgwg-device-model-02 (work in progress), March 2017.

 [I-D.ietf-rtgwg-lne-model]
 Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.
 Liu, "YANG Logical Network Elements", draft-ietf-rtgwg-
 lne-model-03 (work in progress), July 2017.

 [I-D.ietf-rtgwg-ni-model]
 Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.
 Liu, "YANG Network Instances", draft-ietf-rtgwg-ni-
 model-03 (work in progress), July 2017.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

Appendix A. Example: Device Model with LNEs and NIs

 This non-normative example demonstrates an implementation of the
 device model as specified in Section 2 of
 [I-D.ietf-rtgwg-device-model], using both logical network elements
 (LNE) and network instances (NI).

Bjorklund & Lhotka Expires January 6, 2018 [Page 20]

Internet-Draft YANG Schema Mount July 2017

A.1. Physical Device

 The data model for the physical device may be described by this YANG
 library content:

 "ietf-yang-library:modules-state": {
 "module-set-id": "14e2ab5dc325f6d86f743e8d3ade233f1a61a899",
 "module": [
 {
 "name": "iana-if-type",
 "revision": "2014-05-08",
 "namespace": "urn:ietf:params:xml:ns:yang:iana-if-type",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-inet-types",
 "revision": "2013-07-15",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-inet-types",
 "conformance-type": "import"
 },
 {
 "name": "ietf-interfaces",
 "revision": "2014-05-08",
 "feature": [
 "arbitrary-names",
 "pre-provisioning"
],
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-interfaces",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-ip",
 "revision": "2014-06-16",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ip",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-logical-network-element",
 "revision": "2016-10-21",
 "feature": [
 "bind-lne-name"
],
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-logical-network-element",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-library",

Bjorklund & Lhotka Expires January 6, 2018 [Page 21]

Internet-Draft YANG Schema Mount July 2017

 "revision": "2016-06-21",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-library",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-schema-mount",
 "revision": "2017-05-16",
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-types",
 "revision": "2013-07-15",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-types",
 "conformance-type": "import"
 }
]
 }

A.2. Logical Network Elements

 Each LNE can have a specific data model that is determined at run
 time, so it is appropriate to mount it using the "inline" method,
 hence the following "schema-mounts" data:

 "ietf-yang-schema-mount:schema-mounts": {
 "mount-point": [
 {
 "module": "ietf-logical-network-element",
 "name": "root",
 "inline": [null]
 }
]
 }

 An administrator of the host device has to configure an entry for
 each LNE instance, for example,

Bjorklund & Lhotka Expires January 6, 2018 [Page 22]

Internet-Draft YANG Schema Mount July 2017

 {
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": true,
 "ietf-logical-network-element:bind-lne-name": "eth0"
 }
]
 },
 "ietf-logical-network-element:logical-network-elements": {
 "logical-network-element": [
 {
 "name": "lne-1",
 "managed": true,
 "description": "LNE with NIs",
 "root": {
 ...
 }
 },
 ...
]
 }
 }

 and then also place necessary state data as the contents of the
 "root" instance, which should include at least

 o YANG library data specifying the LNE’s data model, for example:

 "ietf-yang-library:modules-state": {
 "module-set-id": "9358e11874068c8be06562089e94a89e0a392019",
 "module": [
 {
 "name": "iana-if-type",
 "revision": "2014-05-08",
 "namespace": "urn:ietf:params:xml:ns:yang:iana-if-type",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-inet-types",
 "revision": "2013-07-15",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-inet-types",
 "conformance-type": "import"
 },
 {
 "name": "ietf-interfaces",

Bjorklund & Lhotka Expires January 6, 2018 [Page 23]

Internet-Draft YANG Schema Mount July 2017

 "revision": "2014-05-08",
 "feature": [
 "arbitrary-names",
 "pre-provisioning"
],
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-interfaces",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-ip",
 "revision": "2014-06-16",
 "feature": [
 "ipv6-privacy-autoconf"
],
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-ip",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-network-instance",
 "revision": "2016-10-27",
 "feature": [
 "bind-network-instance-name"
],
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-network-instance",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-library",
 "revision": "2016-06-21",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-library",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-schema-mount",
 "revision": "2017-05-16",
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-yang-types",
 "revision": "2013-07-15",
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-types",
 "conformance-type": "import"
 }
]
 }

Bjorklund & Lhotka Expires January 6, 2018 [Page 24]

Internet-Draft YANG Schema Mount July 2017

 o state data for interfaces assigned to the LNE instance (that
 effectively become system-controlled interfaces for the LNE), for
 example:

 "ietf-interfaces:interfaces-state": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "oper-status": "up",
 "statistics": {
 "discontinuity-time": "2016-12-16T17:11:27+02:00"
 },
 "ietf-ip:ipv6": {
 "address": [
 {
 "ip": "fe80::42a8:f0ff:fea8:24fe",
 "origin": "link-layer",
 "prefix-length": 64
 }
]
 }
 },
 ...
]
 }

A.3. Network Instances

 Assuming that network instances share the same data model, it can be
 mounted using the "use-schema" method as follows:

 "ietf-yang-schema-mount:schema-mounts": {
 "namespace": [
 {
 "prefix": "if",
 "uri": "urn:ietf:params:xml:ns:yang:ietf-interfaces"
 }
],
 "mount-point": [
 {
 "module": "ietf-network-instance",
 "name": "root",
 "use-schema": [
 {
 "name": "ni-schema",
 "parent-reference": ["/if:interfaces"]
 }

Bjorklund & Lhotka Expires January 6, 2018 [Page 25]

Internet-Draft YANG Schema Mount July 2017

]
 }
],
 "schema": [
 {
 "name": "ni-schema",
 "module": [
 {
 "name": "ietf-ipv4-unicast-routing",
 "revision": "2016-11-04",
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-ipv6-unicast-routing",
 "revision": "2016-11-04",
 "namespace":
 "urn:ietf:params:xml:ns:yang:ietf-ipv6-unicast-routing",
 "conformance-type": "implement"
 },
 {
 "name": "ietf-routing",
 "revision": "2016-11-04",
 "feature": [
 "multiple-ribs",
 "router-id"
],
 "namespace": "urn:ietf:params:xml:ns:yang:ietf-routing",
 "conformance-type": "implement"
 }
]
 }
]
 }

 Note also that the "ietf-interfaces" module appears in the
 "parent-reference" leaf-list for the mounted NI schema. This means
 that references to LNE interfaces, such as "outgoing-interface" in
 static routes, are valid despite the fact that "ietf-interfaces"
 isn’t part of the NI schema.

A.4. Invoking an RPC Operation

 Assume that the mounted NI data model also implements the "ietf-isis"
 module [I-D.ietf-isis-yang-isis-cfg]. An RPC operation defined in
 this module, such as "clear-adjacency", can be invoked by a client
 session of a LNE’s RESTCONF server as an action tied to a the mount

Bjorklund & Lhotka Expires January 6, 2018 [Page 26]

Internet-Draft YANG Schema Mount July 2017

 point of a particular network instance using a request URI like this
 (all on one line):

 POST /restconf/data/ietf-network-instance:network-instances/
 network-instance=rtrA/root/ietf-isis:clear-adjacency HTTP/1.1

Authors’ Addresses

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Bjorklund & Lhotka Expires January 6, 2018 [Page 27]

