
Network Working Group A. Clemm
Internet-Draft Huawei
Intended status: Experimental E. Voit
Expires: October 1, 2017 J. Medved
 Cisco Systems
 March 30, 2017

 Mounting YANG-Defined Information from Remote Datastores
 draft-clemm-netmod-mount-06.txt

Abstract

 This document introduces capabilities that allow YANG datastores to
 reference and incorporate information from remote datastores. This
 is accomplished by extending YANG with the ability to define mount
 points that reference data nodes in another YANG subtree, by
 subsequently allowing those data nodes to be accessed by client
 applications as if part of an alternative data hierarchy, and by
 providing the necessary means to manage and administer those mount
 points. Two flavors are defined: Alias-Mount allows to mount local
 subtrees, while Peer-Mount allows subtrees to reside on and be
 authoritatively owned by a remote server. YANG-Mount facilitates the
 development of applications that need to access data that transcends
 individual network devices while improving network-wide object
 consistency, or that require an aliasing capability to be able to
 create overlay structures for YANG data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 1, 2017.

Clemm, et al. Expires October 1, 2017 [Page 1]

Internet-Draft YANG-Mount March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 1.1. Overview . 3
 1.2. Examples . 5
 2. Definitions and Acronyms 7
 3. Example scenarios . 7
 3.1. Network controller view 8
 3.2. Consistent network configuration 10
 4. Operating on mounted data 11
 4.1. General principles 11
 4.2. Data retrieval . 12
 4.3. Other operations . 12
 4.4. Other considerations 13
 5. Data model structure . 14
 5.1. YANG mountpoint extensions 14
 5.2. YANG structure diagrams 15
 5.3. Mountpoint management 15
 5.4. Caching . 17
 5.5. Other considerations 18
 5.5.1. Authorization . 18

Clemm, et al. Expires October 1, 2017 [Page 2]

Internet-Draft YANG-Mount March 2017

 5.5.2. Datastore qualification 18
 5.5.3. Mount cascades 18
 5.5.4. Implementation considerations 19
 5.5.5. Modeling best practices 20
 6. Datastore mountpoint YANG module 20
 7. Security Considerations 28
 8. Acknowledgements . 28
 9. Normative References . 28
 Appendix A. Example . 30
 Authors’ Addresses . 34

1. Introduction

1.1. Overview

 This document introduces a new capability that allows YANG datastores
 [RFC7950] to incorporate and reference information from other YANG
 subtrees. The capability allows a client application to retrieve and
 have visibility of that YANG data as part of an alternative
 structure. This is provided by introducing a mountpoint concept.
 This concept allows to declare a YANG data node in a primary
 datastore to serve as a "mount point" under which a subtree with YANG
 data can be mounted. This way, data nodes from another subtree can
 be inserted into an alternative data hierarchy, arranged below local
 data nodes. To the user, this provides visibility to data from other
 subtrees, rendered in a way that makes it appear largely as if it
 were an integral part of the datastore. This enables users to
 retrieve local "native" as well as mounted data in integrated
 fashion, using e.g. Netconf [RFC6241] or Restconf [RFC8040] data
 retrieval primitives. The concept is reminiscent of concepts in a
 Network File System that allows to mount remote folders and make them
 appear as if they were contained in the local file system of the
 user’s machine.

 Two variants of YANG-Mount are introduced, which build on one
 another:

 o Alias-Mount allows mountpoints to reference a local YANG subtree
 residing on the same server. It provides effectively an aliasing
 capability, allowing for an alternative hierarchy and path for the
 same YANG data.

 o Peer-Mount allows mountpoints to reference a remote YANG subtree,
 residing on a different server. It can be thought of as an
 extension to Alias-Mount, in which a remote server can be
 specified. Peer-Mount allows a server to effectively provide a
 federated datastore, including YANG data from across the network.

Clemm, et al. Expires October 1, 2017 [Page 3]

Internet-Draft YANG-Mount March 2017

 In each case, mounted data is authoritatively owned by the server
 that it is a part of. Validation of integrity constraints apply to
 the authoritative copy; mounting merely provides a different view of
 the same data. It does not impose additional constraints on that
 same data; however, mounted data may be referred to from other data
 nodes. The mountpoint concept applies in principle to operations
 beyond data retrieval, i.e. to configuration, RPCs, and
 notifications. However, support for such operations involves
 additional considerations, for example if support for configuration
 transactions and locking (which might now apply across the network)
 were to be provided. While it is conceivable that additional
 capabilities for operations on mounted information are introduced at
 some point in time, their specification is beyond the scope of this
 specification.

 YANG does provide means by which modules that have been separately
 defined can reference and augment one another. YANG also does
 provide means to specify data nodes that reference other data nodes.
 However, all the data is assumed to be instantiated as part of the
 same datastore, for example a datastore provided through a NETCONF
 server. Existing YANG mechanisms do not account for the possibility
 that some information that needs to be referred not only resides in a
 different subtree of the same datastore, or was defined in a separate
 module that is also instantiated in the same datastore, but that is
 genuinely part of a different datastore that is provided by a
 different server.

 The ability to mount information from local and remote datastores is
 new and not covered by existing YANG mechanisms. Until now,
 management information provided in a datastore has been intrinsically
 tied to the same server and to a single data hierarchy. In contrast,
 the capability introduced in this specification allows the server to
 render alternative data hierarchies, and to represent information
 from remote systems as if it were its own and contained in its own
 local data hierarchy.

 The capability of allowing the mounting of information from other
 subtrees is accomplished by a set of YANG extensions that allow to
 define such mount points. For this purpose, a new YANG module is
 introduced. The module defines the YANG extensions, as well as a
 data model that can be used to manage the mountpoints and mounting
 process itself. Only the mounting module and its server (i.e. the
 "receivers" or "consumers" of the mounted information) need to be
 aware of the concepts introduced here. Mounting is transparent to
 the "providers" of the mounted information and models that are being
 mounted; any data nodes or subtrees within any YANG model can be
 mounted.

Clemm, et al. Expires October 1, 2017 [Page 4]

Internet-Draft YANG-Mount March 2017

 Alias-Mount and Peer-Mount build on top of each other. It is
 possible for a server to support Alias-Mount but not Peer-Mount. In
 essence, Peer-Mount requires an additional parameter that is used to
 refer to the target system. This parameter does not need to be
 supported if only Alias-Mount is provided.

 Finally, it should be mentioned that Alias-Mount and Peer-Mount are
 not to be confused with the ability to mount a schema, aka Schema
 Mount. A Schema Mount allows to instantiate an existing model
 definition underneath a mount point, not reference a set of YANG data
 that has already been instantiated somewhere else. In that sense,
 Schema-Mount resembles more a "grouping" concept that allows to reuse
 an existing definition in a new context, as opposed to referencing
 and incorporating existing instance information into a new context.

1.2. Examples

 The ability to mount data from remote datastores is useful to address
 various problems that several categories of applications are faced
 with.

 One category of applications that can leverage this capability are
 network controller applications that need to present a consolidated
 view of management information in datastores across a network.
 Controller applications are faced with the problem that in order to
 expose information, that information needs to be part of their own
 datastore. Today, this requires support of a corresponding YANG data
 module. In order to expose information that concerns other network
 elements, that information has to be replicated into the controller’s
 own datastore in the form of data nodes that may mirror but are
 clearly distinct from corresponding data nodes in the network
 element’s datastore. In addition, in many cases, a controller needs
 to impose its own hierarchy on the data that is different from the
 one that was defined as part of the original module. An example for
 this concerns interface data, both operational data (e.g. various
 types of interface statistics) and configuration data, such as
 defined in [RFC7223]. This data will be contained in a top-level
 container ("interfaces", in this particular case) in a network
 element datastore. The controller may need to provide its clients a
 view on interface data from multiple devices under its scope of
 control. One way of to do so would involve organizing the data in a
 list with separate list elements for each device. However, this in
 turn would require introduction of redundant YANG modules that
 effectively replicate the same interface data save for differences in
 hierarchy.

 By directly mounting information from network element datastores, the
 controller does not need to replicate the same information from

Clemm, et al. Expires October 1, 2017 [Page 5]

Internet-Draft YANG-Mount March 2017

 multiple datastores, nor does it need to re-define any network
 element and system-level abstractions to be able to put them in the
 context of network abstractions. Instead, the subtree of the remote
 system is attached to the local mount point. Operations that need to
 access data below the mount point are in effect transparently
 redirected to remote system, which is the authoritative owner of the
 data. The mounting system does not even necessarily need to be aware
 of the specific data in the remote subtree. Optionally, caching
 strategies can be employed in which the mounting system prefetches
 data.

 A second category of applications concerns decentralized networking
 applications that require globally consistent configuration of
 parameters. When each network element maintains its own datastore
 with the same configurable settings, a single global change requires
 modifying the same information in many network elements across a
 network. In case of inconsistent configurations, network failures
 can result that are difficult to troubleshoot. In many cases, what
 is more desirable is the ability to configure such settings in a
 single place, then make them available to every network element.
 Today, this requires in general the introduction of specialized
 servers and configuration options outside the scope of NETCONF, such
 as RADIUS [RFC2866] or DHCP [RFC2131]. In order to address this
 within the scope of NETCONF and YANG, the same information would have
 to be redundantly modeled and maintained, representing operational
 data (mirroring some remote server) on some network elements and
 configuration data on a designated master. Either way, additional
 complexity ensues.

 Instead of replicating the same global parameters across different
 datastores, the solution presented in this document allows a single
 copy to be maintained in a subtree of single datastore that is then
 mounted by every network element that requires awareness of these
 parameters. The global parameters can be hosted in a controller or a
 designated network element. This considerably simplifies the
 management of such parameters that need to be known across elements
 in a network and require global consistency.

 It should be noted that for these and many other applications merely
 having a view of the remote information is sufficient. It allows to
 define consolidated views of information without the need for
 replicating data and models that have already been defined, to audit
 information, and to validate consistency of configurations across a
 network. Only retrieval operations are required; no operations that
 involve configuring remote data are involved.

Clemm, et al. Expires October 1, 2017 [Page 6]

Internet-Draft YANG-Mount March 2017

2. Definitions and Acronyms

 Data node: An instance of management information in a YANG datastore.

 DHCP: Dynamic Host Configuration Protocol.

 Datastore: A conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Datastore-push: A mechanism that allows a client to subscribe to
 updates from a datastore, which are then automatically pushed by the
 server to the client.

 Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Mount client: The system at which the mount point resides, into which
 the remote subtree is mounted.

 Mount point: A data node that receives the root node of the remote
 datastore being mounted.

 Mount server: The server with which the mount client communicates and
 which provides the mount client with access to the mounted
 information. Can be used synonymously with mount target.

 Mount target: A remote server whose datastore is being mounted.

 NACM: NETCONF Access Control Model

 NETCONF: Network Configuration Protocol

 RADIUS: Remote Authentication Dial In User Service.

 RPC: Remote Procedure Call

 Remote datastore: A datastore residing at a remote node.

 URI: Uniform Resource Identifier

 YANG: A data definition language for NETCONF

3. Example scenarios

 The following example scenarios outline some of the ways in which the
 ability to mount YANG datastores can be applied. Other mount
 topologies can be conceived in addition to the ones presented here.

Clemm, et al. Expires October 1, 2017 [Page 7]

Internet-Draft YANG-Mount March 2017

3.1. Network controller view

 Network controllers can use the mounting capability to present a
 consolidated view of management information across the network. This
 allows network controllers to expose network-wide abstractions, such
 as topologies or paths, multi-device abstractions, such as VRRP
 [RFC3768], and network-element specific abstractions, such as
 information about a network element’s interfaces.

 While an application on top of a controller could bypass the
 controller to access network elements directly for their element-
 specific abstractions, this would come at the expense of added
 inconvenience for the client application. In addition, it would
 compromise the ability to provide layered architectures in which
 access to the network by controller applications is truly channeled
 through the controller.

 Without a mounting capability, a network controller would need to at
 least conceptually replicate data from network elements to provide
 such a view, incorporating network element information into its own
 controller model that is separate from the network element’s,
 indicating that the information in the controller model is to be
 populated from network elements. This can introduce issues such as
 data inconsistency and staleness. Equally important, it would lead
 to the need to define redundant data models: one model that is
 implemented by the network element itself, and another model to be
 implemented by the network controller. This leads to poor
 maintainability, as analogous information has to be redundantly
 defined and implemented across different data models. In general,
 controllers cannot simply support the same modules as their network
 elements for the same information because that information needs to
 be put into a different context. This leads to "node"-information
 that needs to be instantiated and indexed differently, because there
 are multiple instances across different data stores.

 For example, "system"-level information of a network element would
 most naturally placed into a top-level container at that network
 element’s datastore. At the same time, the same information in the
 context of the overall network, such as maintained by a controller,
 might better be provided in a list. For example, the controller
 might maintain a list with a list element for each network element,
 underneath which the network element’s system-level information is
 contained. However, the containment structure of data nodes in a
 module, once defined, cannot be changed. This means that in the
 context of a network controller, a second module that repeats the
 same system-level information would need to be defined, implemented,
 and maintained. Any augmentations that add additional system-level
 information to the original module will likewise need to be

Clemm, et al. Expires October 1, 2017 [Page 8]

Internet-Draft YANG-Mount March 2017

 redundantly defined, once for the "system" module, a second time for
 the "controller" module.

 By allowing a network controller to directly mount information from
 network element datastores, the controller does not need to replicate
 the same information from multiple datastores. Perhaps even more
 importantly, the need to re-define any network element and system-
 level abstractions just to be able to put them in the context of
 network abstractions is avoided. In this solution, a network
 controller’s datastore mounts information from many network element
 datastores. For example, the network controller datastore (the
 "primary" datastore) could implement a list in which each list
 element contains a mountpoint. Each mountpoint mounts a subtree from
 a different network element’s datastore. The data from the mounted
 subtrees is then accessible to clients of the primary datastore using
 the usual data retrieval operations.

 This scenario is depicted in Figure 1. In the figure, M1 is the
 mountpoint for the datastore in Network Element 1 and M2 is the
 mountpoint for the datastore in Network Element 2. MDN1 is the
 mounted data node in Network Element 1, and MDN2 is the mounted data
 node in Network Element 2.

 +-------------+
 | Network |
 | Controller |
 | Datastore |
 | |
 | +--N10 |
 | +--N11 |
 | +--N12 |
 | +--M1*******************************
 | +--M2****** *
 | | * *
 +-------------+ * *
 * +---------------+ * +---------------+
 * | +--N1 | * | +--N5 |
 * | +--N2 | * | +--N6 |
 ********> +--MDN2 | *********> +--MDN1 |
 | +--N3 | | +--N7 |
 | +--N4 | | +--N8 |
 | | | |
 | Network | | Network |
 | Element | | Element |
 | Datastore | | Datastore |
 +---------------+ +---------------+

 Figure 1: Network controller mount topology

Clemm, et al. Expires October 1, 2017 [Page 9]

Internet-Draft YANG-Mount March 2017

3.2. Consistent network configuration

 A second category of applications concerns decentralized networking
 applications that require globally consistent configuration of
 parameters that need to be known across elements in a network.
 Today, the configuration of such parameters is generally performed on
 a per network element basis, which is not only redundant but, more
 importantly, error-prone. Inconsistent configurations lead to
 erroneous network behavior that can be challenging to troubleshoot.

 Using the ability to mount information from remote datastores opens
 up a new possibility for managing such settings. Instead of
 replicating the same global parameters across different datastores, a
 single copy is maintained in a subtree of single datastore. This
 datastore can hosted in a controller or a designated network element.
 The subtree is subsequently mounted by every network element that
 requires access to these parameters.

 In many ways, this category of applications is an inverse of the
 previous category: Whereas in the network controller case data from
 many different datastores would be mounted into the same datastore
 with multiple mountpoints, in this case many elements, each with
 their own datastore, mount the same remote datastore, which is then
 mounted by many different systems.

 The scenario is depicted in Figure 2. In the figure, M1 is the
 mountpoint for the Network Controller datastore in Network Element 1
 and M2 is the mountpoint for the Network Controller datastore in
 Network Element 2. MDN is the mounted data node in the Network
 Controller datastore that contains the data nodes that represent the
 shared configuration settings. (Note that there is no reason why the
 Network Controller Datastore in this figure could not simply reside
 on a network element itself; the division of responsibilities is a
 logical one.

Clemm, et al. Expires October 1, 2017 [Page 10]

Internet-Draft YANG-Mount March 2017

 +---------------+ +---------------+
Network		Network		
Element		Element		
Datastore		Datastore		
+--N1		+--N5		
	+--N2			+--N6
	+--N2			+--N6
	+--N3			+--N7
	+--N4			+--N8
+--M1		+--M2		
 +-----*---------+ +-----*---------+
 * * +---------------+
 * * | |
 * * | +--N10 |
 * * | +--N11 |
 ***> +--MDN |
 | +--N20 |
 | +--N21 |
 | ... |
 | +--N22 |
 | |
 | Network |
 | Controller |
 | Datastore |
 +---------------+

 Figure 2: Distributed config settings topology

4. Operating on mounted data

 This section provides a rough illustration of the operations flow
 involving mounted datastores.

4.1. General principles

 The first thing that should be noted about these operations flows
 concerns the fact that a mount client essentially constitutes a
 special management application that interacts with a subtree to
 render the data of that subtree as an alternative tree hierarchy. In
 the case of Alias-Mount, both original and alternative tree are
 maintained by the same server, which in effect provides alternative
 paths to the same data. In the case of Peer-Mount, the mount client
 constitutes in effect another application, with the remote system
 remaining the authoritative owner of the data. While it is
 conceivable that the remote system (or an application that proxies
 for the remote system) provides certain functionality to facilitate

Clemm, et al. Expires October 1, 2017 [Page 11]

Internet-Draft YANG-Mount March 2017

 the specific needs of the mount client to make it more efficient, the
 fact that another system decides to expose a certain "view" of that
 data is fundamentally not the remote system’s concern.

 When a client application makes a request to a server that involves
 data that is mounted from a remote system, the server will
 effectively act as a proxy to the remote system on the client
 application’s behalf. It will extract from the client application
 request the portion that involves the mounted subtree from the remote
 system. It will strip that portion of the local context, i.e. remove
 any local data paths and insert the data path of the mounted remote
 subtree, as appropriate. The server will then forward the transposed
 request to the remote system that is the authoritative owner of the
 mounted data, acting itself as a client to the remote server. Upon
 receiving the reply, the server will transpose the results into the
 local context as needed, for example map the data paths into the
 local data tree structure, and combine those results with the results
 of the remainder portion of the original request.

4.2. Data retrieval

 Data retrieval operations are the only category of operations that is
 supported for peer-mounted information. In that case, a Netconf
 "get" or "get-configuration" operation might be applied on a subtree
 whose scope includes a mount point. When resolving the mount point,
 the server issues its own "get" or "get-configuration" request
 against the remote system’s subtree that is attached to the mount
 point. The returned information is then inserted into the data
 structure that is in turn returned to the client that originally
 invoked the request.

4.3. Other operations

 The fact that only data retrieval operations are the only category of
 operations that are supported for peer-mounted information does not
 preclude other operations to be applied to datastore subtrees that
 contain mountpoints and peer-mounted information. Peer-mounted
 information is simply transparent to those operations. When an
 operation is applied to a subtree which includes mountpoints, mounted
 information is ignored for purposes of the operation. For example,
 for a Netconf "edit-config" operation that includes a subtree with a
 mountpoint, a server will ignore the data under the mountpoint and
 apply the operation only to the local configuration. Mounted data is
 "read-only" data. The server does not even need to return an error
 message that the operation could not be applied to mounted data; the
 mountpoint is simply ignored.

Clemm, et al. Expires October 1, 2017 [Page 12]

Internet-Draft YANG-Mount March 2017

 In principle, it is conceivable that operations other than data-
 retrieval are applied to mounted data as well. For example, an
 operation to edit configuration information might expect edits to be
 applied to remote systems as part of the operation, where the edited
 subtree involves mounted information. However, editing of
 information and "writing through" to remote systems potentially
 involves significant complexity, particularly if transactions and
 locking across multiple configuration items are involved. Support
 for such operations will require additional capabilities,
 specification of which is beyond the scope of this specification.

 Likewise, YANG-Mount does not extend towards RPCs that are defined as
 part of YANG modules whose contents is being mounted. Support for
 RPCs that involve mounted portions of the datastore, while
 conceivable, would require introduction of an additional capability,
 whose definition is outside the scope of this specification.

 By the same token, YANG-Mount does not extend towards notifications.
 It is conceivable to offer such support in the future using a
 separate capability, definition of which is once again outside the
 scope of this specification.

4.4. Other considerations

 Since mounting of information typically involves communication with a
 remote system, there is a possibility that the remote system will not
 respond within a certain amount of time, that connectivity is lost,
 or that other errors occur. Accordingly, the ability to mount
 datastores also involves mountpoint management, which includes the
 ability to configure timeouts, retries, and management of mountpoint
 state (including dynamic addition removal of mountpoints).
 Mountpoint management will be discussed in section Section 5.3.

 It is expected that some implementations will introduce caching
 schemes. Caching can increase performance and efficiency in certain
 scenarios (for example, in the case of data that is frequently read
 but that rarely changes), but increases implementation complexity.
 Caching is not required for YANG-mount to work - in which case access
 to mounted information is "on-demand", in which the authoritative
 data node always gets accessed. Whether to perform caching is a
 local implementation decision.

 When caching is introduced, it can benefit from the ability to
 subscribe to updates on remote data by remote servers. Some
 optimizations to facilitate caching support will be discussed in
 section Section 5.4.

Clemm, et al. Expires October 1, 2017 [Page 13]

Internet-Draft YANG-Mount March 2017

5. Data model structure

5.1. YANG mountpoint extensions

 At the center of the module is a set of YANG extensions that allow to
 define a mountpoint.

 o The first extension, "mountpoint", is used to declare a
 mountpoint. The extension takes the name of the mountpoint as an
 argument.

 o The second extension, "subtree", serves as substatement underneath
 a mountpoint statement. It takes an argument that defines the
 root node of the datastore subtree that is to be mounted,
 specified as string that contains a path expression. This
 extension is used to define mountpoints for Alias-Mount, as well
 as Peer-Mount.

 o The third extension, "target", also serves as a substatement
 underneath a mountpoint statement. It is used for Peer-Mount and
 takes an argument that identifies the target system. The argument
 is a reference to a data node that contains the information that
 is needed to identify and address a remote server, such as an IP
 address, a host name, or a URI [RFC3986].

 A mountpoint MUST be contained underneath a container. Future
 revisions might allow for mountpoints to be contained underneath
 other data nodes, such as lists, leaf-lists, and cases. However, to
 keep things simple, at this point mounting is only allowed directly
 underneath a container.

 Only a single data node can be mounted at one time. While the mount
 target could refer to any data node, it is recommended that as a best
 practice, the mount target SHOULD refer to a container. It is
 possible to maintain e.g. a list of mount points, with each mount
 point each of which has a mount target an element of a remote list.
 However, to avoid unnecessary proliferation of the number of mount
 points and associated management overhead, when data from lists or
 leaf-lists is to be mounted, a container containing the list
 respectively leaf-list SHOULD be mounted instead of individual list
 elements.

 It is possible for a mounted datastore to contain another mountpoint,
 thus leading to several levels of mount indirections. However,
 mountpoints MUST NOT introduce circular dependencies. In particular,
 a mounted datastore MUST NOT contain a mountpoint which specifies the
 mounting datastore as a target and a subtree which contains as root
 node a data node that in turn contains the original mountpoint.

Clemm, et al. Expires October 1, 2017 [Page 14]

Internet-Draft YANG-Mount March 2017

 Whenever a mount operation is performed, this condition mountpoint.
 Whenever a mount operation is performed, this condition MUST be
 validated by the mount client.

5.2. YANG structure diagrams

 YANG data model structure overviews have proven very useful to convey
 the "Big Picture". It would be useful to indicate in YANG data model
 structure overviews the fact that a given data node serves as a
 mountpoint. We propose for this purpose also a corresponding
 extension to the structure representation convention. Specifically,
 we propose to prefix the name of the mounting data node with upper-
 case ’M’.

 rw network
 +-- rw nodes
 +-- rw node [node-ID]
 +-- rw node-ID
 +-- M node-system-info

5.3. Mountpoint management

 The YANG module contains facilities to manage the mountpoints
 themselves.

 For this purpose, a list of the mountpoints is introduced. Each list
 element represents a single mountpoint. It includes an
 identification of the mount target, i.e. the remote system hosting
 the remote datastore and a definition of the subtree of the remote
 data node being mounted. It also includes monitoring information
 about current status (indicating whether the mount has been
 successful and is operational, or whether an error condition applies
 such as the target being unreachable or referring to an invalid
 subtree).

 In addition to the list of mountpoints, a set of global mount policy
 settings allows to set parameters such as mount retries and timeouts.

 Each mountpoint list element also contains a set of the same
 configuration knobs, allowing administrators to override global mount
 policies and configure mount policies on a per-mountpoint basis if
 needed.

 There are two ways how mounting occurs: automatic (dynamically
 performed as part of system operation) or manually (administered by a
 user or client application). A separate mountpoint-origin object is
 used to distinguish between manually configured and automatically
 populated mountpoints.

Clemm, et al. Expires October 1, 2017 [Page 15]

Internet-Draft YANG-Mount March 2017

 Whether mounting occurs automatically or needs to be manually
 configured by a user or an application can depend on the mountpoint
 being defined, i.e. the semantics of the model.

 When configured automatically, mountpoint information is
 automatically populated by the datastore that implements the
 mountpoint. The precise mechanisms for discovering mount targets and
 bootstrapping mount points are provided by the mount client
 infrastructure and outside the scope of this specification.
 Likewise, when a mountpoint should be deleted and when it should
 merely have its mount-status indicate that the target is unreachable
 is a system-specific implementation decision.

 Manual mounting consists of two steps. In a first step, a mountpoint
 is manually configured by a user or client application through
 administrative action. Once a mountpoint has been configured, actual
 mounting occurs through an RPCs that is defined specifically for that
 purpose. To unmount, a separate RPC is invoked; mountpoint
 configuration information needs to be explicitly deleted. Manual
 mounting can also be used to override automatic mounting, for example
 to allow an administrator to set up or remove a mountpoint.

 It should be noted that mountpoint management does not allow users to
 manually "extend" the model, i.e. simply add a subtree underneath
 some arbitrary data node into a datastore, without a supporting
 mountpoint defined in the model to support it. A mountpoint
 definition is a formal part of the model with well-defined semantics.
 Accordingly, mountpoint management does not allow users to
 dynamically "extend" the data model itself. It allows users to
 populate the datastore and mount structure within the confines of a
 model that has been defined prior.

 The structure of the mountpoint management data model is depicted in
 the following figure, where brackets enclose list keys, "rw" means
 configuration, "ro" operational state data, and "?" designates
 optional nodes. Parantheses enclose choice and case nodes. The
 figure does not depict all definitions; it is intended to illustrate
 the overall structure.

Clemm, et al. Expires October 1, 2017 [Page 16]

Internet-Draft YANG-Mount March 2017

 module: ietf-mount
 +--rw mount-server-mgmt {mount-server-mgmt}?
 +--rw mountpoints
 | +--rw mountpoint* [mountpoint-id]
 | +--rw mountpoint-id string
 | +--ro mountpoint-origin? enumeration
 | +--rw subtree-ref subtree-ref
 | +--rw mount-target
 | | +--rw (target-address-type)
 | | +--:(IP)
 | | | +--rw target-ip? inet:ip-address
 | | +--:(URI)
 | | | +--rw uri? inet:uri
 | | +--:(host-name)
 | | | +--rw hostname? inet:host
 | | +--:(node-ID)
 | | | +--rw node-info-ref? subtree-ref
 | | +--:(other)
 | | +--rw opaque-target-ID? string
 | +--ro mount-status? mount-status
 | +--rw manual-mount? empty
 | +--rw retry-timer? uint16
 | +--rw number-of-retries? uint8
 +--rw global-mount-policies
 +--rw manual-mount? empty
 +--rw retry-timer? uint16
 +--rw number-of-retries? uint8

5.4. Caching

 Under certain circumstances, it can be useful to maintain a cache of
 remote information. Instead of accessing the remote system, requests
 are served from a copy that is locally maintained. This is
 particularly advantageous in cases where data is slow changing, i.e.
 when there are many more "read" operations than changes to the
 underlying data node, and in cases when a significant delay were
 incurred when accessing the remote system, which might be prohibitive
 for certain applications. Examples of such applications are
 applications that involve real-time control loops requiring response
 times that are measured in milliseconds. However, as data nodes that
 are mounted from an authoritative datastore represent the "golden
 copy", it is important that any modifications are reflected as soon
 as they are made.

 It is a local implementation decision of mount clients whether to
 cache information once it has been fetched. However, in order to
 support more powerful caching schemes, it becomes necessary for the
 mount server to "push" information proactively. For this purpose, it

Clemm, et al. Expires October 1, 2017 [Page 17]

Internet-Draft YANG-Mount March 2017

 is useful for the mount client to subscribe for updates to the
 mounted information at the mount server. A corresponding mechanism
 that can be leveraged for this purpose is specified in draft-ietf-
 netconf-yang-push-05.

 Note that caching large mountpoints can be expensive. Therefore
 limiting the amount of data unnecessarily passed when mounting near
 the top of a YANG subtree is important. For these reasons, an
 ability to specify a particular caching strategy in conjunction with
 mountpoints can be desirable, including the ability to exclude
 certain nodes and subtrees from caching. According capabilities may
 be introduced in a future version of this draft.

5.5. Other considerations

5.5.1. Authorization

 Access to mounted information is subject to authorization rules. To
 the mounted system, a mounting client will in general appear like any
 other client. Authorization privileges for remote mounting clients
 need to be specified through NACM (NETCONF Access Control Model)
 [RFC6536].

5.5.2. Datastore qualification

 It is conceivable to differentiate between different datastores on
 the remote server, that is, to designate the name of the actual
 datastore to mount, e.g. "running" or "startup". However, for the
 purposes of this spec, we assume that the datastore to be mounted is
 generally implied. Mounted information is treated as analogous to
 operational data; in general, this means the running or "effective"
 datastore is the target. That said, the information which targets to
 mount does constitute configuration and can hence be part of a
 startup or candidate datastore.

5.5.3. Mount cascades

 It is possible for the mounted subtree to in turn contain a
 mountpoint. However, circular mount relationships MUST NOT be
 introduced. For this reason, a mounted subtree MUST NOT contain a
 mountpoint that refers back to the mounting system with a mount
 target that directly or indirectly contains the originating
 mountpoint. As part of a mount operation, the mount points of the
 mounted system need to be checked accordingly.

Clemm, et al. Expires October 1, 2017 [Page 18]

Internet-Draft YANG-Mount March 2017

5.5.4. Implementation considerations

 Implementation specifics are outside the scope of this specification.
 That said, the following considerations apply:

 Systems that wish to mount information from remote datastores need to
 implement a mount client. The mount client communicates with a
 remote system to access the remote datastore. To do so, there are
 several options:

 o The mount client acts as a NETCONF client to a remote system.
 Alternatively, another interface to the remote system can be used,
 such as a REST API using JSON encodings, as specified in
 [RFC7951]. --> Either way, to the remote system, the mount client
 constitutes essentially a client application like any other. The
 mount client in effect IS a special kind of client application.

 o The mount client communicates with a remote mount server through a
 separate protocol. The mount server is deployed on the same
 system as the remote NETCONF datastore and interacts with it
 through a set of local APIs.

 o The mount client communicates with a remote mount server that acts
 as a NETCONF client proxy to a remote system, on the client’s
 behalf. The communication between mount client and remote mount
 server might involve a separate protocol, which is translated into
 NETCONF operations by the remote mount server.

 It is the responsibility of the mount client to manage the
 association with the target system, e.g. validate it is still
 reachable by maintaining a permanent association, perform
 reachability checks in case of a connectionless transport, etc.

 It is the responsibility of the mount client to manage the
 mountpoints. This means that the mount client needs to populate the
 mountpoint monitoring information (e.g. keep mount-status up to data
 and determine in the case of automatic mounting when to add and
 remove mountpoint configuration). In the case of automatic mounting,
 the mount client also interacts with the mountpoint discovery and
 bootstrap process.

 The mount client needs to also participate in servicing datastore
 operations involving mounted information. An operation requested
 involving a mountpoint is relayed by the mounting system’s
 infrastructure to the mount client. For example, a request to
 retrieve information from a datastore leads to an invocation of an
 internal mount client API when a mount point is reached. The mount
 client then relays a corresponding operation to the remote datastore.

Clemm, et al. Expires October 1, 2017 [Page 19]

Internet-Draft YANG-Mount March 2017

 It subsequently relays the result along with any responses back to
 the invoking infrastructure, which then merges the result (e.g. a
 retrieved subtree with the rest of the information that was
 retrieved) as needed. Relaying the result may involve the need to
 transpose error response codes in certain corner cases, e.g. when
 mounted information could not be reached due to loss of connectivity
 with the remote server, or when a configuration request failed due to
 validation error.

5.5.5. Modeling best practices

 There is a certain amount of overhead associated with each mount
 point. The mount point needs to be managed and state maintained.
 Data subscriptions need to be maintained. Requests including mounted
 subtrees need to be decomposed and responses from multiple systems
 combined.

 For those reasons, as a general best practice, models that make use
 of mount points SHOULD be defined in a way that minimizes the number
 of mountpoints required. Finely granular mounts, in which multiple
 mountpoints are maintained with the same remote system, each
 containing only very small data subtrees, SHOULD be avoided. For
 example, lists SHOULD only contain mountpoints when individual list
 elements are associated with different remote systems. To mount data
 from lists in remote datastores, a container node that contains all
 list elements SHOULD be mounted instead of mounting each list element
 individually. Likewise, instead of having mount points refer to
 nodes contained underneath choices, a mountpoint should refer to a
 container of the choice.

6. Datastore mountpoint YANG module

 <CODE BEGINS>
 file "ietf-mount@2017-03-30.yang"
 module ietf-mount {
 namespace "urn:ietf:params:xml:ns:yang:ietf-mount";
 prefix mnt;

 import ietf-inet-types {
 prefix inet;
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

Clemm, et al. Expires October 1, 2017 [Page 20]

Internet-Draft YANG-Mount March 2017

 WG Chair: Kent Watsen
 <mailto:kwatsen@juniper.net>

 WG Chair: Lou Berger
 <mailto:lberger@labn.net>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Jan Medved
 <mailto:jmedved@cisco.com>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>";
 description
 "This module provides a set of YANG extensions and definitions
 that can be used to mount information from remote datastores.";

 revision 2017-03-30 {
 description
 "Initial revision.";
 reference
 "draft-clemm-netmod-mount-06.txt";
 }

 extension mountpoint {
 argument name;
 description
 "This YANG extension is used to mount data from another
 subtree in place of the node under which this YANG extension
 statement is used.

 This extension takes one argument which specifies the name
 of the mountpoint.

 This extension can occur as a substatement underneath a
 container statement, a list statement, or a case statement.
 As a best practice, it SHOULD occur as statement only
 underneath a container statement, but it MAY also occur
 underneath a list or a case statement.

 The extension can take two parameters, target and subtree,
 each defined as their own YANG extensions.

 For Alias-Mount, a mountpoint statement MUST contain a
 subtree statement for the mountpoint definition to be valid.
 For Peer-Mount, a mountpoint statement MUST contain both a
 target and a subtree substatement for the mountpoint

Clemm, et al. Expires October 1, 2017 [Page 21]

Internet-Draft YANG-Mount March 2017

 definition to be valid.

 The subtree SHOULD be specified in terms of a data node of
 type ’mnt:subtree-ref’. The targeted data node MUST
 represent a container.

 The target system MAY be specified in terms of a data node
 that uses the grouping ’mnt:mount-target’. However, it
 can be specified also in terms of any other data node that
 contains sufficient information to address the mount target,
 such as an IP address, a host name, or a URI.

 It is possible for the mounted subtree to in turn contain a
 mountpoint. However, circular mount relationships MUST NOT
 be introduced. For this reason, a mounted subtree MUST NOT
 contain a mountpoint that refers back to the mounting system
 with a mount target that directly or indirectly contains the
 originating mountpoint.";
 }

 extension target {
 argument target-name;
 description
 "This YANG extension is used to perform a Peer-Mount.
 It is used to specify a remote target system from which to
 mount a datastore subtree. This YANG
 extension takes one argument which specifies the remote
 system. In general, this argument will contain the name of
 a data node that contains the remote system information. It
 is recommended that the reference data node uses the
 mount-target grouping that is defined further below in this
 module.

 This YANG extension can occur only as a substatement below
 a mountpoint statement. It MUST NOT occur as a substatement
 below any other YANG statement.";
 }

 extension subtree {
 argument subtree-path;
 description
 "This YANG extension is used to specify a subtree in a
 datastore that is to be mounted. This YANG extension takes
 one argument which specifies the path to the root of the
 subtree. The root of the subtree SHOULD represent an
 instance of a YANG container. However, it MAY represent
 also another data node.

Clemm, et al. Expires October 1, 2017 [Page 22]

Internet-Draft YANG-Mount March 2017

 This YANG extension can occur only as a substatement below
 a mountpoint statement. It MUST NOT occur as a substatement
 below any other YANG statement.";
 }

 feature mount-server-mgmt {
 description
 "Provide additional capabilities to manage remote mount
 points";
 }

 typedef mount-status {
 type enumeration {
 enum "ok" {
 description
 "Mounted";
 }
 enum "no-target" {
 description
 "The argument of the mountpoint does not define a
 target system";
 }
 enum "no-subtree" {
 description
 "The argument of the mountpoint does not define a
 root of a subtree";
 }
 enum "target-unreachable" {
 description
 "The specified target system is currently
 unreachable";
 }
 enum "mount-failure" {
 description
 "Any other mount failure";
 }
 enum "unmounted" {
 description
 "The specified mountpoint has been unmounted as the
 result of a management operation";
 }
 }
 description
 "This type is used to represent the status of a
 mountpoint.";
 }

 typedef subtree-ref {

Clemm, et al. Expires October 1, 2017 [Page 23]

Internet-Draft YANG-Mount March 2017

 type string;
 description
 "This string specifies a path to a datanode. It corresponds
 to the path substatement of a leafref type statement. Its
 syntax needs to conform to the corresponding subset of the
 XPath abbreviated syntax. Contrary to a leafref type,
 subtree-ref allows to refer to a node in a remote datastore.
 Also, a subtree-ref refers only to a single node, not a list
 of nodes.";
 }

 grouping mount-monitor {
 description
 "This grouping contains data nodes that indicate the
 current status of a mount point.";
 leaf mount-status {
 type mount-status;
 config false;
 description
 "Indicates whether a mountpoint has been successfully
 mounted or whether some kind of fault condition is
 present.";
 }
 }

 grouping mount-target {
 description
 "This grouping contains data nodes that can be used to
 identify a remote system from which to mount a datastore
 subtree.";
 container mount-target {
 description
 "A container is used to keep mount target information
 together.";
 choice target-address-type {
 mandatory true;
 description
 "Allows to identify mount target in different ways,
 i.e. using different types of addresses.";
 case IP {
 leaf target-ip {
 type inet:ip-address;
 description
 "IP address identifying the mount target.";
 }
 }
 case URI {
 leaf uri {

Clemm, et al. Expires October 1, 2017 [Page 24]

Internet-Draft YANG-Mount March 2017

 type inet:uri;
 description
 "URI identifying the mount target";
 }
 }
 case host-name {
 leaf hostname {
 type inet:host;
 description
 "Host name of mount target.";
 }
 }
 case node-ID {
 leaf node-info-ref {
 type subtree-ref;
 description
 "Node identified by named subtree.";
 }
 }
 case other {
 leaf opaque-target-ID {
 type string;
 description
 "Catch-all; could be used also for mounting
 of data nodes that are local.";
 }
 }
 }
 }
 }

 grouping mount-policies {
 description
 "This grouping contains data nodes that allow to configure
 policies associated with mountpoints.";
 leaf manual-mount {
 type empty;
 description
 "When present, a specified mountpoint is not
 automatically mounted when the mount data node is
 created, but needs to mounted via specific RPC
 invocation.";
 }
 leaf retry-timer {
 type uint16;
 units "seconds";
 description
 "When specified, provides the period after which

Clemm, et al. Expires October 1, 2017 [Page 25]

Internet-Draft YANG-Mount March 2017

 mounting will be automatically reattempted in case of a
 mount status of an unreachable target";
 }
 leaf number-of-retries {
 type uint8;
 description
 "When specified, provides a limit for the number of
 times for which retries will be automatically
 attempted";
 }
 }

 rpc mount {
 description
 "This RPC allows an application or administrative user to
 perform a mount operation. If successful, it will result in
 the creation of a new mountpoint.";
 input {
 leaf mountpoint-id {
 type string {
 length "1..32";
 }
 description
 "Identifier for the mountpoint to be created.
 The mountpoint-id needs to be unique;
 if the mountpoint-id of an existing mountpoint is
 chosen, an error is returned.";
 }
 }
 output {
 leaf mount-status {
 type mount-status;
 description
 "Indicates if the mount operation was successful.";
 }
 }
 }
 rpc unmount {
 description
 "This RPC allows an application or administrative user to
 unmount information from a remote datastore. If successful,
 the corresponding mountpoint will be removed from the
 datastore.";
 input {
 leaf mountpoint-id {
 type string {
 length "1..32";
 }

Clemm, et al. Expires October 1, 2017 [Page 26]

Internet-Draft YANG-Mount March 2017

 description
 "Identifies the mountpoint to be unmounted.";
 }
 }
 output {
 leaf mount-status {
 type mount-status;
 description
 "Indicates if the unmount operation was successful.";
 }
 }
 }
 container mount-server-mgmt {
 if-feature mount-server-mgmt;
 description
 "Contains information associated with managing the
 mountpoints of a datastore.";
 container mountpoints {
 description
 "Keep the mountpoint information consolidated
 in one place.";
 list mountpoint {
 key "mountpoint-id";
 description
 "There can be multiple mountpoints.
 Each mountpoint is represented by its own
 list element.";
 leaf mountpoint-id {
 type string {
 length "1..32";
 }
 description
 "An identifier of the mountpoint.
 RPC operations refer to the mountpoint
 using this identifier.";
 }
 leaf mountpoint-origin {
 type enumeration {
 enum "client" {
 description
 "Mountpoint has been supplied and is
 manually administered by a client";
 }
 enum "auto" {
 description
 "Mountpoint is automatically
 administered by the server";
 }

Clemm, et al. Expires October 1, 2017 [Page 27]

Internet-Draft YANG-Mount March 2017

 }
 config false;
 description
 "This describes how the mountpoint came
 into being.";
 }
 leaf subtree-ref {
 type subtree-ref;
 mandatory true;
 description
 "Identifies the root of the subtree in the
 target system that is to be mounted.";
 }
 uses mount-target;
 uses mount-monitor;
 uses mount-policies;
 }
 }
 container global-mount-policies {
 description
 "Provides mount policies applicable for all mountpoints,
 unless overridden for a specific mountpoint.";
 uses mount-policies;
 }
 }
 }

 <CODE ENDS>

7. Security Considerations

 TBD

8. Acknowledgements

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Tony Tkacik, Ambika Tripathy,
 Robert Varga, Prabhakara Yellai, Shashi Kumar Bansal, Lukas Sedlak,
 and Benoit Claise.

9. Normative References

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <http://www.rfc-editor.org/info/rfc2131>.

Clemm, et al. Expires October 1, 2017 [Page 28]

Internet-Draft YANG-Mount March 2017

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <http://www.rfc-editor.org/info/rfc2866>.

 [RFC3768] Hinden, R., Ed., "Virtual Router Redundancy Protocol
 (VRRP)", RFC 3768, DOI 10.17487/RFC3768, April 2004,
 <http://www.rfc-editor.org/info/rfc3768>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <http://www.rfc-editor.org/info/rfc7923>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

Clemm, et al. Expires October 1, 2017 [Page 29]

Internet-Draft YANG-Mount March 2017

Appendix A. Example

 In the following example, we are assuming the use case of a network
 controller that wants to provide a controller network view to its
 client applications. This view needs to include network abstractions
 that are maintained by the controller itself, as well as certain
 information about network devices where the network abstractions tie
 in with element-specific information. For this purpose, the network
 controller leverages the mount capability specified in this document
 and presents a fictitious Controller Network YANG Module that is
 depicted in the outlined structure below. The example illustrates
 how mounted information is leveraged by the mounting datastore to
 provide an additional level of information that ties together network
 and device abstractions, which could not be provided otherwise
 without introducing a (redundant) model to replicate those device
 abstractions

 rw controller-network
 +-- rw topologies
 | +-- rw topology [topo-id]
 | +-- rw topo-id node-id
 | +-- rw nodes
 | | +-- rw node [node-id]
 | | +-- rw node-id node-id
 | | +-- rw supporting-ne network-element-ref
 | | +-- rw termination-points
 | | +-- rw term-point [tp-id]
 | | +-- tp-id tp-id
 | | +-- ifref mountedIfRef
 | +-- rw links
 | +-- rw link [link-id]
 | +-- rw link-id link-id
 | +-- rw source tp-ref
 | +-- rw dest tp-ref
 +-- rw network-elements
 +-- rw network-element [element-id]
 +-- rw element-id element-id
 +-- rw element-address
 | +-- ...
 +-- M interfaces

 The controller network model consists of the following key
 components:

 o A container with a list of topologies. A topology is a graph
 representation of a network at a particular layer, for example, an
 IS-IS topology, an overlay topology, or an Openflow topology.
 Specific topology types can be defined in their own separate YANG

Clemm, et al. Expires October 1, 2017 [Page 30]

Internet-Draft YANG-Mount March 2017

 modules that augment the controller network model. Those
 augmentations are outside the scope of this example

 o An inventory of network elements, along with certain information
 that is mounted from each element. The information that is
 mounted in this case concerns interface configuration information.
 For this purpose, each list element that represents a network
 element contains a corresponding mountpoint. The mountpoint uses
 as its target the network element address information provided in
 the same list element

 o Each topology in turn contains a container with a list of nodes.
 A node is a network abstraction of a network device in the
 topology. A node is hosted on a network element, as indicated by
 a network-element leafref. This way, the "logical" and "physical"
 aspects of a node in the network are cleanly separated.

 o A node also contains a list of termination points that terminate
 links. A termination point is implemented on an interface.
 Therefore, it contains a leafref that references the corresponding
 interface configuration which is part of the mounted information
 of a network element. Again, the distinction between termination
 points and interfaces provides a clean separation between logical
 concepts at the network topology level and device-specific
 concepts that are instantiated at the level of a network element.
 Because the interface information is mounted from a different
 datastore and therefore occurs at a different level of the
 containment hierarchy than it would if it were not mounted, it is
 not possible to use the interface-ref type that is defined in YANG
 data model for interface management [] to allow the termination
 point refer to its supporting interface. For this reason, a new
 type definition "mountedIfRef" is introduced that allows to refer
 to interface information that is mounted and hence has a different
 path.

 o Finally, a topology also contains a container with a list of
 links. A link is a network abstraction that connects nodes via
 node termination points. In the example, directional point-to-
 point links are depicted in which one node termination point
 serves as source, another as destination.

 The following is a YANG snippet of the module definition which makes
 use of the mountpoint definition.

Clemm, et al. Expires October 1, 2017 [Page 31]

Internet-Draft YANG-Mount March 2017

 <CODE BEGINS>
 module controller-network {
 namespace "urn:cisco:params:xml:ns:yang:controller-network";
 // example only, replace with IANA namespace when assigned
 prefix cn;
 import mount {
 prefix mnt;
 }
 import interfaces {
 prefix if;
 }
 ...
 typedef mountedIfRef {
 type leafref {
 path "/cn:controller-network/cn:network-elements/"
 +"cn:network-element/cn:interfaces/if:interface/if:name";
 // cn:interfaces corresponds to the mountpoint
 }
 }
 ...
 list termination-point {
 key "tp-id";
 ...
 leaf ifref {
 type mountedIfRef;
 }
 ...
 list network-element {
 key "element-id";
 leaf element-id {
 type element-ID;
 }
 container element-address {
 ... // choice definition that allows to specify
 // host name,
 // IP addresses, URIs, etc
 }
 mnt:mountpoint "interfaces" {
 mnt:target "./element-address";
 mnt:subtree "/if:interfaces";
 }
 ...
 }
 ...
 <CODE ENDS>

 Finally, the following contains an XML snippet of instantiated YANG
 information. We assume three datastores: NE1 and NE2 each have a

Clemm, et al. Expires October 1, 2017 [Page 32]

Internet-Draft YANG-Mount March 2017

 datastore (the mount targets) that contains interface configuration
 data, which is mounted into NC’s datastore (the mount client).

 Interface information from NE1 datastore:

 <interfaces>
 <interface>
 <name>fastethernet-1/0</name>
 <name>ethernetCsmacd</type>
 <location>1/0</location>
 </interface>
 <interface>
 <name>fastethernet-1/1</name>
 <name>ethernetCsmacd</type>
 <location>1/1</location>
 </interface>
 <interfaces>

 Interface information from NE2 datastore:
 <interfaces>
 <interface>
 <name>fastethernet-1/0</name>
 <name>ethernetCsmacd</type>
 <location>1/0</location>
 </interface>
 <interface>
 <name>fastethernet-1/2</name>
 <name>ethernetCsmacd</type>
 <location>1/2</location>
 </interface>
 <interfaces>

 NC datastore with mounted interface information from NE1 and NE2:

Clemm, et al. Expires October 1, 2017 [Page 33]

Internet-Draft YANG-Mount March 2017

 <controller-network>
 ...
 <network-elements>
 <network-element>
 <element-id>NE1</element-id>
 <element-address> </element-address>
 <interfaces>
 <if:interface>
 <if:name>fastethernet-1/0</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/0</if:location>
 </if:interface>
 <if:interface>
 <if:name>fastethernet-1/1</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/1</if:location>
 </if:interface>
 <interfaces>
 </network-element>
 <network-element>
 <element-id>NE2</element-id>
 <element-address> </element-address>
 <interfaces>
 <if:interface>
 <if:name>fastethernet-1/0</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/0</if:location>
 </if:interface>
 <if:interface>
 <if:name>fastethernet-1/2</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/2</if:location>
 </if:interface>
 <interfaces>
 </network-element>
 </network-elements>
 ...
 </controller-network>

Authors’ Addresses

 Alexander Clemm
 Huawei

 EMail: ludwig@clemm.org

Clemm, et al. Expires October 1, 2017 [Page 34]

Internet-Draft YANG-Mount March 2017

 Eric Voit
 Cisco Systems

 EMail: evoit@cisco.com

 Jan Medved
 Cisco Systems

 EMail: jmedved@cisco.com

Clemm, et al. Expires October 1, 2017 [Page 35]

