TEAS Working Group Igor Bryskin
Internet Draft Huawei Technologies
Intended status: Informational Vishnu Pavan Beeram
Juniper Networks Tarek Saad
Cisco Systems Inc Xufeng Liu
Jabil

Expires: April 23, 2017 October 23, 2017

TE Topology and Tunnel Modeling for Transport Networks
draft-bryskin-teas-te-topo-and-tunnel-modeling-01

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

This Internet-Draft will expire on April 23, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

Abstract

This document describes how to model TE topologies and tunnels for transport networks, by using the TE topology YANG model [I-D.ietf-teas-yang-te-topo] and the TE tunnel YANG model [I-D.ietf-teas-yang-te].

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents

1. Modeling Considerations..3
 1.1. TE Topology Model...3
 1.2. TE Topology Modeling Constructs...........................5
 1.3. Abstract TE Topology Calculation, Configuration and Maintenance...22
 1.3.1. Single-Node Abstract TE Topology....................24
 1.3.2. Full Mesh Link Abstract TE Topology...............26
 1.3.3. Star-n-Spokes Abstract TE Topology................28
 1.3.4. Arbitrary Abstract TE Topology.....................29
 1.3.5. Customized Abstract TE Topologies..................30
 1.3.6. Hierarchical Abstract TE Topologies...............31
 1.4. Merging TE Topologies Provided By Multiple Providers.....32
 1.4.1. Dealing With Multiple Abstract TE Topologies Provided By The Same Provider..........................35
 1.5. Configuring Abstract TE Topologies........................37
 1.6. TE Tunnel Model..38
 1.7. TE Tunnel/Transport Service Modeling Constructs.......40
 1.8. Transport Service Mapping................................53
 1.9. Multi-Domain Transport Service Coordination..............54
2. Use Cases...58
2.1. Use Case 1. Transport service control on a single layer
multi-domain transport network..58
2.2. Use Case 2. End-to-end TE tunnel control on a single layer
multi-domain transport network..66
2.3. Use Case 3. Transport service control on a ODUk/Och multi-
domain transport network with Ethernet access links............70
2.4. Use Case 4. Transport service control on a ODUk/Och multi-
domain transport network with multi-function access links.......77
2.5. Use Case 5. Real time updates of IP/MPLS layer TE link
attributes that depend on supporting transport connectivity (e.g.
transport SRLGs, propagation delay, etc.).............................80
2.6. Use Case 6. Virtual Network Service...............................81

3. Security Considerations...84
4. IANA Considerations..85
5. References...85
5.1. Normative References..85
5.2. Informative References...85
6. Acknowledgments..85

Appendix A. Data Examples..86
A.1. Use Case 1...86
A.1.1. Domain 1...86
A.1.2. Domain 2...93
A.1.3. Domain 3...99

Authors’ Addresses...105

1. Modeling Considerations

1.1. TE Topology Model

The TE Topology Model is written in YANG modeling language. It is
defined and developed by the IETF TEAS WG and is documented as "YANG
Data Model for TE Topologies" [I-D.ietf-teas-yang-te-topo]. The model
describes a TE network provider’s Traffic Engineering data store as
it is seen by a client. It allows for the provider to convey to each
of its clients:

- information on network resources available to the client in the
 form of one or several native TE topologies (for example, one for
each layer network supported by the provider);

- one or several abstract TE topologies, customized on per-client
 basis and sorted according to the provider’s preference as to how
 the abstract TE topologies are to be used by the client;

- updates with incremental changes happened to the previously
 provided abstract/native TE topology elements;
The TE Topology Model allows a network client to:

- (Re-)configure/negotiate abstract TE topologies provided to the client by a TE network provider, so that said abstract TE topologies optimally satisfy the client’s needs, constraints and optimization criteria, based on the client’s network planning, service forecasts, telemetry information extracted from the network, previous history of service provisioning and performance monitoring, etc.;

- Obtain abstract/native TE topologies from multiple providers and lock them horizontally (inter-domain) and vertically (inter-layer) into the client’s own native TE topologies;

- Configure, with each provider the trigger, frequency and contents of the TE topology update notifications;

- Configure, with each provider the trigger, frequency and contents of the TE topology telemetry (e.g. statistics counters) update notifications.
1.2. TE Topology Modeling Constructs

Figure 1. TE Topology

- TE domain - a multi-layer traffic engineered network under direct and complete control of a single authority, network provider. TE domain can be described by one or more TE topologies. For example, separate TE topologies can describe each of the domain’s layer networks. TE domain can hierarchically encompass/parent other (child) TE domains, and can be encompassed by its own parent.

- TE topology - a graphical representation of a TE domain. TE topology is comprised of TE nodes (TE graph vertices) interconnected via TE links (TE graph edges).

/* TE topology */
augment /nw:networks/nw:network:
 /* TE topology global ID */
 ++-rw provider-id? te-types:te-global-id
 ++-rw client-id? te-types:te-global-id
 ++-rw te-topology-id? te-types:te-topology-id

/* TE topology general parameters */
 ++-rw preference? uint8
 ++-rw optimization-criterion? identityref
/* TE topology list of TE nodes */
augment /nw:networks/nw:network/nw:node:
 +--rw te-node-id? te-types:te-node-id

/* TE topology list of TE links */
augment /nw:networks/nw:network/nt:link:

/* TE topology list of TE link termination points */
augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +--rw te-tp-id? te-types:te-tp-id

Figure 2. TE Node
- TE node – an element of a TE topology (appears as a vertex on TE graph). A TE node represents one or several nodes (physical switches), or a fraction of a node. A TE node belongs to and is fully defined in exactly one TE topology. A TE node is assigned a TE topology scope-unique ID. TE node attributes include information related to the data plane aspects of the associated node(s) (e.g. TE node’s connectivity matrix), as well as configuration data (such as TE node name). A given TE node can be reached on the TE graph, representing the TE topology, over one of TE links terminated by the TE node.

/* TE node */
augment /nw:networks/nw:network/nw:node:
 /* TE node ID */
 +-rw te-node-id? te-types:te-node-id

 /* TE node general attributes */
 | +-rw te-node-attributes *

 /* TE node connectivity matrices */
 | +-rw connectivity-matrices

 /* TE node underlay TE topology */
 | | +-rw underlay-topology {te-topology-hierarchy}?
 | | | +-rw network-ref? leafref

 /* TE node information sources*/
 | | +-ro information-source-entry* [information-source]

 /* TE node statistics */
 | +-ro statistics

 /* TE node TTP list */
 | +-rw tunnel-termination-point* [tunnel-tp-id]
TE link - an element of a TE topology (appears as an edge on TE graph), TE link is unidirectional and its arrow indicates the TE link’s direction. Edges with two arrows on the TE topology graph (see Figure 1) represent bi-directional combinations of two parallel oppositely directed TE links. A TE link represents one or several physical links or a fraction of a physical link. A TE link belongs to and is fully defined in exactly one TE topology. A TE link is assigned a TE topology scope-unique ID. TE link attributes include parameters related to the data plane aspects of the associated link(s) (e.g. unreserved bandwidth, resource maps/pools, etc.), as well as the configuration data (such as remote node/link IDs, SRLGs, administrative colors, etc.) A TE link is connected to a TE node, terminating the TE link via exactly one TE link termination point (LTP).

/* TE link */
augment /nw:networks/nw:network/nt:link:
 /* TE link bundle information */
 | +--rw (bundle-stack-level)?
 | | | +--rw bundled-links
 | +--rw component-links
 ..
 /* TE link general attributes */
 | +--rw te-link-attributes
 ..
 /* TE link underlay TE topology */
 | +--rw underlay! {te-topology-hierarchy}?
 | | +--rw primary-path
 | +--rw backup-path* [index]
 ..
 /* TE link layer network */
 | +--rw interface-switching-capability* [switching-capability encoding]
 ..
 /* TE link protection type */
 | | +--rw protection-type? uint16
 ..
 /* TE link supporting TE tunnels */
 | | +--rw tunnels
/* TE link transitional link flag */
 +--ro is-transitional? empty

/* TE link information sources */
 +--ro information-source? te-info-source

/* TE link statistics */
 +--ro statistics

Intra-domain TE link - TE link connecting two TE nodes within the same TE topology representing a TE network domain (e.g. L14 in Figure 1). From the point of view of the TE topology where the intra-domain TE link is defined, the TE link is close-ended, that is, both local and remote TE nodes of the link are defined in the same TE topology.

Inter-domain TE link - TE link connecting two border TE nodes that belong to separate TE topologies describing neighboring TE network domains (e.g. L3x in Figure 1). From the point of view of the TE topology where the inter-domain TE link is defined, the TE link is open-ended, that is, the remote TE node of the link is not defined in the TE topology where the local TE node and the TE link itself are defined.

[Note: from the point of view of a TE node terminating an inter-domain TE link there is no difference between inter-domain and access TE links]

Access TE link - TE link connecting a border TE node of a TE topology describing a TE network domain to a TE node of a TE topology describing a customer network site (e.g. L1x in Figure 1). From the point of view of the TE topology where the access TE link is defined, the TE link is open-ended, that is, the remote TE node of the link (t.e. TE node representing customer network element(s)) is not defined in the TE topology where the local TE node and the TE link itself are defined.
[Note: from the point of view of a TE node terminating an access TE link there is no difference between access and inter-domain TE links]

- Dynamic TE link – a TE link that shows up in (and disappears from) a TE topology as a result of multi-layer traffic engineering. Dynamic TE link (supported by a hierarchy TE tunnel dynamically set up in a server layer network) is automatically (i.e. without explicit configuration request) added to a client layer network TE topology to augment the topology with additional flexibility to ensure successful completion of the path computation for and provisioning of a client layer network connection/LSP. For example, an ODUk hierarchy TE tunnel can support a dynamic Ethernet layer TE link to enable provisioning of an Ethernet layer connection on a network that does not have sufficient static Ethernet layer connectivity. Likewise, dynamic TE link is automatically removed from the TE topology (and its supporting hierarchy TE tunnel released) as soon as the TE link stops carrying client layer connections/LSPs.

- TE link termination point (LTP) – a conceptual point of connection of a TE node to one of the TE links terminated by the TE node (see Figure 2a). Unlike TE link, LTP is bi-directional – an inbound TE link and an oppositely directed outbound TE link have to be connected to the TE node via the same LTP to constitute a bi-directional TE link combination.

Figure 2a. Bi-directional TE link combination (left), independent uni-directional TE links (right)
TE tunnel termination point (TTP) - an element of TE topology representing one or several potential TE tunnel termination/adaptation points (e.g. OCh layer transponder). A TTP is hosted by exactly one TE node (see Figure 2). A TTP is assigned a TE node scope-unique ID. Depending on the TE node’s internal constraints, a given TTP hosted by the TE node could be accessed via one, several or all TE links originated/terminated from/by the TE node. TTP’s important attributes include Local Link Connectivity List, Adaptation Client Layer List, TE inter-layer locks (see below), Unreserved Adaptation Bandwidth (announcing the TTP’s remaining adaptation resources sharable between all potential client LTPs), and Property Flags (indicating miscellaneous properties of the TTP, such as capability to support 1+1 protection for a TE tunnel terminated on the TTP).
Label - in the context of circuit switched layer networks identifies a particular resource on a TE link (e.g. Och wavelength, ODUk container)

```
+--:(label)
    +--rw value?   rt-types:generalized-label
```

Figure 3. TTP Local Link Connectivity List
Internet-Draft TE Topology and Tunnel Modeling October 2017

- TTP basic local link connectivity list (basic LLCL) - a list of TE
 link/label combinations terminated by the TTP-hosting TE node
 (effectively the same as LTP/label pairs), which the TTP could be
 connected to (see Figure 3, upper left). From the point of view of
 a potential TE path, basic LLCL provides a list of permissible
 LTP/label pairs the TE path needs to start/stop on for a
 connection, taking the TE path, to be successfully terminated on
 the TTP in question.

- TTP detailed local link connectivity list (detailed LLCL) - basic
 LLCL extended to provide a set of costs (such as intra-node
 summary TE metric, delay, SRLGs, etc.) associated with each LLCL
 entry (see Figure 3, upper right)

/* LLCL entry metrics (vector of costs) */
 | +--rw te-default-metric? uint32
 | +--rw te-delay-metric? uint32
 | +--rw te-srlgs
 | | +--rw value* te-types:srlg
 | | +--rw te-nsrlgs (nsrlg)?

/* LLCL entry ID */
 | +--rw id* uint32

o TTP adaptation client layer list - a list of client layers that
could be directly adopted by the TTP. This list is necessary to
describe complex multi-layer (more than two layer) client-server
layer hierarchies and, in particular, to identify the position of
the TTP in said hierarchies.

/* TTP adaptation client layer list */
 | +--rw client-layer-adaptation
 | | +--rw switching-capability* [switching-capability encoding]
/* Client layer ID */
 | | +--rw switching-capability identityref
 | | +--rw encoding identityref
/* Adaptation bandwidth available for the client layer */
 | | +--rw bandwidth? te-bandwidth
Figure 4. TE Node Connectivity Matrix

- TE node basic connectivity matrix - a TE node attribute describing the TE node's switching capabilities/limitations in the form of permissible switching combinations of the TE node's LTP/label pairs (see Figure 4, upper left). From the point of view of a potential TE path arriving at the TE node at a given inbound LTP/label, the node's basic connectivity matrix describes permissible outbound LTP/label pairs for the TE path to leave the TE node.

- TE node detailed connectivity matrix - TE node basic connectivity matrix extended to provide a set of costs (such as intra-node summary TE metric, delay, SRLGs, etc.) associated with each connectivity matrix entry (see Figure 4, upper right).

/* TE node connectivity matrix */
 | +--rw connectivity-matrix* [id]
 | +--rw id uint32
 | +--rw from /* left LTP */
/* Connectivity matrix entry label range */
 +--rw label-restriction* [inclusive-exclusive
 | label-start]
 | +--rw inclusive-exclusive enumeration
 | +--rw label-start rt-
types:generalized-label
 | +--rw label-end? rt-
types:generalized-label
 | +--rw range-bitmap? binary

/* Connectivity matrix entry underlay TE path(s) */
 +--rw underlay! {te-topology-hierarchy}?
 | +--rw primary-path
 | +--rw backup-path* [index]
/* Connectivity matrix entry protection type */
 +--rw protection-type? uint16
/* Connectivity matrix entry supporting TE tunnels */
 +--rw tunnels
/* Connectivity matrix entry bandwidth parameters */
 +--rw max-lsp-bandwidth* [priority]

/* Connectivity matrix entry metrics (vector of costs) */
 +--rw te-default-metric? uint32
 +--rw te-delay-metric? uint32
 +--rw te-srlgs
 | +--rw value* te-types:srlg
 | +--rw te-nserlgs {nsrlg}?

/* Connectivity matrix entry ID */
 +--rw id* uint32
Figure 5. TE Path

- TE path - an ordered list of TE node/link IDs (each possibly augmented with labels) that interconnects over a TE topology a pair of TTPs and could be used by a connection (see Figure 5). A TE path could, for example, be a product of a successful path computation performed for a given TE tunnel.

```plaintext
/* TE path */

/* TE topology the path is defined in */
| | | +--rw network-ref? leafref

/* Path type (IRO, XRO, ERO, RRO) */
| | | +--rw path-type? identityref

/* TE path elements */
| | +--rw path-element* [path-element-id]
| | | +--rw path-element-id uint32
| | | +--rw index? uint32
| | +--rw (type)?

/* Numbered TE link path element */
| | +--:(ip-address)
| | | +--rw ip-address-hop
| | | +--rw address? inet:ip-address
```
| | | | ---:rw hop-type? te-hop-type
/* AS number path element */
| | | | ---: (as-number)
| | | | | ---:rw as-number-hop
| | | | | | ---:rw as-number? binary
| | | | | | ---:rw hop-type? te-hop-type
/* Unnumbered TE link path element */
| | | | ---: (unnumbered-link)
| | | | | ---:rw unnumbered-hop
| | | | | | | ---:rw te-node-id? inet:ip-address
| | | | | | | ---:rw tp-id? uint32
| | | | | | | ---:rw hop-type? te-hop-type
/* Label path element */
| | | | ---: (label)
| | | | | ---:rw label-hop
| | | | | | | ---:rw value? rt-types:generalized-label
| | | | | | | ---:rw direction? boolean
| | | | | | | ---: (sid)
| | | | | | | | ---:rw sid-hop
| | | | | | | | | ---:rw sid? rt-types:generalized-label

- TE path segment - a contiguous fragment of a TE path

Figure 6. TE Inter-Layer Lock
o TE inter-layer lock - a modeling concept describing client-server layer adaptation relationships important for multi-layer traffic engineering. It is an association of M client layer LTPs and N server layer TTPs, within which data arriving at any of the client layer LTPs could be adopted onto any of the server layer TTPs. A TE inter-layer lock is identified by inter-layer lock ID, which is unique across all TE topologies provided by the same provider. The client layer LTPs and the server layer TTPs associated by a given TE inter-layer lock share the same inter-layer lock ID value.

In Figure 6 a TE inter-layer lock IL_1 associates six client layer LTPs (C_LTP_1 - C_LTP_6) with two server layer TTPs (S_TTP_1 and S_TTP_2). As mentioned, they all have the same attribute -inter-layer lock ID: IL_1, which is the only parameter/value indicating the association. A given LTP may have zero, one or more inter-layer lock IDs. In the case of multiple inter-layer lock IDs, this implies that the data arriving at the LTP can be adopted onto any of TTPs associated with all specified inter-layer locks. For example, C_LTP_1 may be attributed with two inter-layer locks - IL_1 and IL_2. This would mean that C_LTP_1 for adaptation purposes can use not just TTPs associated with inter-layer lock IL_1 (i.e. S_TTP_1 and S_TTP_2 in the Figure), but any of TTPs associated with inter-layer lock IL_2. Likewise, a given TTP may have one or more inter-layer locks, meaning that it can offer the adaptation service to any client layer LTP having an inter-layer lock matching one of its own.

LTPs and TTPs associated within the same TE inter-layer lock may be hosted by the same (hybrid, multi-layer) TE node or by multiple TE nodes defined in the same or separate TE topologies. The latter case is especially important because TE topologies of different layer networks could be modeled by separate augmentations of the basic (common to all layers) TE topology model.

 | +--rw inter-layer-lock-id? uint32

o Transitional link - an alternative method of modeling of client-server adaptation relationship. Transitional link is a bi-directional link connecting an LTP in a client layer to an LTP in a server layer, which is associated (via TTP’s LLCL) with a server layer TTP capable of adopting the client layer data onto a TE tunnel terminated by the TTP. Important attributes of a transitional link are local/remote LTP IDs, TE metric and available adaptation bandwidth.
Native TE topology - a TE topology as it is known (to full extent and unmodified) to the TE topology provider (see lower part of Figure 7.). A native TE topology might be discovered via various routing protocols and/or subscribe/publish techniques. For example, a first-level TE topology provider (such as a T-SDN Domain Controller, DC) may auto-discover its native TE topology(ies) by participating in the domain’s OSPF-TE protocol instance; while a second-level TE topology provider (such as a Hierarchical T-SDN Controller, HC) normally builds its native TE topology(ies) based on TE topologies exposed by each of the subordinate, first-level TE topology providers.

Underlay TE topology - a TE topology that serves as a base for constructing overlay TE topologies.
o Overlay TE topology - a TE topology constructed based on one or more underlay TE topologies. Each TE node of the overlay TE topology represents a separate underlay TE topology (that could be mapped onto an arbitrary segment of a native TE topology). Each TE link of the overlay TE topology represents, generally speaking, an arbitrary TE path in one of the underlay TE topologies. The overlay TE topology and the supporting underlay TE topologies may represent separate layer networks (e.g. OTN/ODUk and WDM/OCh respectively) or the same layer network.

o Abstract TE topology - an overlay TE topology created by a provider to describe its network in some abstract way. An abstract TE topology contains at least one abstract TE topology element, such as TE node or TE link. An abstract TE topology is built based on contents of one or more of the provider’s native TE topologies (serving as underlay(s)), the provider’s policies and the client’s preferences (see upper part of Figure 7).

o Customized TE topology - a TE topology tailored for a given provider’s client. A customized TE topology is usually but not always an abstract TE topology. For example, a given abstract TE topology could be exposed to a group or all provider’s clients (in which case the abstract TE topology is not a customized TE topology). Likewise, a given naive TE topology could be customized for a given client (for example, by removing high delay TE links the client does not care about). So customized TE topology is not an abstract TE topology, because it does not contain abstract TE topology elements.

o TE inter-domain plug - a TE link attribute meaningful for open-ended inter-domain/access TE links. It contains a network-wide unique value (inter-domain plug ID) that identifies in the network a connectivity supporting the inter-domain/access TE link in question. It is expected that a given pair of neighboring domain TE topologies (provided by separate providers) will have each at least one open-ended inter-domain/access TE link with a TE inter-domain plug matching to one provided by its neighbor, thus allowing for a client of both domains to identify adjacent nodes in the separate neighboring TE topologies and resolve the open-ended inter-domain/access TE links by connecting them regardless of the links respective local/remote node ID/link ID attributes. Inter-domain plug IDs may be assigned and managed by a central network authority. Alternatively, inter-domain plug IDs could be dynamically auto-discovered (e.g. via LMP protocol).
1.3. Abstract TE Topology Calculation, Configuration and Maintenance

The TE Topology Model does not prescribe what and how abstract TE topologies are computed, configured, manipulated and supported by a TE network (e.g. transport network) provider. However, it is assumed that:

- All TE topologies, native or abstract, conveyed to the same or different clients, are largely independent one from another. This implies that each TE topology, generally speaking, has an independent name space for TE node and link IDs, SRLGs, etc. (possibly overlapping with the name spaces of other TE topologies);

- All abstract TE topologies are bound to the respective underlay native or abstract TE topologies only by the overlay/underlay relationships defined by the TE Topology Model, but, otherwise, the abstract TE topologies are decoupled from their respective underlay TE topologies.

It is envisioned that an original set of abstract TE topologies is produced by a TE network provider for each of its clients based on the provider’s local configurations and/or policies, as well as the client-specific profiles. The original set of abstract TE topologies offered to a client may be accepted by the client as-is. Alternatively, the client may choose to negotiate/re-configure the abstract TE topologies, so that the latter optimally satisfy the client's needs. In particular, for each of the abstract TE topologies the client may request adding/removing TE nodes, TE links, TTPs and/or modifying re-configurable parameters of the existing components. The client may also request different optimization criteria as compared to those used for the original abstract TE topology optimization, or/and specify various topology-level constraints. The provider may accept or reject all or some abstract TE topology re-configuration requests. Hence, the abstract TE topology negotiation process may take multiple iterations before the provider and each of its clients agree upon a set of abstract TE topologies.
topologies and their contents. Furthermore, the negotiation process could be repeated over time to produce new abstract TE topologies optimal to best suit evolving circumstances.

Figure 8. Native Transport Network Domain TE Topology as an Underlay for Abstract TE Topologies

Let’s assume that a native transport network domain TE topology to be as depicted in Figure 8. The popular types of abstract TE topologies based on this native TE topology as an underlay are described in the following sections.
1.3.1. Single-Node Abstract TE Topology

In Figure 9, the transport network domain is presented to a client as a one-node abstract TE topology, where the single TE node (AN1) represents the entire domain and terminates all of the inter-domain/access TE links connecting the domain to its adjacent domains (i.e. TE links L1...L8). Because AN1 represents the entire domain the node’s Underlay TE Topology attribute matches the ID of one of the domain’s native TE topologies (e.g. one presented in Figure 8).

[Note: all or some of the underlay TE topologies a given abstract TE topology depends on could be catered to the client by the provider along with the abstract TE topology in question or upon separate request(s) issued by the client.]

One important caveat about abstract TE node AN1 is that it should be considered as an asymmetrical/blocking switch, because, generally speaking, it is not guaranteed that a suitable TE path exists between any given pair of inter-domain TE links into/out of the domain. This means from the TE Topology model point of view that there are certain limitations as to how AN1’s LTPs could be interconnected inside/across the TE node. The model allows for asymmetrical/blocking switches by specifying for the associated TE nodes a non-empty basic connectivity matrix attribute describing permissible inbound-outbound TE link/label switching combinations. It is assumed that the provider’s path computer can compute a set of optimal TE paths, connecting inbound TE link/label_x <=> outbound TE link/label_y combinations inside the abstract TE node over the TE node’s underlay TE topology. Based on the results of such computations, AN1’s
connectivity matrix can be (re-)generated and (re-)conveyed to the abstract TE topology client.

A richer version of the basic connectivity matrix is the detailed connectivity matrix. The latter not only describes permissible inbound TE link/label\textsubscript{x} \(\leftrightarrow\) TE link/label\textsubscript{y} switching combinations, but also provides connectivity matrix entry specific vectors of various costs/metrics (in terms of delay, bandwidth, intra-node SRLGs and summary TE metrics) that a potential TE path will accrue, should a given connectivity matrix entry be selected by the path for crossing the TE node (see Figure 10).

Figure 10. Blocking/Asymmetrical TE Node with Detailed Connectivity Matrix Attribute
1.3.2. Full Mesh Link Abstract TE Topology

In Figure 11, the transport network domain is abstracted in the following way.

- Each of the underlay native TE topology border TE nodes (i.e., the TE nodes terminating at least one inter-domain/access TE link, such as TE nodes S3 or S11 in Figure 8) is represented in the abstract TE topology as a separate abstract TE node, matching one-for-one to the respective border TE node of the underlay TE topology. For example, S3’ of the abstract TE topology represents S3 of the underlay TE topology in Figure 8. [Note that such a relationship is modeled via Supporting Node attribute of TE node S3’ specifying the ID of S3, as well as the ID of the TE topology where S3 is defined (i.e. TE topology in Figure 8)]. Likewise, S9’ represents S9, S11’ represents S11 and so forth;
TE nodes S3’, S5’, S8’, S9’ and S11’ are interconnected via a full mesh of abstract TE links. It is assumed that the provider’s path computer can compute a set of optimal TE paths over one or more of underlay TE topologies (such as presented in Figure 8) – one for each of said abstract TE links, and the provider can set up the TE tunnels in the network supporting each of the abstract TE links, either during the abstract TE topology configuration (in the case of committed/pre-established abstract TE links), or at the time the first client’s connection is placed on the abstract TE link in question (the case of uncommitted abstract TE links). [Note that so (re-)computed TE paths, as well as the IDs of respective underlay TE topologies used for their computation are normally catered to the client in the Underlay TE path attribute of the associated abstract TE links]

The configuration parameters of each of the abstract TE links (such as layer ID, bandwidth and protection requirements, preferred TE paths across the underlay TE topology for the primary and backup connections, etc.) are expected to be found in the abstract TE topology profiles/templates locally configured with the provider or pushed to the provider by the client via the policy NBI. Each of the abstract TE links may be later re-configured or removed by direct configuration requests issued by the client via TE Topology NBI. Likewise, additional abstract TE links may be requested by the client at any time.

Some possible variants/flavors of the Full Mesh Link Abstract TE Topology described above are:

- Partial Mesh Link Abstract TE Topology (where some of the abstract TE links from the full mesh are missing);
- Double Mesh Link Abstract TE Topology (where each pair of abstract TE nodes is connected via two diverse abstract TE links).
1.3.3. Star-n-Spokes Abstract TE Topology

The Full Mesh Link Abstract TE Topology suffers from the n-squared problem; that is, the number of required abstract TE links is proportional to square of the number of native TE topology border TE nodes. This problem can be mitigated (i.e., the number of required abstract TE links may be significantly reduced) by adding, to the abstract TE topology, an additional abstract TE node (the star) representing one or several interconnected non-border TE nodes from the native TE topology. Abstract TE links in the Star-n-Spokes Topology connect the star with all other TE nodes of the topology (the spokes). For example, abstract TE node AN1 in Figure 12 could represent collectively TE nodes S7, S10 and S4 of the native TE topology (see Figure 8) with abstract TE links connecting AN1 with all other TE nodes in the Star-n-Spokes Abstract TE Topology in Figure 12.

In order to introduce a composite abstract TE node, (e.g. AN1 in Figure 12) representing in a given abstract TE topology an arbitrary segment of another TE topology (e.g. TE nodes S7, S12 and S4 of the TE topology in Figure 8) the TE topology provider is expected to perform the following operations:

- Copy the TE topology segment to be represented by the abstract TE node (i.e. TE nodes S7, S10 and S4 in Figure 8, as well as the TE links interconnecting them) into a separate auxiliary TE topology (with a separate TE topology ID);
o Set for each TE node and TE link of the auxiliary TE topology the Supporting Node/Link attribute matching the original TE topology ID, as well as the ID of the respective original TE node/link of the original TE topology. For example, if S7" of the auxiliary TE topology is a copy of S7 of the original TE topology, the Supporting Node attribute of S7" will specify the ID of the original TE topology (presented in figure 8) and the ID of S7;

o Set for the abstract TE node AN1 the Underlay TE Topology attribute matching the auxiliary TE Topology ID

Furthermore, the Star-n-Spokes Abstract TE topology provider is expected to:

o Compute/provision TE paths/tunnels supporting each of the abstract TE links in Figure 12 (i.e. abstract TE links connecting the spokes to the star, AN1) as described in 1.3.2;

o Generate the AN1’s Basic/Detailed Connectivity Matrix attribute based on intra-node path computations performed on the AN1’s underlay (i.e. auxiliary) TE topology and describing permissible inbound TE link/label_x. outbound TE link/label_y switching combinations as described in 1.3.1

1.3.4. Arbitrary Abstract TE Topology

Figure 13. Arbitrary Abstract TE Topology

To achieve an optimal tradeoff between the number of components, the amount of information exposed by a transport network provider and the
amount of path computations required to keep said information up-to-date, the provider may present the TE network domain as an arbitrary abstract TE topology comprised of any number of abstract TE nodes interconnected by abstract TE links (see Figure 13). Each of the abstract TE nodes can represent a single or several interconnected TE nodes from the domain’s underlay (native or lower level abstract) TE topology, or a fraction of an underlay TE node. [Note that each of the abstract TE nodes of the TE topology in Figure 13 is expected to be introduced and maintained by the provider following the instructions as described in 1.3.3; likewise, each of the abstract TE links of the topology is expected to be computed, provisioned and maintained as described in 1.3.2]

1.3.5. Customized Abstract TE Topologies

A transport network/domain provider may serve more than one client. In such a case, the provider "slices" the network/domain resources and exposes a slice for each of the clients in the form of a customized abstract TE topology. In Figure 14, the provider serves
two clients (Blue and Red). Client Blue is provided with the Blue
abstract TE topology supported by the blue TE tunnels or paths in the
underlay (native) TE topology (depicted in the Figure with blue
broken lines). Likewise, client Red is provided with the Red abstract
TE topology supported by the red TE tunnels or paths in the underlay
TE topology.

1.3.6. Hierarchical Abstract TE Topologies

Figure 15. Hierarchy of Abstract TE Topologies

As previously mentioned, an underlay TE topology for a given abstract
TE topology component does not have to be one of the domain’s native
TE topologies – another (lower level) domain’s abstract TTE topology
can be used instead. This means that abstract TE topologies are
hierarchical in nature.

Figure 15 provides an example of abstract TE topology hierarchy. In
this Figure the blue topology is a top level abstract TE topology
catered to by the provider to one of the domain’s clients. One of the
TE links of the blue topology - link EF - is supported by a TE path
E’-M-P-Q-N-F’ computed in the underlay TE topology (red topology),
which happens to be domain’s (lower level) abstract TE topology. Furthermore, as shown, the TE link PQ – one of the TE links
comprising the E’-M-P-Q-N-F’ path - is supported by its own underlay
TE path, P’-X-Q’ – computed on one of the domain’s native TE topologies.

Importantly, each TE link and TE node of a given abstract TE topology has, generally speaking, its individual stack/hierarchy of underlay TE topologies.

1.4. Merging TE Topologies Provided By Multiple Providers

A client may receive TE topologies provided by multiple providers, each of which managing a separate domain of an interconnected multi-domain transport network. In order to make use of said topologies, the client is expected to merge (inter-connect) the provided TE topologies into one or more client’s native TE topologies, each of which homogeneously representing the multi-domain transport network. This makes it possible for the client to select end-to-end TE paths for its TE tunnel connections traversing multiple domains.

In particular, the process of merging TE topologies includes:

- Identifying neighboring TE domains and locking their TE topologies horizontally by connecting their inter-domain open-ended TE links;

- Renaming TE node, link, and SRLG IDs into ones allocated from a separate name space; this is necessary because all TE topologies are considered to be, generally speaking, independent with a possibility of clashes among TE node, link or SRLG IDs. Original TE node/link IDs along with the original TE topology ID are stored in the Source attribute of the respective TE nodes/links of the merged TE topology;

- Locking, TE topologies associated with different layer networks vertically according to provided TE inter-layer locks; this is to facilitate inter-layer path computations across multiple TE topologies provided by the same topology provider.
Figure 16 illustrates the process of merging, by the client, of TE
topologies provided by the client’s providers.

In the Figure, each of the two providers caters to the client a TE
topology (abstract or native), describing the network domain under
the respective provider’s control. The client, by consulting the
attributes of the open-ended inter-domain/access TE links - such as
TE inter-domain plugs or remote TE node/link IDs - is able to
determine that:

1. the two domains are adjacent and are interconnected via three
 inter-domain TE links, and;

2. each domain is connected to a separate customer site, connecting
 the left domain in the Figure to customer devices C-11 and C-12,
 and the right domain to customer devices C-21, C-22 and C-23.
Therefore, the client interconnects the open-ended TE links, as shown on the upper part of the Figure.

As mentioned, one way to interconnect the open-ended inter-domain/access TE links of neighboring domains is to mandate the providers to specify remote nodeID/linkID attributes in the provided inter-domain/access TE links. This, however, may prove to be not flexible. For example, the providers may not be aware of the respective remote nodeID/linkID values. More importantly, this option does not allow for the client to mix-n-match multiple (more than one) TE topologies catered by the same providers (see the next section).

Another, more flexible, option to resolve the open-ended inter-domain/access TE links is by decorating them with the TE inter-domain plug attribute. The attribute specifies inter-domain plug ID - a network-wide unique value that identifies on the network connectivity supporting a given inter-domain/access TE link. Instead of specifying remote node ID/link ID, an inter-domain/access TE link may provide a non-zero inert-domain plug ID. It is expected that two neighboring domain TE topologies (provided by separate providers) will have at least one open-ended inter-domain/access TE link with a TE inter-domain plug matching to one provided by its neighbor. For example, the inter-domain TE link originating from node S5 of the Domain 1 TE topology (Figure 8) and the inter-domain TE link coming from node S3 of Domain2 TE topology may specify matching TE inter-domain plugs (i.e. carrying the same inter-domain plug ID). This would allow for the client to identify adjacent nodes in the separate neighboring TE topologies and resolve the inter-domain/access TE links connecting them regardless of their respective nodeIDs/linkIDs (which, as mentioned, could be allocated from independent name spaces).

Inter-domain plug IDs may be assigned and managed by a central network authority. Alternatively, inter-domain plug IDs could be dynamically auto-discovered (e.g. via LMP protocol).

Furthermore, the client renames the TE nodes, links and SRLGs offered in the abstract TE topologies by assigning to them IDs allocated from a separate name space managed by the client. Such renaming is necessary, because the two abstract TE topologies may have their own name spaces, generally speaking, independent one from another; hence, ID overlaps/clashes are possible. For example, both TE topologies have TE nodes named S7, which, after renaming, appear in the merged TE topology as S17 and S27 respectively. IDs of the original (i.e. abstract TE topology) TE nodes/links along with the ID of the abstract TE topology they belong to are stored in the Source attribute of the respective TE nodes/links of the merged TE topology. For example, the Source attribute of S27 will contain S7 and the TE topology ID of the abstract TE topology describing domain 2.
Once the merging process is complete, the client can use the merged TE topology for path computations across both domains, for example, to compute a TE path connecting C-11 to C-23.

1.4.1. Dealing With Multiple Abstract TE Topologies Provided By The Same Provider

![Figure 17. Multiple Abstract TE Topologies Provided By TE Topology Providers](image)

A given provider may expose more than one abstract TE topology to the client. For example, one abstract TE topology could be optimized based on a lowest-cost criterion, while another one could be based on best possible delay metrics, while yet another one could be based on maximum bandwidth availability for the client connections. Furthermore, the client may request all or some providers to expose additional abstract TE topologies, possibly of a different type and/or optimized differently, as compared to already-provided TE topologies. In any case, the client should be prepared for a provider to offer to the client more than one abstract TE topology.
It should be up to the client to decide how to mix-and-match multiple abstract TE topologies provided by each of the providers, as well as how to merge them into the client’s native TE topologies. The client also decides how many such merged TE topologies it needs to produce and maintain. For example, in addition to the merged TE topology depicted on the upper part of Figure 16, the client may merge the abstract TE topologies received from the two providers, as shown in Figure 17, into the client’s additional native TE topologies, as shown in Figure 18.

[Note: allowing for the client mix-n-matching of multiple TE topologies assumes that TE inter-domain plugs (rather than remote nodeID/linked) option is used for identifying neighboring domains and inter-domain/access TE link resolution.]

Figure 18. Multiple Native (Merged) Client’s TE Topologies
It is important to keep in mind that each of the three native (merged) TE topologies could be used by the client for computing TE paths for any of the multi-domain connections. The choice as to which topology to use for a given connection depends on the connection/tunnel parameters/requirements and the topology’s style and optimization criteria.

1.5. Configuring Abstract TE Topologies

When a client receives one or more abstract TE topologies from one of its providers, it may accept the topologies as-is and merge them into one or more of its own native TE topologies. Alternatively, the client may choose to request a re-configuration of one, some or all abstract TE topologies provided by the providers. Specifically, with respect to a given abstract TE topology, some of its TE nodes/links may be requested to be removed, while additional ones may be requested to be added. It is also possible that existing TE nodes/links may be asked to be re-configured. For example, a set of TE links may be requested to be disjoint from each other by configuring the same Non Sharing Risk Link Group (NSRLG) attribute for all links from the set. Such a configuration would force the provider to place TE tunnels supporting the TE links from the set onto sufficiently disjoint TE paths computed in the tunnels underlay TE topology. Furthermore, the topology-wide optimization criteria may be requested to be changed. For example, underlay TE paths supporting the abstract TE links, currently optimized to be shortest (least-cost) paths, may be requested to be re-optimized based on the minimal delay criteria. Additionally, the client may request the providers to configure entirely new abstract TE topologies and/or to remove existing ones. Furthermore, future periodic or one time additions, removals and/or re-configurations of abstract TE topology elements and/or their attributes could be (re-)scheduled by the client ahead of time.

It is the responsibility of the client to implement the logic behind the above-described abstract TE topology negotiation. It is expected that the logic is influenced by the client’s local configuration/templates, policies conveyed by client’s clients, input from the network planning process, telemetry processor, analytics systems and/or direct human operator commands. Figure 19 exemplifies the abstract TE topology negotiation process. As shown in the Figure, the original abstract TE topology exposed by a provider was requested to be re-configured. Specifically, one of the abstract TE links was asked to be removed, while three new ones were asked to be added to the abstract TE topology.
1.6. TE Tunnel Model

The TE Tunnel Model is written in YANG modeling language. It is defined and developed by the IETF TEAS WG and is documented as "YANG Data Model for Traffic Engineering Tunnels and Interfaces" [I-D.ietf-teas-yang-te]. Among other things the model describes a TE network provider’s TE Tunnel data store as it is seen and influenced by a client.

The TE Tunnel Model allows for the provider to convey to each of its clients:

- information on TE tunnels provided to the client that are fully contained within the controlled network domain,

- information on multi-domain TE tunnel segments across the network domain controlled by the provider;

- information on connections/LSPs, supporting TE tunnels and TE tunnel segments;

- updates in response to changes to the client’s active TE tunnels/segments and the connections supporting them,
o updates in response to the TE tunnel/segment telemetry/state information the client has expressed an interest in.

The TE Tunnel Model allows for a TE network client to:

o Issue configuration requests to set up, tear down, replace, modify and manipulate end-to-end TE tunnels, as well as segments of multi-domain TE tunnels across the network controlled by the provider;

o Request and obtain information on active TE tunnels/segments and connections supporting them;

o Subscribe to and configure with the provider triggers, pace and contents of the TE tunnel/segment change update notifications;

o Subscribe to and configure with the provider triggers, pace and contents of the TE tunnel/segment event notifications, such as detected alarms, faults, protection/restoration actions, etc..

o Subscribe to and configure with the provider triggers, pace and contents of TE tunnel/segment telemetry (e.g. statistics counters) update notifications.
1.7. TE Tunnel/Transport Service Modeling Constructs

- TE tunnel - a connection-oriented service provided by a layer network of delivery of a client’s data between source and destination tunnel termination points. A TE tunnel in a server layer network may support a link in a client layer network (e.g. OCh layer TE tunnel supporting ODU4 link). In Figure 20, a TE tunnel interconnects tunnel termination points resident on switches C-R2 and C-R3. A TE tunnel is realized via (supported by, mapped onto) one or more layer network connections/LSPs.

```mermaid
/* TE tunnel */
| +--rw tunnel* [name]
  |   | +--rw name
  |   | leafref
```

Figure 20. TE tunnel
/* TE tunnel configuration parameters */
 +--rw config
 | +--rw type?
 | +--rw identifier?
 | +--rw description?
 | +--rw switchcap?
 | +--rw encoding?
 | +--rw protection-type?
 | +--rw admin-status?
 | +--rw preference?
 | +--rw reoptimize-timer?
 | +--rw source?
 | +--rw destination?
 | +--rw src-tp-id?
 | +--rw dst-tp-id?
 | +--rw topology-id?
 | +--rw ignore-overload?
 | +--rw bandwidth-generic?
 | +--rw disjointness?
 | +--rw setup-priority?
 | +--rw hold-priority?
 | +--rw signaling-type?
 | +--rw hierarchical-link-id
 | +--rw local-te-node-id?
 | +--rw local-te-link-tp-id?
 | +--rw remote-te-node-id?
 | +--rw te-topology-id?
 | +--rw bidirectional
 | +--rw id?
 | +--rw source?
 | +--rw global-source?
 | +--rw type?
 | +--rw provisioning?
 | +--ro state
 | +--ro name?
 | +--ro type?
 | +--ro identifier?
/* TE tunnel primary path and LSP container */
---rw p2p-primary-paths
 ---rw p2p-primary-path* [name]
 ---rw name
/* Configuration */
leafref
 ---rw config
 ---rw name? string
 ---rw preference? uint8
 ---rw path-setup-protocol? identityref
 ---rw path-computation-method? identityref
 ---rw path-computation-server? inet:ip-address
 ---rw compute-only? empty
 ---rw use-cspf? boolean
 ---rw verbatim? empty
 ---rw lockdown? empty
 ---rw named-explicit-path? leafref
 ---rw named-path-constraint? leafref {te-types:named-path-constraints}?
/* state */
---ro state
 ---ro name? string
 ---ro preference? uint8
 ---ro path-setup-protocol? identityref
 ---ro path-computation-method? identityref
 ---ro path-computation-server? inet:ip-address
 ---ro compute-only? empty
 ---ro use-cspf? boolean
 ---ro verbatim? empty
 ---ro lockdown? empty
 ---ro named-explicit-path? leafref
 ---ro named-path-constraint? leafref {te-types:named-path-constraints}?
/* Computed path */
/* Computed path properties/metrics */
 ---ro computed-path-properties
 ---ro path-metric* [metric-type]
 ---ro metric-type identityref
 ---ro accumulative-value? uint64
/* Computed path affinities */
 ---ro path-affinities
 ---ro constraints* [usage]
TE Topology and Tunnel Modeling

Internet-Draft

Expires April 23, 2018
/* TE tunnel secondary path and LSP container */

 +--ro p2p-secondary-paths
 | +--rw p2p-secondary-path* [name]
 | +--rw name leafref
 | +--rw config (same as for primary path)
 | +--ro state (same as for primary, except for disjointness_state)
 | +--ro disjointness_state? te-types:te-path-disjointness
 | +--ro computed-path-properties (same as for primary path)
 | +--ro path-affinities (same as for primary path)
 | +--ro path-srlgs (same as for primary path)
 | +--ro path-computed-route-objects
 |
 /* LSP (provisioned path) */
 +--ro lsp (same as for the primary LSP)
- Tunnel termination point (TTP) - a physical device inside a given node/switch realizing a TE tunnel termination function in a given layer network, as well as the TE tunnel’s adaptation function provided for client layer network(s). One example of tunnel termination point is an OCh layer transponder. [Note: Tunnel termination points are not to be confused with TE tunnel termination points, which are TE representations of physical tunnel termination points. Similar to physical switches and links of the network, such as depicted in Figure 20, being represented on a TE topology describing the network as TE nodes and TE links, (physical) tunnel termination points (TTPs) are represented as TE tunnel termination points (TE TTPs, see 1.2) hosted by the TE nodes. For example, a provisioned connection/LSP starts on a source TTP, goes through a chain of physical links and stops on a destination TTP. In contrast, TE path (e.g. result of a path computation) starts on a source TE TTP, goes through a chain of TE links and stops on a destination TE TTP.]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>++-rw source?</td>
<td>inet:ip-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>++-rw destination?</td>
<td>inet:ip-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>++-rw src-tp-id?</td>
<td>binary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>++-rw dst-tp-id?</td>
<td>binary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- TE tunnel hand-off point - an access link or inter-domain link by which a multi-domain TE tunnel enters or exits a given network domain, in conjunction with a layer network resource (such as a wavelength channel or ODUk container) allocated on the access/inter-domain link for the TE tunnel.

- TE tunnel segment - a part of a multi-domain TE tunnel that spans a given network domain and is directly and fully controlled by the domain’s controller, DC. TE tunnel segment is a fragment of a multi-domain TE tunnel between

1. the source tunnel termination point and the TE tunnel hand-off point outbound from the TE tunnel’s first domain (head TE tunnel segment);

2. inbound and outbound TE tunnel hand-off points into/from a given domain (transit TE tunnel segment);
3. inbound TE tunnel hand-off point into the TE tunnel’s last domain and the destination tunnel termination point (tail TE tunnel segment);

- Transport service - the same as TE tunnel segment

- Hierarchy TE tunnel - a server layer TE tunnel that supports a dynamically created TE link in the client layer network topology (e.g. see 1.2)

/* Hierarchy TE tunnel parameters */

| Topology-id |
|---|---|---|---|
| | +--rw hierarchical-link-id te-types:te-node-id |
| | | +--rw local-te-node-id? te-types:te-node-id |
| | | +--rw local-te-link-tp-id? te-types:te-tp-id |
| | | +--rw remote-te-node-id? te-types:te-node-id |
| | | +--rw te-topology-id? te-types:te-topology-id |

- Hierarchy transport service - the first or the last segment of a multi-domain hierarchy TE tunnel

- Dependency TE tunnel - a hierarchical TE tunnel provisioned or to be provisioned in an immediately adjacent server layer a given client layer TE tunnel depends on (i.e. carried or to be carried within)

- Potential TE tunnel/segment - a TE tunnel/segment configured in COMPUTE ONLY mode. For such a TE tunnel/segment TE paths to be taken by supporting connection(s) is/are computed and monitored, but the connection(s) are not provisioned

| Address |
|---|---|---|---|
| | +--rw path-computation-method? identityref |
| | +--rw path-computation-server? inet:ip-address |
| | +--rw compute-only? empty |
| | +--rw use-cspf? Boolean |
Layer network connection/connection/LSP - a layer network path supporting a TE tunnel by realizing its implied forwarding function. Said path is provisioned in a given layer network’s data plane over a chain of links and cross-connected over switches terminating the links. It interconnects the supported TE tunnel’s source and destination termination points (in the case of end-to-end connection) or TE tunnel’s hand-off points (in the case of transport service connection) or the TE tunnel’s two split-merge points (in the case of segment protection connection).

Example: ODU2 connection supporting an ODU2 TE tunnel.
/* LSP (provisioned path) */
| | | | +--ro lsp* [source destination tunnel-id
lsp-id extended-tunnel-id type]
/* LSP parameters */
| | | | +--ro source leafref
| | | | +--ro destination leafref
| | | | +--ro tunnel-id leafref
| | | | +--ro lsp-id leafref
| | | | +--ro extended-tunnel-id leafref
| | | | +--ro type leafref
| | | | +--ro signaling-type? identityref
| | | +--ro priority? uint16
| | +--ro path-setup-protocol?
identityref
| +--ro active? Boolean

- Working connection - the primary connection of the supported TE tunnel or transport service (see Figure 20a).
- End-to-end protection connection - a secondary end-to-end connection of the supported TE tunnel (e.g. end-to-end 1+1 protection connection, see Figure 20a).
- Segment protection connection - a secondary connection of the supported transport service protecting the service over a given network domain (e.g. 1+1 segment protection connection, see Figure 20a)
- Restored connection - a connection after successful network failure restoration procedures
- Current connection - the same as restored connection
- Nominal connection - a connection as (re-)provisioned upon a client configuration request (i.e. a connection before any automatic network failure restoration re-configuration procedures are successfully completed)
- Unprotected TE tunnel/transport service - TE tunnel/transport service supported by a single (working/primary) connection/LSP
- Protected TE tunnel/transport service - TE tunnel/transport service supported by one working connection/LSP and at least one protection/secondary connection/LSP

- Restorable TE tunnel/transport service - TE tunnel/transport service with pre-configured automatic network failure restoration capabilities

- TE tunnel/transport service automatic protection switchover - a process of switching of carrying user payload from the tunnel’s/service’s affected by a network failure working connection onto one of the tunnel’s/service’s healthy protection connection

- TE tunnel/transport service automatic protection reversion - a process of switching of carrying user payload from the tunnel’s/service’s protection connection back onto the tunnel’s/service’s working connection after the latter was repaired from network failure

- TE tunnel/transport service protection Hold-off time - a configured period of time to expire between the moment of detecting of the first network failure affecting the tunnel’s/service’s working connection and the beginning of the tunnel’s/service’s automatic protection switchover procedures

- TE tunnel/transport service protection WTR time - a configured period of time to expire between the moment of repairing the last network failure affecting the tunnel’s/service’s working connection and the beginning of the tunnel’s/service’s automatic protection reversion procedures

- TE tunnel/transport service automatic network failure restoration - a process of replacing of the tunnel’s/service’s connection(s) affected by one or more network failures away from the point(s) of failure

- TE tunnel/transport service restoration reversion - a process of replacing of the tunnel’s/service’s connection(s) back onto the nominal connection paths after all network failures affecting the tunnel’s/service’s nominal connection(s) are repaired

- TE tunnel/transport service restoration Hold-off time - a configured period of time to expire between the moment of detecting of the first network failure affecting the tunnel’s/service’s nominal or current connection and the beginning of the automatic connection restoration procedures
o TE tunnel/transport service restoration WTR time - a configured period of time to expire between the moment of repairing the last network failure affecting the tunnel’s/service’s nominal connection and the beginning of the connection automatic restoration reversion procedures

o Configured restoration path - a TE path specified by the client to be used during the automatic network failure restoration operation on one of the TE tunnel’s/transport service’s nominal or current connections

o Pre-computed restoration path - a configured restoration path to be validated by a path computer during the TE tunnel/transport service setup or client triggered modification

o Pre-provisioned restoration path - a pre-computed restoration path to be pre-provisioned/pre-signaled in the network (with all associated network resources allocated but not necessarily bound into cross-connects) during the TE tunnel/transport service setup or client triggered modification

o Connection configured path - a TE path (see 1.2) over a TE topology describing a layer network/domain that specifies (loosely or strictly) the client’s requirements with respect to an ordered list of network nodes, links and resources on the links a given connection should go through

```
| | | +--rw explicit-route-object* [index]
| | |   +--rw index
| | |   +--rw explicit-route-usage? identityref
| | |     (INCLUDE/EXCLUDE)
| | |     | +--rw index? uint32
| | |     |   +--rw (type)?
| | |     |     +--:(numbered)
| | |     |     |   +--rw numbered-hop
| | |     |     |     +--rw address? te-types:te-tp-id
| | |     |     |   +--rw hop-type? te-hop-type
| | |     |     +--:(as-number)
| | |     |     |   +--rw as-number-hop
| | |     |     |   +--rw as-number? binary
| | |     |     |   +--rw hop-type? te-hop-type
| | |     |     +--:(unnumbered)
| | |     |     |   +--rw unnumbered-hop
```

Connection exclusion path - a TE path over a TE topology describing a layer network/domain that specifies the client’s requirements with respect to an unordered list of network nodes, links and resources on the links to be avoided by a given connection.
Connection computed path - a TE path over a TE topology describing a layer network/domain as computed (subject to all configured constraints and optimization criteria) for a given connection to take. Computed connection path could be thought as the TE path intended to be taken by the connection.
1.8. Transport Service Mapping

Let’s assume that a provider has exposed to a client its network domain in the form of an abstract TE topology, as shown on the left side of Figure 21. From then on, the provider should be prepared to receive from the client, a request to set up or manipulate a transport service with TE path(s) computed for the service connection(s) based on and expressed in terms of the provided abstract TE topology (as, for example, displayed in red broken line on the right side of Figure 21). When this happens, the provider is expected to set up the TE tunnels supporting all yet uncommitted abstract TE links (e.g., TE link S3’–S8’ in the Figure).

Furthermore, it is the responsibility of the provider to:

- Perform all the necessary abstract-to-native translations for the specified TE paths (i.e., the transport service connection configured paths);
1.9. Multi-Domain Transport Service Coordination

A client of multiple TE network domains may need to orchestrate/coordinate its transport service setup/ manipulation across some or all the domains. One example of such a client is a Hierarchical T-SDN Controller, HC, managing a connected multi-domain transport network where each of the domains is controlled by a separate Domain T-SDN Controller, DC. Said DCs are expected to expose TE Topology and TE Tunnel North Bound Interfaces, NBIs,, supported respectively by IETF TE Topology and TE Tunnel models (and their network layer specific augmentations). HC is assumed to establish client-provider relationship with each of the DCs and make use of said NBIs to extract from the domains various information (such as TE topologies and telemetry), as well as to convey instructions to coordinate across multiple domains its transport services set up and manipulation.
Let’s consider, for example, a two-domain transport network as represented in Figure 22. Suppose that HC is requested to set up an unprotected transport service to provide connectivity between customer network elements C-R1 and C-R6. It is assumed that by the time the request has arrived, the two DCs have already provided abstract TE topologies describing their respective domains, and that HC has merged the provided TE topologies into one that homogeneously describes the entire transport network (as shown in Figure 23).
Figure 23. Two-Domain Transport Network (Abstracted View)

Consider that HC, using the merged TE topology, selected a TE path to be taken by the requested transport service connection as shown on the upper part of Figure 24.

The multi-domain transport service set up coordination includes:

- Splitting selected for the transport service TE path(s) into segments – one set of segments per each domain involved in the service setup;

- Issuing a configuration request to each of the involved DCs to set up the transport service across the respective domain. Note that the connection configured paths are required to be expressed in terms of respective abstract TE topologies as exposed to HC by DCs (see lower part of Figure 24).
Waiting for the set up complete confirmation from each of the involved DCs. In case one of the DCs reports a failure, HC is responsible to carry out the cleanup/rollback procedures by requesting all involved DCs to tear down the successfully created segments.

Figure 24. Transport Service Placement Based on Abstract TE Topology

While processing the received from HC configuration request to set up the transport service, each DC is expected to carry out the transport service mapping procedures (as described in 1.8) resulting in the set up of all the necessary underlay TE tunnels, as well as one or more connections supporting the transport service. As a result, the requested transport service will be provisioned as shown in Figure 25.

The multi-domain transport service tear down coordination entails issuing to each of the involved DCs a configuration request to delete the transport service in the controlled by the DC domain. DCs are
expected in this case to release all network resources allocated for
the transport service.

The multi-domain transport service modify coordination implies
issuing to each of the involved DCs a configuration request to
replace the transport service connections according to the newly
provided paths and/or modify the connection parameters according to
the newly provided configuration.

Figure 25. Multi-domain transport service is provisioned

2. Use Cases

2.1. Use Case 1. Transport service control on a single layer multi-
domain transport network

Configuration (Figure 26):
o Three-domain multi-vendor ODUk/Och transport network;

o The domains are interconnected via ODUk inter-domain links;

o Each of the domains is comprised of ODUk/Och network elements (switches) from a separate vendor and is controlled by a single (vendor specific) T-SDN Domain Controller (DC);

o All DCs expose IETF TE Topology and TE Tunnel model based NBIs;

o The transport network as a whole is controlled by a single hierarchical T-SDN controller (HC);

o HC makes use of the NBIs to set up client-provider relationship with each of the DCs and controls via the DCs their respective network domains;

o Three customer IP/MPLS sites are connected to the transport network via ODUk access links;

o The customer IP/MPLS routers and the router transport ports connecting the routers to the transport network are managed autonomously and independently from the transport network.
Figure 26 Three-domain ODUk/Och transport network with ODUk access and inter-domain links

Objective: Set up/manipulate/delete a shortest delay unprotected or protected transport service to provide connectivity between customer network elements C-R2 and C-R5

1) TE Topology discovery

All DCs provide to HC respective domain ODUk layer abstract TE topologies. Let’s assume that each such topology is a single-node TE topology (as described in 1.3.1, abstract TE topology of this type represents the entire domain as a single asymmetrical/blocking TE node). Let’s further assume that the abstract TE nodes representing the domains are attributed with detailed connectivity matrices optimized according to the shortest delay criterion. [Note: single-node abstract TE topologies are assumed for simplicity sake. Alternatively, any DC could have provided an abstract TE topology of any type described in 1.3].
HC merges the provided TE topologies into its own native TE topology (the TE topology merging procedures are discussed in 1.4). The merged TE topology, as well as the TE topologies provided by DCs, are depicted in Figure 27. The merged TE topology homogeneously describes the entire transport network and hence is suitable for path computations across the network. Note that the dotted lines in the Figure connecting the topology access TE links with customer devices illustrate that HC in this use case has neither control nor information on the customer devices/ports and, therefore, can only provide a connectivity between the requested transport service ingress and egress access links (on assumption that the customer transport ports are provisioned independently).

Figure 27. Three-domain single layer transport network abstract TE topology
2) Transport service path computation

Using the merged TE topology (Figure 27, upper part) HC selects one or more optimal and sufficiently disjoint from each other TE path(s) for the requested transport service connection(s). Resulting TE paths for the requested end-to-end protected transport service, for example, could be as marked on the upper part of Figure 28.

It is important to keep in mind that HC’s path computer is capable of performing the necessary path selection only as long as the merged TE topology provides the necessary TE visibility for the path selection, both intra-domain (e.g. by virtue of provided by the abstract TE nodes detailed connectivity matrices) and inter-domain (because of provided inter-domain TE link attributes). In case one or more DCs is/are not capable of or willing to provide the detailed connectivity matrices (that is, DCs expose the respective domains as black boxes - unconstrained TE nodes terminating the inter-domain TE links), HC will not be able to select the end-to-end TE path(s) for the requested transport service on its own. In such a case HC may opt for making use of the Path Computation NBI, exposed by the DCs to explore/evaluate intra-domain TE path availability in real time. IETF TE Tunnel model supports the Path Computation NBI by allowing for the configuration of transport services in COMPUTE_ONLY mode. In this mode the provider is expected to compute TE paths for a requested transport service connections and return the paths in the request’s response without triggering the connection provisioning in the network.

Consider, for example, the case when none of the DCs has provided the detailed connectivity matrix attribute for the abstract TE nodes representing the respective domain. In such a case HC may:

1. Request the ingress domain DC (i.e. DC1) to compute intra-domain TE paths connecting the ingress access TE link (i.e. the link facing C-R2) with each of the inter-domain TE links (i.e. links connecting Domain 1 to Domain 2 and Domain 3 respectively);

2. Grow the TE paths returned by DC1 in (1) over the respective outbound inter-domain TE links;

3. Request the neighboring DC(s) (e.g. DC3) to compute all intra-domain TE paths connecting across the domain all inbound into the domain inter-domain TE links reached by the path growing process in (2) with all other (outbound) domain’s inter-domain TE links;
4. Augment the TE paths produced in step (2) with the TE paths determined in step (3);

5. Repeat steps (2), (3) and (4) until the resulting TE paths reach the egress domain (i.e. Domain 2);

6. Request the egress domain DC (i.e. DC2) to grow each of the TE paths across the domain to connect them to the egress access TE link (i.e. the link facing C-R5);

7. Select one (or more) most optimal and sufficiently disjoint from each other TE path(s) from the list produced in step (6).

[Note: The transport service path selection method based on Path Computation NBIs exposed by DCs does not scale well and the more domains comprise the network and the more inter-domain links interconnect them, the worse the method works. Realistically, this approach will not work sufficiently well for the networks with more than 3 domains]
3) Transport service setup coordination

HC carries out the multi-domain transport service setup coordination as described in 1.9. In particular, HC splits the computed TE path(s) into 3 sets of TE path segments — one set per domain (as shown on the lower part of Figure 28), and issues a TE tunnel configuration request to each of the DCs to set up the requested transport service across the domain under the DC’s control. The primary (and secondary) connection explicit path(s) is/are specified in the requests in terms of respective domain abstract TE topologies.

While processing the configuration request, each DC performs the transport service mapping (as described in 1.8). In particular, the DC translates the specified explicit path(s) from abstract into native TE topology terms, sets up supporting underlay TE tunnels...
(e.g. Och TE tunnels), and, then, allocates required ODUk containers on the selected links and provisions the ODUk cross-connects on the switches terminating the links.

If the setup is successfully completed in all three domains, the transport service connection(s) will be provisioned as depicted in Figure 29. If one of the DCs fails to set up its part, all successfully provisioned segments will be asked by HC to be released.

4) Transport service teardown coordination

HC issues to each of DCs a configuration request to release the transport service over the controlled domain, as well as the server layer TE tunnels supporting dynamically created links.

Figure 29. Transport service is provisioned
2.2. Use Case 2. End-to-end TE tunnel control on a single layer multi-domain transport network

Configuration (Figure 26): the same as in use case 1, except that HC in this use case controls customer devices/ports by extracting information from and pushing configuration to the customer site SDN controller(s) managing the customer devices directly.

Objective: Set up//delete an unprotected shortest delay TE tunnel interconnecting end-to-end C-R2 and C-R5

1) TE Topology discovery

As in use case 1 all DCs provide to HC domain ODUk layer abstract TE topologies. Additionally in this use the three customer site controllers expose the TE Topology and Tunnel model based NBIs to HC. Using the TE Topology NBI each customer controller provides to HC the respective customer site domain abstract TE topology. Customer site abstract TE topologies contain abstract TE nodes representing the devices which are directly connected to the transport network. Said abstract TE nodes host TE tunnel termination points, TTPs, representing the ports over which the customer devices are connected to the transport network, and terminate access TE links the TTPs are accessible from (see Figure 30).
Figure 30. Abstract TE topologies provided by all network domains and customer sites
HC merges the provided topologies into its own native TE Topology (the TE topology merging procedures are discussed in 1.4). The merged TE topology is depicted in Figure 31. It homogeneously describes end-to-end not only the entire transport network, but also the customer sites connected to the network and hence is suitable for TE tunnel end to end path computations.

Figure 31. Abstract TE topology describing transport network and connected to it customer sites

2) TE tunnel path computation

Using the merged TE topology (Figure 31) HC selects an optimal TE path for the requested TE tunnel connecting end-to-end the specified TE tunnel termination points, TTPs. The resulting TE path, for example, could be as marked on the upper part of Figure 32.
3) TE tunnel setup coordination

HC carries out the multi-domain TE tunnel setup coordination as described for use case 1, except that in this use case HC additionally initiates and controls the setup of the TE tunnel’s head and tail segments on the respective customer sites. Note that the customer site controllers behave exactly as transport network domain DCs. In particular, they receive issued by HC configuration requests to set up the TE tunnel’s head and tail segments respectively. While processing the requests the customer site controllers perform the necessary provisioning of the TE tunnel’s source and destination termination points, as well as of the local sides of the selected
access links. If all segments are successfully provisioned on customer sites and network domains, the TE tunnel connection will be provisioned as marked in Figure 33.

4) TE tunnel teardown coordination

HC issues to each of DCs and customer site controllers a configuration request to release respective segments of the TE tunnel, as well as the server layer TE tunnels supporting dynamically created links.

Figure 33. TE tunnel is provisioned

2.3. Use Case 3. Transport service control on a ODUk/Och multi-domain transport network with Ethernet access links

Configuration (Figure 34): the same as in use case 1, except that all access links in this use case are Ethernet layer links (depicted as
blue lines in the Figure), while all inter-domain links remain to be ODUk layer links.

![Figure 34. Three-domain ODUk/Och transport network with Ethernet layer access links](image)

Objective: Set up//delete an unprotected shortest delay transport service supporting connectivity between C-R2 and C-R5

1) TE Topology discovery

In order to make possible for the necessary in this use case multi-layer path computation, each DC exposes to HC two (ODUk layer and Ethernet layer) abstract TE topologies, Additionally, the lower layer (ODUk) TE nodes announce hosted by them TE tunnel termination points, TTPs, capable of adopting the payload carried over the Ethernet layer access links, From the TE Topology model point of view this means that said TTPs are attributed with TE inter-layer locks
matching ones attributed to Ethernet TE links (i.e. TE links provided within Ethernet layer abstract TE topologies).

Ethernet and ODUk layer single node abstract TE topologies catered to HC by each of the DCs are presented in Figure 35.

HC merges the provided TE topologies into its own native TE Topology (the merging procedures are described in 1.4). Importantly in this case HC locks the provided TE topologies not only horizontally, but vertically as well, thus producing a two-layer TE topology homogenously describing both layers of the entire transport network, as well as the client-server layer adaptation relationships between the two layers. This makes the merged TE topology suitable for multi-layer/inter-layer multi-domain transport service path computations. The merged TE topology is presented in Figure 36.

Figure 35. ODUk and Ethernet layer abstract TE topologies exposed by DCs
2) Transport service path computation

Using the merged TE topology (Figure 36) HC selects an optimal TE path for the requested transport service.

Note that if HC’s path computer considered only Ethernet layer TE nodes and links, the path computation would fail. This is because the Ethernet layer TE nodes (i.e. D1-e, D2-e and D3-e in the Figure) are disconnected from each other. However, the inter-layer associations (in the form of the TE inter-layer locks) make possible for the path computer to select TE path(s) in the lower (ODUk) layer that can be used to set up hierarchy TE tunnel(s) supporting additional dynamic TE link(s) in the upper (Ethernet) layer in order for the requested transport service path computation to succeed.
Let’s assume that the resulting TE path is as marked in Figure 37. The red line in the Figure marks the TE path selected for the ODUk layer hierarchy TE tunnel supporting the required Ethernet layer dynamic TE link.

Figure 37. Multi-layer TE path computed for the transport service

3) Transport service setup coordination
HC sets up the requested Ethernet layer transport service in two stages. First, it coordinates the end-to-end setup of the ODUk layer hierarchy TE tunnel between the selected TTPs. If this operation succeeds, a new Ethernet layer dynamic TE link (blue line connecting TE nodes D1-e and D2-e in Figure 38) is automatically added to the merged abstract TE topology. Importantly, as a part of the hierarchy transport service setup both DC1 and DC 2 add a new open-ended Ethernet layer inter-domain dynamic TE link to their respective abstract TE topologies. Second, HC coordinates the setup of the requested (Ethernet layer) transport service. The required TE path for the second stage is marked as fat blue line in the Figure. Note that DC3 controlling domain 3 is only involved in the first stage, but is oblivious to the second stage.

Figure 38. A new Ethernet layer TE link supported by ODUk layer TE tunnel is added to the provided and merged abstract TE topologies
IF all involved DCs confirm successful setup completion, the requested transport service, as well as the supporting server layer hierarchy TE tunnel, will be provisioned as depicted in Figure 39. If one of the DCs fails to set up its segment in either of the layers, all successfully provisioned segments will be requested by HC to be released.

Figure 39. Ethernet transport service and supporting ODUk TE tunnel are provisioned

4) Transport service teardown coordination

First, HC issues to DC1 and DC2 a configuration request to release the Ethernet layer transport service in the respective domains. After that, all three DCs are requested to release the segments of the supporting ODUk layer hierarchy TE tunnel. While processing the request DC1 and DC2 also remove the dynamic Ethernet layer TE links supported by the respective hierarchy TE tunnel’s segments, thus the
network’s abstract TE topologies are reverted back to the state as shown in Figures 35 and 36.

2.4. Use Case 4. Transport service control on a ODUk/Och multi-domain transport network with multi-function access links

Configuration (Figure 40): the same as in use case 3, except that all access links in this use case are multi-function links (depicted in the Figure as blue compound lines). Let’s assume that, depending on configuration, the multi-function access links in this use case can carry either Ethernet or SDH/STM16 layer payload.

Objective: Set up//delete an unprotected shortest delay SDH/STM16 layer transport service interconnecting C-R2 and C-R5
1) TE Topology discovery

The TE Topology model considers multi-function links as parallel mutually exclusive TE links each belonging to a separate layer network. For this use case each DC exposes to HC three (ODUk-, Ethernet- and SDH/STM16-layer) abstract TE topologies (generally speaking, one abstract TE topology per each layer network supported by at least one access or inter-domain link). Like in use case 3, the lower layer (ODUk) TE nodes announce hosted by them TE tunnel termination points, TTPs, capable in this case of adopting Ethernet, SDH/STM16 or both layer payloads, The TTPs are attributed with TE inter-layer locks matching ones specified for Ethernet and/or SDH/STM16 TE links.

Ethernet, SDH/STM16 and ODUk layer single-node abstract TE topologies catered to HC by each of the DCs are presented in Figure 41.

HC merges the provided topologies into its own native TE Topology (the merging procedures are described in 1.4). As in use case 3 HC locks the provided TE topologies not only horizontally (i.e. between domains), but vertically (between layers) as well, thus producing a three-layer TE topology homogenously describing the three layers of the entire transport network, as well as the client-server layer adaptation relationships between the layers. This makes the merged TE topology suitable for multi-layer/inter-layer multi-domain transport service path computations. The merged TE topology is presented in Figure 42.
2) Transport service path computation

Using the merged TE topology (Figure 42) HC’s path computer selects a TE path for the requested transport service. For example, for the SDH/STM16 layer unprotected transport service the resulting TE path could be determined as marked in Figure 43.
3) Transport service setup coordination

Same as in use case 3.

4) Transport service teardown coordination

Same as in use case 3.

2.5. Use Case 5. Real time updates of IP/MPLS layer TE link attributes that depend on supporting transport connectivity (e.g. transport SRLGs, propagation delay, etc.)

Configuration (Figure 26): the same as in use case 1,

Objective: A transport service interconnecting transport ports of two IP routers across a transport network is likely to serve a link in IP/MPLS layer network, which is usually controlled by a client of the
transport network, such as IP/MPLS Controller. Performance of TE applications (e.g. path computer) running on the IP/MPLS Controller depends on the accuracy of IP/MPLS layer TE link attributes. Some of these attributes can change over time and are known real-time only to a transport network controller, such as HC. Examples of said attributes are transport SRLGs, propagation delay metric, protection capacities and status, etc. The objective of this use case is to ensure up-to-date state of said attributes in the IP/MPLS Controller’s internal TED via necessary updates provided in a timely manner by the controller (e.g. HC) managing transport connectivity supporting IP/MPLS layer links.

Realization:

- HC exposes and supports IETF TE Topology and TE Tunnel model based NBIs (the same NBIs that are exposed by DCs serving HC);
- IP/MPLS Controller makes use of the exposed NBIs to set up the respective client-provider relationships with HC;
- IP/MPLS Controller uses the TE Tunnel NBI to configure with HC a transport service interconnecting transport ports of a pair of IP routers desired to be adjacent in the IP/MPLS layer network. The TE Tunnel model allows for specifying in the transport service configuration request the TE topology and link IDs of the IP/MPLS TE link the requested transport service will be serving;
- IP/MPLS Controller uses the TE Topology NBI to subscribe with HC on the IP/MPLS TE link notifications with respect to changes in the TE link’s attributes, such as SRLGs, propagation delay, protection capabilities/status, etc.;
- HC uses the TE Topology NBI to convey the requested notifications when HC learns the attributes IP/MPLS has expressed interest in or detects any changes since previous notifications (for example, due to network failure restoration/reversion procedures happened to the transport connectivity that supports the failure affected IP/MPLS links)

2.6. Use Case 6. Virtual Network Service

Configuration (Figure 26): the same as in use case 1,

Objective: Set up two Virtual Networks for the client, with Virtual Network 1 interconnecting customer IP routers C-R1, C-R7 and C-R4 over a single-node abstract TE topology, and Virtual Network 2
interconnecting customer IP routers C-R2, C-R3, C-R8, C-R5 and C-R6 over a full mesh link abstract TE topology as depicted in Figure 44.

[Note: A client of a transport network may want to limit the transport network connectivity of a particular type and quality within distinct subsets of its network elements interconnected across the transport network. Furthermore, a given transport network may serve more than one client. In this case some or all clients may want to ensure the availability of transport network resources in case dynamic (re-)connecting of their network elements across the transport network is envisioned. In all such cases a client may want to set up one or more Virtual Networks over provided transport network]

1) Virtual Network setup

From the client’s point of view a Virtual Network setup includes the following procedures:

- Identifying the Virtual Network membership - a subset of the client’s network elements/ports to be interconnected over the abstract TE topology configured for the Virtual Network. Note that from the transport network provider’s point of view this effectively determines the list of abstract TE topology’s open-ended access TE links;

- Deciding on the Virtual Network’s abstract TE topology type (e.g. single-node vs. link mesh), optimization criterion (e.g. shortest delay vs. smallest cost), bandwidth, link disjointedness, adaptation capabilities and other requirements/constraints, as well as, whether the TE tunnels supporting the abstract TE topology need to be pre-established or established on demand (i.e. when respective abstract TE topology elements are selected for a client transport service);

- Using the IETF TE Topology model based NBI exposed by the transport network controller (i.e. HC), configure the Virtual Network’s abstract TE topology. Let’s assume that in this use case the abstract TE topology for Virtual Network 1 is configured as a single-node abstract TE topology (see section 1.3.1) with the abstract TE node’s detailed connectivity matrix optimized according to the shortest delay criteria. Likewise, the abstract TE topology for Virtual Network 2 is configured as a full-mesh link abstract TE topology (see section 1.3.2) optimized according to the smallest cost criteria with each of the abstract TE links to be supported by pre-established end-to-end protected TE tunnels.
[Note: Virtual Network’s abstract TE topology (re-)configuration/negotiation process is no different from one that happens, for example, between HC and its providers, DCs, and is described in section 1.5]
2) Using Virtual Network

Recall that use case 1 was about setting up a transport service interconnecting customer network elements C-R2 and C-R5 across the transport network. With the Virtual Network 2 in place, the client could have used the Virtual Network’s TE topology to select a TE path for the service. The TE Tunnel model based NBI allows for the client to specify the Virtual Network’s TE topology ID, as well, as the selected TE path (for example, as marked in Figure 45) as a configured path attribute in the transport service configuration request to ensure that the intended transport network resources are used for the service.

Figure 44. Virtual Networks provided for a transport network client

Figure 45. Transport service TE path is selected on Virtual Network’s TE topology

3. Security Considerations

This document does not define networking protocols and data, hence are not directly responsible for security risks.
4. IANA Considerations

This document has no actions for IANA.

5. References

5.1. Normative References

[I-D.ietf-teas-yang-te-topo]

[I-D.ietf-teas-yang-te]

5.2. Informative References

6. Acknowledgments

TBD.
Appendix A. Data Examples

This section contains examples of an instance data in the JSON encoding [RFC7951].

A.1. Use Case 1

In the use case described in Section 2.1., there are three provider network domains, each of them is represented as an abstract TE topology. The JSON encoded example data configurations for the three domains are:

A.1.1. Domain 1

```json
{
  "networks": {
    "network": [
      {
        "network-types": {
          "te-topology":{}
        },
        "network-id": "otn-domain1-abs",
        "provider-id": 201,
        "client-id": 300,
        "te-topology-id": "te-topology:otn-domain1-abs",
        "node": [
          {
            "node-id": "D1",
            "te-node-id": "2.0.1.1",
            "te": {
              "te-node-attributes": {
                "domain-id" : 1,
                "is-abstract": [null],
                "underlay-topology": "domain1-och",
                "connectivity-matrices": {
                  "is-allowed": true,
                  "path-constraints": {
                    "bandwidth-generic": {
                      "te-bandwidth": {
                        "otn": {
                          "rate-type": "odu1",
                          "counter": 2
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        ]
      }
    ]
  }
}
```
"connectivity-matrix": [
 {
 "id": 10302,
 "from": "1-0-3",
 "to": "1-2-0"
 },
 {
 "id": 10203,
 "from": "1-0-2",
 "to": "1-3-0"
 },
 {
 "id": 10311,
 "from": "1-0-3",
 "to": "1-11-0"
 },
 {
 "id": 11103,
 "from": "1-0-11",
 "to": "1-3-0"
 },
 {
 "id": 10903,
 "from": "1-0-9",
 "to": "1-3-0"
 },
 {
 "id": 10309,
 "from": "1-0-3",
 "to": "1-9-0"
 },
 {
 "id": 10910,
 "from": "1-0-9",
 "to": "1-10-0"
]
{
 "id": 11009,
 "from": "1-0-10",
 "to": "1-9-0"
},
{
 "id": 20910,
 "from": "1-1-9",
 "to": "1-10-0"
},
{
 "id": 21009,
 "from": "1-0-10",
 "to": "1-9-1"
},
{
 "id": 20911,
 "from": "1-1-9",
 "to": "1-11-0"
},
{
 "id": 21109,
 "from": "1-0-11",
 "to": "1-9-1"
}
]
"termination-point": [
{
 "tp-id": "1-0-3",
 "te-tp-id": 10003
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}
}

{ "tp-id": "1-3-0",
 "te-tp-id": 10300,
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}

{ "tp-id": "1-0-9",
 "te-tp-id": 10009,
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}

{ "tp-id": "1-9-0",
 "te-tp-id": 10900,
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}

{ "tp-id": "1-1-9",
 "te-tp-id": 10109,
 "te": {

"interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
},
{
 "tp-id": "1-9-1",
 "te-tp-id": 10901
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
},
{
 "tp-id": "1-0-2",
 "te-tp-id": 10002
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
},
{
 "tp-id": "1-2-0",
 "te-tp-id": 10200
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}
"tp-id": "1-0-10",
"te-tp-id": 10010
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
},
{
"tp-id": "1-10-0",
"te-tp-id": 11000
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
}
},
{
"tp-id": "1-0-11",
"te-tp-id": 10011
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
}
},
{
"tp-id": "1-11-0",
"te-tp-id": 11000
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
}
"te-tp-id": 11100
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
},

"tp-id": "1-1-11",
"te-tp-id": 10111
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
},

"tp-id": "1-1-11-1",
"te-tp-id": 11101
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}
}
A.1.2. Domain 2

{
 "networks": {
 "network": [
 {
 "network-types": {
 "te-topology": {}
 },
 "network-id": "otn-domain2-abs",
 "provider-id": 202,
 "client-id": 300,
 "te-topology-id": "te-topology:otn-domain2-abs",
 "node": [
 {
 "node-id": "D2",
 "te-node-id": "2.0.2.2",
 "te": {
 "te-node-attributes": {
 "is-abstract": [null],
 "underlay-topology": "domain2-och",
 "connectivity-matrices": {
 "is-allowed": true,
 "path-constraints": {
 "bandwidth-generic": {
 "te-bandwidth": {
 "otn": [
 {
 "rate-type": "odu1",
 "counter": 2
 }
]
 }
 }
 }
 }
 }
 }
 }
]
 }
]
 }

 "connectivity-matrix": [
 {
 "id": 12125,
 "from": "1-0-21",
 "to": "1-25-0"
 }
]
}
{
 "id": 12521,
 "from": "1-0-25",
 "to": "1-21-0"
},
{
 "id": 12128,
 "from": "1-0-21",
 "to": "1-28-0"
},
{
 "id": 12821,
 "from": "1-0-28",
 "to": "1-21-0"
},
{
 "id": 12231,
 "from": "1-0-22",
 "to": "1-31-0"
},
{
 "id": 13122,
 "from": "1-0-31",
 "to": "1-22-0"
},
{
 "id": 22228,
 "from": "1-1-22",
 "to": "1-28-0"
},
{
 "id": 22822,
 "from": "1-0-28",
 "to": "1-22-1"
},
{
 "id": 12528,
 "from": "1-0-25",
 "to": "1-28-0"
}
"id": 12825,
"from": "1-0-28",
"to": "1-25-0"
}
]
}
"termination-point": [
{
"tp-id": "1-0-21",
"te-tp-id": 10021
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
},
{
"tp-id": "1-21-0",
"te-tp-id": 12100
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
},
{
"tp-id": "1-0-22",
"te-tp-id": 10022
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"

"tp-id": "1-0-25",
"te-tp-id": 10025
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
},
"tp-id": "1-25-0",
"te-tp-id": 12500
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
},
"tp-id": "1-1-25",
"te-tp-id": 10125
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
},
"tp-id": "1-25-1",
"te-tp-id": 12501
"te": {
 "interface-switching-capability": [

"switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
]
}
],
{
 "tp-id": "1-0-28",
 "te-tp-id": 10028
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
},
{
 "tp-id": "1-28-0",
 "te-tp-id": 12800
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
},
{
 "tp-id": "1-0-31",
 "te-tp-id": 10031
 "te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
 }
}
A.1.3. Domain 3

{
 "network-id": "otn-domain3-abs",
 "provider-id": 203,
 "client-id": 300,
 "te-topology-id": "te-topology:otn-domain3-abs",
 "node": [
 {
 "node-id": "D3",
 "te-node-id": "2.0.3.3",
 "te": {
 "te-node-attributes": {
 "is-abstract": [null],
 }}}}]
"underlay-topology": "domain3-och",
"connectivity-matrices": {
 "is-allowed": true,
 "path-constraints": {
 "bandwidth-generic": {
 "te-bandwidth": {
 "otn": [
 {
 "rate-type": "odu1",
 "counter": 2
 }
]
 }
 }
 }
 }
}

"connectivity-matrix": [
{
 "id": 13638,
 "from": "1-0-38",
 "to": "1-38-0"
},
{
 "id": 13836,
 "from": "1-0-38",
 "to": "1-36-0"
},
{
 "id": 13639,
 "from": "1-0-36",
 "to": "1-39-0"
},
{
 "id": 13936,
 "from": "1-0-39",
 "to": "1-36-0"
},
{
 "id": 23636,
 "from": "1-0-36",
 "to": "1-36-1"
}]


```json

{
    "id": 33636,
    "from": "1-1-36",
    "to": "1-36-0"
},
{
    "id": 13739,
    "from": "1-0-37",
    "to": "1-39-0"
},
{
    "id": 13937,
    "from": "1-0-39",
    "to": "1-37-0"
},
{
    "id": 23737,
    "from": "1-0-37",
    "to": "1-37-1"
},
{
    "id": 33737,
    "from": "1-1-37",
    "to": "1-37-0"
}
]
"termination-point": [

{
    "tp-id": "1-0-36",
    "te-tp-id": 10036
    "te": {
    "interface-switching-capability": {
    "switching-capability": "switching-otn",
    "encoding": "lsp-encoding-oduk"
    }
    }
}
```

"interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
],
"tp-id": "1-37-1",
"te-tp-id": 13701
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
],
"tp-id": "1-0-39",
"te-tp-id": 10039
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
],
"tp-id": "1-39-0",
"te-tp-id": 13900
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}

]}
},
{
"tp-id": "1-0-36",
"te-tp-id": 10036
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
},
{
"tp-id": "1-36-0",
"te-tp-id": 13600
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
},
{
"tp-id": "1-0-38",
"te-tp-id": 10038
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
},
{
"tp-id": "1-38-0",
"te-tp-id": 13800
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
}
}
"te-tp-id": 13800
"te": {
 "interface-switching-capability": [
 {
 "switching-capability": "switching-otn",
 "encoding": "lsp-encoding-oduk"
 }
]
}

Authors' Addresses

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc
Email: tsaad@cisco.com

Xufeng Liu
Jabil
Email: Xufeng_Liu@jabil.com
Use Cases for SF Aware Topology Models
draft-bryskin-use-cases-sf-aware-topo-model-00

Abstract

This document describes some use cases that benefit from the network topology models that are service and network function aware.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 29, 2017.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
1. Introduction

Normally network connectivity services are discussed as a means to interconnect various abstract or physical network topological elements, such as ports, link termination points and nodes. However, the connectivity services, strictly speaking, interconnect not the network topology elements per-se, rather, located on/associated with the various network and service functions [RFC7498] [RFC7665]. In many scenarios it is beneficial to decouple the service/network functions from the network topology elements hosting them, describe them in some unambiguous and identifiable way (so that it would be possible, for example, to auto-discover on the network topology service/network functions with identical or similar functionality and characteristics) and engineer the connectivity between the service/network functions, rather than between their current topological locations. The purpose of this document is to describe some use cases that could benefit from such an approach.
2. Exporting SF/NF Information to Network Clients and Other Network SDN Controllers

In the context of Service Function Chain (SFC) orchestration one existing problem is that there is no way to formally describe a Service or Network Function in a standard way (recognizable/understood by a third party) as a resource of a network topology node.

One implication of this is that there is no way for the orchestrator to give a network client even a ball-park idea as to which network’s SFs/NFs are available for the client’s use/control and where they are located in the network even in terms of abstract topologies/virtual networks configured and managed specifically for the client. Consequently the client has no say on how the SFCs provided for the client by the network should be set up and managed (which SFs are to be used and how they should be chained together, optimized, manipulated, protected, etc.).

Likewise, there is no way for the orchestrator to export SF/NF information to other network controllers. The SFC orchestrator may serve, for example, a higher level controller (such as Network Slicing Orchestrator), with the latter wanting at least some level of control as to which SFs/NFs it wants on its SFCs and how the Service Function Paths (SFPs) are to be routed and provisioned, especially, if it uses services of more than one SFC orchestrator.

The issue of exporting of SF/NF information could be addressed by defining a model, in which formally described/recognizable SF/NF instances are presented as topological elements, for example, hosted by (associated with) TE, L3 or L2 topology nodes. The model could describe whether, how and at what costs the SFs/NFs hosted by a given node could be chained together, how these intra-node SFCs could be connected to the node’s Service Function Forwarders (SFFs, entities dealing with SFC NSHs and metadata), and how the SFFs could be connected to the node’s Tunnel and Link Termination Points (TTPs and LTPs) to chain the intra-node SFCs across the network topology.

3. Flat End-to-end SFCs Managed on Multi-domain Networks

SFCs may span multiple administrative domains, each of which controlled by a separate SFC controller. The usual solution for such a scenario is the Hierarchical SFCs (H-SFCs), in which the higher level orchestrator controls only SFs located on domain border nodes. Said higher level SFs are chained together into higher level SFCs via lower level (intra-domain) SFCs provisioned and controlled independently by respective domain controllers. The decision as to which higher level SFCs are connected to which lower level SFCs is
driven by packet re-classification every time the packet enters a
given domain. Said packet re-classification is very time-consuming
operation. Furthermore, the independent nature of higher and lower
level SFC control is prone to configuration errors, which may lead to
long lasting loops and congestions. It is highly desirable to be
able to set up and manage SFCs spanning multiple domains in a flat
way as far as the data plane is concerned (i.e. with a single packet
classification at the ingress into the multi-domain network but
without re-classifications on domain ingress nodes).

One way to achieve this is to have the domain controllers expose SF/
NF-aware topologies, and have the higher level orchestrator operate
on the network-wide topology, the product of merging of the
topologies catered by the domain controllers. This is similar in
spirit to setting up, coordinating and managing the transport
connectivity (TE tunnels) on a multi-domain multi-vendor transport
network.

4. Managing SFCs with TE Constrains

Some SFCs require per SFC link/element and end-to-end TE constrains
(bandwidth, delay/jitter, fate sharing/diversity, etc.). Said
constraints could be ensured via carrying SFPs inside overlays that
are traffic engineered with the constrains in mind. A good analogy
would be orchestrating delay constrained L3 VPNs. One way to support
such L3 VPNs is to carry MPLS LSPs interconnecting per-VPN VRFs
inside delay constrained TE tunnels interconnecting the PEs hosting
the VRFs.

Planning, computing, and provisioning of TE overlays to constrain
arbitrary SFCs, especially those that span multiple administrative
domains with each domain controlled by a separate controller, is a
very difficult challenge. Currently it is addressed by pre-
provisioning on the network of multiple TE tunnels with various TE
characteristics, and "nailing down" SFs/NFs to "strategic" locations
(e.g. nodes terminating many of such tunnels) in a hope that an
adequate set of tunnels could be found to carry the SFP of a given
TE-constrained SFC. Such an approach is especially awkward in the
case when some or all of the SFs/NFs are VNFs (i.e. could be
instantiated at multiple network locations).

SF/NF-aware TE topology model in combination with TE tunnel model
will allow for the network orchestrator (or a client controller) to
compute, set up and manipulate the TE overlays in the form of TE
tunnel chains. Said chains could be duel-optimized compromising on
optimal SF/NF locations with optimal TE tunnels interconnecting them.
The TE tunnel chains (carrying multiple similarly constrained SFPs)
could be adequately constrained both at individual TE tunnel level and at the chain end-to-end level.

5. SFC Protection and Load Balancing

Currently the combination of TE topology & tunnel models offers to a network controller various capabilities to recover an individual TE tunnel from network failures occurred on one or more network links or transit nodes on the TE paths taken by the TE tunnel’s connection(s). However, there is no simple way to recover a TE tunnel from a failure affecting its source or destination node. SF/NF-aware TE topology model can decouple the association of a given SF/NF with its location on the network topology by presenting multiple, identifiable as mutually substitutable SFs/NFs hosted by different TE topology nodes. So, for example, if it is detected that a given TE tunnel destination node is malfunctioning or has gone out of service, the TE tunnel could be re-routed to terminate on a different node hosting functionally the same SFs/NFs as ones hosted by the failed node. This is in line with the ACTN edge migration and function mobility concepts. It is important to note that the described strategy works much better for the stateless SFs/NFs. This is because getting the alternative stateful SFs/MFs into the same respective states as the current (i.e. active, affected by failure) are is a very difficult challenge.

At the SFC level the SF/NF-aware TE topology model can offer SFC dynamic restoration capabilities against failed/malfunctioning SFs/NFs by identifying and provisioning detours to a TE tunnel chain, so that it starts carrying the SFC’s SFPs towards healthy SFs/NFs that are functionally the same as the failed ones. Furthermore, multiple parallel TE tunnel chains could be pre-provisioned for the purpose of SFC load balancing and end-to-end protection. In the latter case said parallel TE tunnel chains could be placed to be sufficiently disjoint from each other.

6. Network Clock Synchronization

Many current and future network applications (including 5g and IoT applications) require very accurate time services (PTP level, ns resolution). One way to implement the adequate network clock synchronization for such services is via describing network clocks as NFs on an NF-aware TE topology optimized to have best possible delay variation characteristics. Because such a topology will contain delay/delay variation metrics of topology links and node cross-connects, as well as costs in terms of delay/delay variation of connecting clocks to hosting them node link and tunnel termination points, it will be possible to dynamically select and provision bi-directional time-constrained deterministic paths or trees connecting...
clocks (e.g. grand master and boundary clocks) for the purpose of exchange of clock synchronization information. Note that network clock aware TE topologies separately provided by domain controllers will enable multi-domain network orchestrator to set up and manipulate the clock synchronization paths/trees spanning multiple network domains.

7. Client - Provider Network Slicing Interface

3GPP defines network slice as "a set of network functions and the resources for these network functions which are arranged and configured, forming a complete logical network to meet certain network characteristics.". Network slice could be also defined as a logical partition of a provider’s network that is owned and managed by a tenant. SF/NF-aware TE topology model has a potential to support a very important interface between network slicing clients and providers because, on the one hand, the model can describe holistically and hierarchically the client’s requirements and preferences with respect to a network slice functional, topological and traffic engineering aspects, as well as of the degree of resource separation/sharing between the slices, thus allowing for the client (up to agreed upon extent) to dynamically (re-)configure the slice or (re-)schedule said (re-)configurations in time, while, on the other hand, allowing for the provider to convey to the client the slice’s operational state information and telemetry the client has expressed interest in.

8. Dynamic Assignment of Regenerators for L0 Services

On large optical networks some of provided to their clients L0 services could not be provisioned as single Och trails, rather, as chains of such trails interconnected via regenerators, such as 3R regenerators. Current practice of the provisioning of such services requires configuration of explicit paths (EROs) describing identity and location of regenerators to be used. A solution is highly desirable that could:

- Identify such services based, for example, on optical impairment computations;
- Assign adequate for the services regenerators dynamically out of the regenerators that are grouped together in pools and strategically scattered over the network topology nodes;
- Compute and provision supporting the services chains of optical trails interconnected via so selected regenerators, optimizing the chains to use minimal number of regenerators, their optimal
locations, as well as optimality of optical paths interconnecting them;

- Ensure recovery of such chains from any failures that could happen on links, nodes or regenerators along the chain path.

NF-aware TE topology model (in this case L1 NF-aware L0 topology model) is just the model that could provide a network controller (or even a client controller operating on abstract NF-aware topologies provided by the network) to realize described above computations and orchestrate the service provisioning and network failure recovery operations.

9. Dynamic Assignment of OAM Functions for L1 Services

OAM functionality is normally managed by configuring and manipulating TCM/MEP functions on network ports terminating connections or their segments over which OAM operations, such as performance monitoring, are required to be performed. In some layer networks (e.g. Ethernet) said TCMs/MEPs could be configured on any network ports. In others (e.g. OTN/ODUK) the TCMs/MEPs could be configured on some (but not all network ports) due to the fact that the OAM functionality (i.e. recognizing and processing of OAM messages, supporting OAM protocols and FSMs) requires in these layer networks certain support in the data plane, which is not available on all network nodes. This makes TCMs/MEPs good candidates to be modeled as NFs. This also makes TCM/MEP aware topology model a good basis for placing dynamically an ODUk connection to pass through optimal OAM locations without mandating the client to specify said locations explicitly.

10. SFC Abstraction and Scaling

SF/NF-aware topology may contain information on native SFs/NFs (i.e. SFs/NFs as known to the provider itself) and/or abstract SFs/NFs (i.e. logical/macro SFs/NFs representing one or more SFCs each made of native and/or lower level abstract SFs/NFs). As in the case of abstracting topology nodes, abstracting SFs/NFs is hierarchical in nature - the higher level of SF/NF-aware topology, the "larger" abstract SFs/NFs are, i.e. the larger data plane SFCs they represent. This allows for managing large scale networks with great number of SFs/NFs (such as Data Center interconnects) in a hierarchical, highly scalable manner resulting in control of very large number of flat in the data plane SFCs that span multiple domains.
11. Dynamic Compute/VM/Storage Resource Assignment

In a distributed data center networks, virtual machines for compute resources may need to be dynamically re-allocated due to various reasons such as DCI network failure, compute resource load balancing, etc. In many cases, the DCI connectivity for the source and the destination is not predetermined. There may be a pool of sources and a pool of destination data centers associated with re-allocation of compute/VM/storage resources. There is no good mechanism to date to capture this dynamicity nature of compute/VM/storage resource reallocation. Generic Compute/VM/Storage resources can be described and announced as a SF where a DC hosting these resources can be modeled as an abstract node. Topology interconnecting these abstract nodes (DCs) in general is of multi-domain nature. Thus, SF-aware topology model can facilitate a joint optimization of TE network resources and Compute/VM/Storage resources and solve Compute/VM/Storage mobility problem within and between DCs.

12. IANA Considerations

This document has no actions for IANA.

13. Security Considerations

This document does not define networking protocols and data, hence are not directly responsible for security risks.

14. Acknowledgements

The authors would like to thank Maarten Vissers, Joel Halpern, and Greg Mirsky for their helpful comments and valuable contributions.

15. References

15.1. Normative References

[I-D.ietf-teas-yang-te-topo]

[I-D.ietf-teas-yang-te]

15.2. Informative References

[I-D.ietf-sfc-hierarchical]

Authors’ Addresses

Igor Bryskin
Huawei Technologies
EMail: Igor.Bryskin@huawei.com

Xufeng Liu
Jabil
EMail: Xufeng_Liu@jabil.com

Jim Guichard
Huawei Technologies
EMail: james.n.guichard@huawei.com

Young Lee
Huawei Technologies
EMail: leeyoung@huawei.com
Yang model for requesting Path Computation
draft-busibel-teas-yang-path-computation-03.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

Busi, Belotti, al. Expires December 30, 2017
Abstract

There are scenarios, typically in a hierarchical SDN context, in which an orchestrator may not have detailed information to be able to perform an end-to-end path computation and would need to request lower layer/domain controllers to calculate some (partial) feasible paths.

Multiple protocol solutions can be used for communication between different controller hierarchical levels. This document assumes that the controllers are communicating using YANG-based protocols (e.g., NETCONF or RESTCONF).

This document describes some use cases where a path computation request, via YANG-based protocols (e.g., NETCONF or RESTCONF), can be needed.

This document also proposes a yang model for a stateless RPC which complements the stateful solution defined in [TE-TUNNEL].

Table of Contents

1. Introduction...3
2. Use Cases..4
1. Introduction

There are scenarios, typically in a hierarchical SDN context, in which an orchestrator may not have detailed information to be able to perform an end-to-end path computation and would need to request lower layer/domain controllers to calculate some (partial) feasible paths.

When we are thinking to this type of scenarios we have in mind specific level of interfaces on which this request can be applied.

We can reference ABNO Control Interface [RFC7491] in which an Application Service Coordinator can request ABNO controller to take in charge path calculation (see Figure 1 in the RFC) and/or ACTN [ACTN-frame], where controller hierarchy is defined, the need for path computation arises on both interfaces CMI (interface between Customer Network Controller (CNC) and Multi Domain Service Coordinator (MDSC)) and/or MPI (interface between MSDC-PNC). [ACTN-
Info] describes an information model for the Path Computation request.

Multiple protocol solutions can be used for communication between different controller hierarchical levels. This document assumes that the controllers are communicating using YANG-based protocols (e.g., NETCONF or RESTCONF).

Path Computation Elements, Controllers and Orchestrators perform their operations based on Traffic Engineering Databases (TED). Such TEDs can be described, in a technology agnostic way, with the YANG Data Model for TE Topologies [TE-TOPO]. Furthermore, the technology specific details of the TED are modeled in the augmented TE topology models (e.g., [L1-TOPO] for Layer-1 ODU technologies).

The availability of such topology models allows providing the TED using YANG-based protocols (e.g., NETCONF or RESTCONF). Furthermore, it enables a PCE/Controller performing the necessary abstractions or modifications and offering this customized topology to another PCE/Controller or high level orchestrator.

The tunnels that can be provided over the networks described with the topology models can be also set-up, deleted and modified via YANG-based protocols (e.g., NETCONF or RESTCONF) using the TE-Tunnel Yang model [TE-TUNNEL].

This document describes some use cases where a path computation request, via YANG-based protocols (e.g., NETCONF or RESTCONF), can be needed.

This document also proposes a yang model for a stateless RPC which complements the stateful solution defined in [TE-TUNNEL].

2. Use Cases

This section presents different use cases, where an orchestrator needs to request underlying SDN controllers for path computation.

The presented uses cases have been grouped, depending on the different underlying topologies: a) IP-Optical integration; b) Multi-domain Traffic Engineered (TE) Networks; and c) Data center interconnections.
2.1. IP-Optical integration

In these use cases, an Optical domain is used to provide connectivity between IP routers which are connected with the Optical domains using access links (see Figure 1).

Figure 1 - IP+Optical Use Cases

It is assumed that the Optical domain controller provides to the orchestrator an abstracted view of the Optical network. A possible abstraction shall be representing the optical domain as one "virtual node" with "virtual ports" connected to the access links.

The path computation request helps the orchestrator to know which are the real connections that can be provided at the optical domain.
2.1.1. Inter-layer path computation

In this use case, the orchestrator needs to setup an optimal path between two IP routers R1 and R2.

As depicted in Figure 2, the Orchestrator has only an "abstracted view" of the physical network, and it does not know the feasibility or the cost of the possible optical paths (e.g., VP1-VP4 and VP2-VP5), which depend from the current status of the physical resources within the optical network and on vendor-specific optical attributes.

The orchestrator can request the underlying Optical domain controller to compute a set of potential optimal paths, taking into account optical constraints. Then, based on its own constraints, policy and knowledge (e.g. cost of the access links), it can choose...
which one of these potential paths to use to setup the optimal e2e path crossing optical network.

Figure 3 - IP+Optical Path Computation Example

For example, in Figure 3, the Orchestrator can request the Optical domain controller to compute the paths between VP1-VP4 and VP2-VP5 and then decide to setup the optimal end-to-end path using the VP2-VP5 Optical path even this is not the optimal path from the Optical domain perspective.

Considering the dynamicity of the connectivity constraints of an Optical domain, it is possible that a path computed by the Optical domain controller when requested by the Orchestrator is no longer valid when the Orchestrator requests it to be setup up.

It is worth noting that with the approach proposed in this document, the likelihood for this issue to happen can be quite small since the time window between the path computation request and the path setup request should be quite short (especially if compared with the time that would be needed to update the information of a very detailed abstract connectivity matrix).

If this risk is still not acceptable, the Orchestrator may also optionally request the Optical domain controller not only to compute the path but also to keep track of its resources (e.g., these resources can be reserved to avoid being used by any other connection). In this case, some mechanism (e.g., a timeout) needs to be defined to avoid having stranded resources within the Optical domain.

These issues and solutions can be fine-tuned during the design of the YANG model for requesting Path Computation.
2.1.2. Route Diverse IP Services

This is for further study.

2.2. Multi-domain TE Networks

In this use case there are two TE domains which are interconnected together by multiple inter-domains links.

A possible example could be a multi-domain optical network.

Figure 4 - Multi-domain multi-link interconnection

In order to setup an end-to-end multi-domain TE path (e.g., between nodes A and H), the orchestrator needs to know the feasibility or the cost of the possible TE paths within the two TE domains, which depend from the current status of the physical resources within each TE network. This is more challenging in case of optical networks because the optimal paths depend also on vendor-specific optical attributes (which may be different in the two domains if they are provided by different vendors).
In order to setup a multi-domain TE path (e.g., between nodes A and H), Orchestrator can request the TE domain controllers to compute a set of intra-domain optimal paths and take decisions based on the information received. For example:

- The Orchestrator asks TE domain controllers to provide set of paths between A-C, A-D, E-H and F-H
- TE domain controllers return a set of feasible paths with the associated costs: the path A-C is not part of this set (in optical networks, it is typical to have some paths not being feasible due to optical constraints that are known only by the optical domain controller)
- The Orchestrator will select the path A-D-F-H since it is the only feasible multi-domain path and then request the TE domain controllers to setup the A-D and F-H intra-domain paths
- If there are multiple feasible paths, the Orchestrator can select the optimal path knowing the cost of the intra-domain paths (provided by the TE domain controllers) and the cost of the inter-domain links (known by the Orchestrator)

This approach may have some scalability issues when the number of TE domains is quite big (e.g. 20).

In this case, it would be worthwhile using the abstract TE topology information provided by the domain controllers to limit the number of potential optimal end-to-end paths and then request path computation to fewer domain controllers in order to decide what the optimal path within this limited set is.

For more details, see section 3.3.

2.3. Data center interconnections

In these use case, there is an TE domain which is used to provide connectivity between data centers which are connected with the TE domain using access links.
In this use case, a virtual machine within Data Center 1 (DC1) needs to transfer data to another virtual machine that can reside either in DC2 or in DC3.

The optimal decision depends both on the cost of the TE path (DC1-DC2 or DC1-DC3) and of the computing power (data center resources) within DC2 or DC3.

The Cloud Orchestrator may not be able to make this decision because it has only an abstract view of the TE network (as in use case in 2.1).

The cloud orchestrator can request to the TE domain controller to compute the cost of the possible TE paths (e.g., DC1-DC2 and DC1-DC3) and to the DC controller to compute the cost of the computing power (DC resources) within DC2 and DC3 and then it can take the decision about the optimal solution based on this information and its policy.
3. Interactions with TE Topology

The use cases described in section 2 have been described assuming that the topology view exported by each underlying SDN controller to the orchestrator is aggregated using the "virtual node model", defined in [RFC7926].

TE Topology information, e.g., as provided by [TE-TOPO], could in theory be used by an underlying SDN controllers to provide TE information to the orchestrator thus allowing the Path Computation Element (PCE) within the Orchestrator to perform multi-domain path computation by its own, without requesting path computations to the underlying SDN controllers.

This section analyzes the need for an orchestrator to request underlying SDN controllers for path computation even in these scenarios as well as how the TE Topology information and the path computation can be complementary.

In nutshell, there is a scalability trade-off between providing all the TE information needed by the Orchestrator’s PCE to take optimal path computation decisions by its own versus requesting the Orchestrator to ask too many underlying SDN Domain Controllers a set of feasible optimal intra-domain TE paths.

3.1. TE Topology Aggregation using the "virtual link model"

Using the TE Topology model, as defined in [TE-TOPO], the underlying SDN controller can export the whole TE domain as a single abstract TE node with a "detailed connectivity matrix", which extends the "connectivity matrix", defined in [RFC7446], with specific TE attributes (e.g., delay, SRLGs and summary TE metrics).

The information provided by the "detailed abstract connectivity matrix" would be equivalent to the information that should be provided by "virtual link model" as defined in [RFC7926].

For example, in the IP-Optical integration use case, described in section 2.1, the Optical domain controller can make the information shown in Figure 3 available to the Orchestrator as part of the TE Topology information and the Orchestrator could use this information to calculate by its own the optimal path between routers R1 and R2, without requesting any additional information to the Optical Domain Controller.
However, there is a tradeoff between the accuracy (i.e., providing "all" the information that might be needed by the Orchestrator’s PCE) and scalability to be considered when designing the amount of information to provide within the "detailed abstract connectivity matrix".

Figure 6 below shows another example, similar to Figure 3, where there are two possible Optical paths between VP1 and VP4 with different properties (e.g., available bandwidth and cost).

Reporting all the information, as in Figure 6, using the "detailed abstract connectivity matrix", is quite challenging from a scalability perspective. The amount of this information is not just based on number of end points (which would scale as N-square), but also on many other parameters, including client rate, user constraints / policies for the service, e.g. max latency < N ms, max cost, etc., exclusion policies to route around busy links, min OSNR margin, max preFEC BER etc. All these constraints could be different based on connectivity requirements.

In the following table, a list of the possible constraints, associated with their potential cardinality, is reported.

The maximum number of potential connections to be computed and reported is, in first approximation, the multiplication of all of them.
End points $N(N-1)/2$ if connections are bidirectional (OTN and WDM), $N(N-1)$ for unidirectional connections.

Bandwidth In WDM networks, bandwidth values are expressed in GHz.

On fixed-grid WDM networks, the central frequencies are on a 50GHz grid and the channel width of the transmitters are typically 50GHz such that each central frequency can be used, i.e., adjacent channels can be placed next to each other in terms of central frequencies.

On flex-grid WDM networks, the central frequencies are on a 6.25GHz grid and the channel width of the transmitters can be multiples of 12.5GHz.

For fixed-grid WDM networks typically there is only one possible bandwidth value (i.e., 50GHz) while for flex-grid WDM networks typically there are 4 possible bandwidth values (e.g., 37.5GHz, 50GHz, 62.5GHz, 75GHz).

In OTN (ODU) networks, bandwidth values are expressed as pairs of ODU type and, in case of ODUflex, ODU rate in bytes/sec as described in section 5 of [RFC7139].

For "fixed" ODUk types, 6 possible bandwidth values are possible (i.e., ODU0, ODU1, ODU2, ODU2e, ODU3, ODU4).

For ODUflex(GFP), up to 80 different bandwidth values can be specified, as defined in Table 7-8 of [ITU-T G.709-2016].

For other ODUflex types, like ODUflex(CBR), the number of possible bandwidth values depends on the rates of the clients that could be mapped over these ODUflex types, as shown in Table 7.2 of [ITU-T G.709-2016], which in theory could be a continuum of values. However, since different ODUflex bandwidths that use the same number of TSs on each link along the path are equivalent for path computation purposes, up to 120 different bandwidth ranges can be specified.
Ideas to reduce the number of ODUflex bandwidth values in the detailed connectivity matrix, to less than 100, are for further study.

Bandwidth specification for ODUCn is currently for further study but it is expected that other bandwidth values can be specified as integer multiples of 100Gb/s.

In IP we have bandwidth values in bytes/sec. In principle, this is a continuum of values, but in practice we can identify a set of bandwidth ranges, where any bandwidth value inside the same range produces the same path.

The number of such ranges is the cardinality, which depends on the topology, available bandwidth and status of the network. Simulations (Note: reference paper submitted for publication) show that values for medium size topologies (around 50-150 nodes) are in the range 4-7 (5 on average) for each end points couple.

Metrics

IGP, TE and hop number are the basic objective metrics defined so far. There are also the 2 objective functions defined in [RFC5541]: Minimum Load Path (MLP) and Maximum Residual Bandwidth Path (MBP). Assuming that one only metric or objective function can be optimized at once, the total cardinality here is 5.

With [PCEP-Service-Aware], a number of additional metrics are defined, including Path Delay metric, Path Delay Variation metric and Path Loss metric, both for point-to-point and point-to-multipoint paths. This increases the cardinality to 8.

Bounds

Each metric can be associated with a bound in order to find a path having a total value of that metric lower than the given bound. This has a potentially very high cardinality (as any value for the bound is allowed). In practice there is a maximum value of the bound (the one with the maximum value of the associated metric) which results always in the same path, and a range approach like for bandwidth in IP should produce also in this case the cardinality. Assuming to have a cardinality similar to the one of the bandwidth (let say 5 on average) we should have 6 (IGP, TE, hop, path delay, path delay variation and path loss; we don’t consider here the two
objective functions of [RFC5541] as they are conceived only for optimization)*5 = 30 cardinality.

Priority We have 8 values for setup priority, which is used in path computation to route a path using free resources and, where no free resources are available, resources used by LSPs having a lower holding priority.

Local prot It’s possible to ask for a local protected service, where all the links used by the path are protected with fast reroute (this is only for IP networks, but line protection schemas are available on the other technologies as well). This adds an alternative path computation, so the cardinality of this constraint is 2.

Administrative Colors Administrative colors (aka affinities) are typically assigned to links but when topology abstraction is used affinity information can also appear in the detailed connectivity matrix.

There are 32 bits available for the affinities. Links can be tagged with any combination of these bits, and path computation can be constrained to include or exclude any or all of them. The relevant cardinality is 3 (include-any, exclude-any, include-all) times 2^32 possible values. However, the number of possible values used in real networks is quite small.

Included Resources

A path computation request can be associated to an ordered set of network resources (links, nodes) to be included along the computed path. This constraint would have a huge cardinality as in principle any combination of network resources is possible. However, as far as the Orchestrator doesn’t know details about the internal topology of the domain, it shouldn’t include this type of constraint at all (see more details below).

Excluded Resources

A path computation request can be associated to a set of network resources (links, nodes, SRLGs) to be excluded from the computed path. Like for included resources,
this constraint has a potentially very high cardinality, but, once again, it can’t be actually used by the Orchestrator, if it’s not aware of the domain topology (see more details below).

As discussed above, the Orchestrator can specify include or exclude resources depending on the abstract topology information that the domain controller exposes:

- In case the domain controller exposes the entire domain as a single abstract TE node with his own external terminations and connectivity matrix (whose size we are estimating), no other topological details are available, therefore the size of the connectivity matrix only depends on the combination of the constraints that the Orchestrator can use in a path computation request to the domain controller. These constraints cannot refer to any details of the internal topology of the domain, as those details are not known to the Orchestrator and so they do not impact size of connectivity matrix exported.

- Instead in case the domain controller exposes a topology including more than one abstract TE nodes and TE links, and their attributes (e.g. SRLGs, affinities for the links), the Orchestrator knows these details and therefore could compute a path across the domain referring to them in the constraints. The connectivity matrixes to be estimated here are the ones relevant to the abstract TE nodes exported to the Orchestrator. These connectivity matrixes and therefore theirs sizes, while cannot depend on the other abstract TE nodes and TE links, which are external to the given abstract node, could depend to SRLGs (and other attributes, like affinities) which could be present also in the portion of the topology represented by the abstract nodes, and therefore contribute to the size of the related connectivity matrix.

We also don’t consider here the possibility to ask for more than one path in diversity or for point-to-multi-point paths, which are for further study.

Considering for example an IP domain without considering SRLG and affinities, we have an estimated number of paths depending on these estimated cardinalities:

Endpoints = N*(N-1), Bandwidth = 5, Metrics = 6, Bounds = 20, Priority = 8, Local prot = 2
The number of paths to be pre-computed by each IP domain is therefore 24960 * N(N-1) where N is the number of domain access points.

This means that with just 4 access points we have nearly 300000 paths to compute, advertise and maintain (if a change happens in the domain, due to a fault, or just the deployment of new traffic, a substantial number of paths need to be recomputed and the relevant changes advertised to the upper controller).

This seems quite challenging. In fact, if we assume a mean length of 1K for the json describing a path (a quite conservative estimate), reporting 300000 paths means transferring and then parsing more than 300 Mbytes for each domain. If we assume that 20% (to be checked) of this paths change when a new deployment of traffic occurs, we have 60 Mbytes of transfer for each domain traversed by a new end-to-end path. If a network has, let say, 20 domains (we want to estimate the load for a non-trivial domain setup) in the beginning a total initial transfer of 6Gigs is needed, and eventually, assuming 4-5 domains are involved in mean during a path deployment we could have 240-300 Mbytes of changes advertised to the higher order controller.

Further bare-bone solutions can be investigated, removing some more options, if this is considered not acceptable; in conclusion, it seems that an approach based only on connectivity matrix is hardly feasible, and could be applicable only to small networks with a limited meshing degree between domains and renouncing to a number of path computation features.

It is also worth noting that the "connectivity matrix" has been originally defined in WSON, [RFC7446] to report the connectivity constrains of a physical node within the WDM network: the information it contains is pretty "static" and therefore, once taken and stored in the TE data base, it can be always being considered valid and up-to-date in path computation request.

Using the "connectivity matrix" with an abstract node to abstract the information regarding the connectivity constraints of an Optical domain, would make this information more "dynamic" since the connectivity constrains of an Optical domain can change over time because some optical paths that are feasible at a given time may become unfeasible at a later time when e.g., another optical path is established. The information in the "detailed abstract connectivity matrix" is even more dynamic since the establishment of another optical path may change some of the parameters (e.g., delay or
available bandwidth) in the "detailed abstract connectivity matrix" while not changing the feasibility of the path.

"Connectivity matrix" is sometimes confused with optical reach table that contain multiple (e.g. k-shortest) regen-free reachable paths for every A-Z node combination in the network. Optical reach tables can be calculated offline, utilizing vendor optical design and planning tools, and periodically uploaded to the Controller: these optical path reach tables are fairly static. However, to get the connectivity matrix, between any two sites, either a regen free path can be used, if one is available, or multiple regen free paths are concatenated to get from src to dest, which can be a very large combination. Additionally, when the optical path within optical domain needs to be computed, it can result in different paths based on input objective, constraints, and network conditions. In summary, even though "optical reachability table" is fairly static, which regen free paths to build the connectivity matrix between any source and destination is very dynamic, and is done using very sophisticated routing algorithms.

There is therefore the need to keep the information in the "connectivity matrix" updated which means that there another tradeoff between the accuracy (i.e., providing "all" the information that might be needed by the Orchestrator’s PCE) and having up-to-date information. The more the information is provided and the longer it takes to keep it up-to-date which increases the likelihood that the Orchestrator’s PCE computes paths using not updated information.

It seems therefore quite challenging to have a "detailed abstract connectivity matrix" that provides accurate, scalable and updated information to allow the Orchestrator's PCE to take optimal decisions by its own.

If the information in the "detailed abstract connectivity matrix" is not complete/accurate, we can have the following drawbacks considering for example the case in Figure 6:

- If only the VP1-VP4 path with available bandwidth of 2 Gb/s and cost 50 is reported, the Orchestrator’s PCE will fail to compute a 5 Gb/s path between routers R1 and R2, although this would be feasible;
If only the VP1-VP4 path with available bandwidth of 10 Gb/s and cost 60 is reported, the Orchestrator’s PCE will compute, as optimal, the 1 Gb/s path between R1 and R2 going through the VP2-VP5 path within the Optical domain while the optimal path would actually be the one going thought the VP1-VP4 sub-path (with cost 50) within the Optical domain.

Instead, using the approach proposed in this document, the Orchestrator, when it needs to setup an end-to-end path, it can request the Optical domain controller to compute a set of optimal paths (e.g., for VP1-VP4 and VP2-VP5) and take decisions based on the information received:

- When setting up a 5 Gb/s path between routers R1 and R2, the Optical domain controller may report only the VP1-VP4 path as the only feasible path: the Orchestrator can successfully setup the end-to-end path passing through this Optical path;

- When setting up a 1 Gb/s path between routers R1 and R2, the Optical domain controller (knowing that the path requires only 1 Gb/s) can report both the VP1-VP4 path, with cost 50, and the VP2-VP5 path, with cost 65. The Orchestrator can then compute the optimal path which is passing through the VP1-VP4 sub-path (with cost 50) within the Optical domain.

3.2. TE Topology Abstraction

Using the TE Topology model, as defined in [TE-TOPO], the underlying SDN controller can export an abstract TE Topology, composed by a set of TE nodes and TE links, which are abstracting the topology controlled by each domain controller.

Considering the example in Figure 4, the TE domain controller 1 can export a TE Topology encompassing the TE nodes A, B, C and D and the TE Link interconnecting them. In a similar way, TE domain controller 2 can export a TE Topology encompassing the TE nodes E, F, G and H and the TE Link interconnecting them.

In this example, for simplicity reasons, each abstract TE node maps with each physical node, but this is not necessary.

In order to setup a multi-domain TE path (e.g., between nodes A and H), the Orchestrator can compute by its own an optimal end-to-end path based on the abstract TE topology information provided by the domain controllers. For example:
Orchestrator’s PCE, based on its own information, can compute the optimal multi-domain path being A-B-C-E-G-H, and then request the TE domain controllers to setup the A-B-C and E-G-H intra-domain paths.

But, during path setup, the domain controller may find out that A-B-C intra-domain path is not feasible (as discussed in section 2.2, in optical networks it is typical to have some paths not being feasible due to optical constraints that are known only by the optical domain controller), while only the path A-B-D is feasible.

So what the hierarchical controller computed is not good and need to re-start the path computation from scratch.

As discussed in section 3.1, providing more extensive abstract information from the TE domain controllers to the multi-domain Orchestrator may lead to scalability problems.

In a sense this is similar to the problem of routing and wavelength assignment within an Optical domain. It is possible to do first routing (step 1) and then wavelength assignment (step 2), but the chances of ending up with a good path is low. Alternatively, it is possible to do combined routing and wavelength assignment, which is known to be a more optimal and effective way for Optical path setup. Similarly, it is possible to first compute an abstract end-to-end path within the multi-domain Orchestrator (step 1) and then compute an intra-domain path within each Optical domain (step 2), but there are more chances not to find a path or to get a suboptimal path that performing per-domain path computation and then stitch them.

3.3. Complementary use of TE topology and path computation

As discussed in section 2.2, there are some scalability issues with path computation requests in a multi-domain TE network with many TE domains, in terms of the number of requests to send to the TE domain controllers. It would therefore be worthwhile using the TE topology information provided by the domain controllers to limit the number of requests.

An example can be described considering the multi-domain abstract topology shown in Figure 7. In this example, an end-to-end TE path between domains A and F needs to be setup. The transit domain should be selected between domains B, C, D and E.
The actual cost of each intra-domain path is not known a priori from the abstract topology information. The Orchestrator only knows, from the TE topology provided by the underlying domain controllers, the feasibility of some intra-domain paths and some upper-bound and/or lower-bound cost information. With this information, together with the cost of inter-domain links, the Orchestrator can understand by its own that:

- Domain B cannot be selected as the path connecting domains A and E is not feasible;

- Domain E cannot be selected as a transit domain since it is known from the abstract topology information provided by domain controllers that the cost of the multi-domain path A-E-F (which is 100, in the best case) will be always be higher than the cost of the multi-domain paths A-D-F (which is 90, in the worst case) and A-E-F (which is 80, in the worst case).

Therefore, the Orchestrator can understand by its own that the optimal multi-domain path could be either A-D-F or A-E-F but it cannot known which one of the two possible option actually provides the optimal end-to-end path.

The Orchestrator can therefore request path computation only to the TE domain controllers A, D, E and F (and not to all the possible TE domain controllers).
Based on these requests, the Orchestrator can know the actual cost of each intra-domain paths which belongs to potential optimal end-to-end paths, as shown in Figure 8, and then compute the optimal end-to-end path (e.g., A-D-F, having total cost of 50, instead of A-C-F having a total cost of 70).

4. Motivation for a YANG Model

4.1. Benefits of common data models

Path computation requests should be closely aligned with the YANG data models that provide (abstract) TE topology information, i.e., [TE-TOPO] as well as that are used to configure and manage TE Tunnels, i.e., [TE-TUNNEL]. Otherwise, an error-prone mapping or correlation of information would be required. For instance, there is benefit in using the same endpoint identifiers in path computation requests and in the topology modeling. Also, the attributes used in path computation constraints could use the same or similar data models. As a result, there are many benefits in aligning path computation requests with YANG models for TE topology information and TE Tunnels configuration and management.
4.2. Benefits of a single interface

A typical use case for path computation requests is the interface between an orchestrator and a domain controller. The system integration effort is typically lower if a single, consistent interface is used between such systems, i.e., one data modeling language (i.e., YANG) and a common protocol (e.g., NETCONF or RESTCONF).

Practical benefits of using a single, consistent interface include:

1. Simple authentication and authorization: The interface between different components has to be secured. If different protocols have different security mechanisms, ensuring a common access control model may result in overhead. For instance, there may be a need to deal with different security mechanisms, e.g., different credentials or keys. This can result in increased integration effort.
2. Consistency: Keeping data consistent over multiple different interfaces or protocols is not trivial. For instance, the sequence of actions can matter in certain use cases, or transaction semantics could be desired. While ensuring consistency within one protocol can already be challenging, it is typically cumbersome to achieve that across different protocols.
3. Testing: System integration requires comprehensive testing, including corner cases. The more different technologies are involved, the more difficult it is to run comprehensive test cases and ensure proper integration.
4. Middle-box friendliness: Provider and consumer of path computation requests may be located in different networks, and middle-boxes such as firewalls, NATs, or load balancers may be deployed. In such environments it is simpler to deploy a single protocol. Also, it may be easier to debug connectivity problems.
5. Tooling reuse: Implementers may want to implement path computation requests with tools and libraries that already exist in controllers and/or orchestrators, e.g., leveraging the rapidly growing eco-system for YANG tooling.

4.3. Extensibility

Path computation is only a subset of the typical functionality of a controller. In many use cases, issuing path computation requests comes along with the need to access other functionality on the same
system. In addition to obtaining TE topology, for instance also configuration of services (setup/modification/deletion) may be required, as well as:

1. Receiving notifications for topology changes as well as integration with fault management
2. Performance management such as retrieving monitoring and telemetry data
3. Service assurance, e.g., by triggering OAM functionality
4. Other fulfilment and provisioning actions beyond tunnels and services, such as changing QoS configurations

YANG is a very extensible and flexible data modeling language that can be used for all these use cases.

Adding support for path computation requests to YANG models would seamlessly complement with [TE-TOPO] and [TE-TUNNEL] in the use cases where YANG-based protocols (e.g., NETCONF or RESTCONF) are used.

5. Path Computation for multiple LSPs

There are use cases, where path computation is required for multiple Traffic Engineering Label Switched Paths (TE LSPs) through a network or through a network domain. It may be advantageous to request the new paths for a set of LSPs in one single path computation request [RFC5440] that also includes information regarding the desired objective function, see [RFC5541].

In the context of abstraction and control of TE networks (ACTN), as defined in [ACTN-Frame], when a MDSC receives a virtual network (VN) request from a CNC, the MDSC needs to perform path computation for multiple LSPs as a typical VN is constructed by a set of multiple paths also called end-to-end tunnels. The MDSC may send a single path computation request to the PNC for multiple LSPs, i.e. between the VN end points (access points in ACTN terminology).

In a more general context, when a MDSC needs to send multiple path provisioning requests to the PNC, the MDSC may also group these path provisioning requests together and send them in a single message to the PNC instead of sending separate requests for each path.
6. YANG Model for requesting Path Computation

The TE Tunnel YANG model has been extended to support the need to request path computation.

It is possible to request path computation by configuring a "compute-only" TE tunnel and retrieving the computed path(s) in the LSP(s) Record-Route Object (RRO) list as described in section 3.3.1 of [TE-TUNNEL].

This is a stateful solution since the state of each created "compute-only" TE tunnel needs to be maintained and updated, when underlying network conditions change.

The need also for a stateless solution, based on an RPC, has been recognized, as outlined in section 6.1.

A proposal for a stateless RPC to request path computation is provided in section 6.2.

6.1. Stateless and Stateful Path Computation

It is very useful to provide options for both stateless and stateful path computation mechanisms. It is suggested to use stateless mechanisms as much as possible and to rely on stateful path computation when really needed.

Stateless RPC allows requesting path computation using a simple atomic operation and it is the natural option/choice, especially with stateless PCE.

Since the operation is stateless, there is no guarantee that the returned path would still be available when path setup is requested: this is not a major issue in case the time between path computation and path setup is short.

The RPC response must be provided synchronously and, if collaborative computations are time consuming, it may not be possible to immediate reply to client.

In this case, the client can define a maximum time it can wait for the reply, such that if the computation does not complete in time, the server will abort the path computation and reply to the client with an error. It may be possible that the server has tighter timing
constraints than the client: in this case the path computation is aborted earlier than the time specified by the client.

Note - The RPC response issue (slow RPC server) is not specific to the path computation RPC case so, it may be worthwhile, evaluating whether a more generic solution applicable to any YANG RPC can be used instead.

In case the stateless solution is not sufficient, a stateful solution, based on "compute-only" TE tunnel, could be used to support asynchronous operations and/or to get notifications in case the computed path has been changed.

It is worth noting that also the stateful solution, although increasing the likelihood that the computed path is available at path setup, it does not guaranteed that because notifications may not be reliable or delivered on time.

The stateful path computation has also the following drawbacks:

- Several messages required for any path computation
- Requires persistent storage in the provider controller
- Need for garbage collection for stranded paths
- Process burden to detect changes on the computed paths in order to provide notifications update

6.2. YANG model for stateless TE path computation

6.2.1. YANG Tree

Figure 9 below shows the tree diagram of the YANG model defined in module ietf-te-path-computation.yang.

```
module: ietf-te-path-computation
  +--rw paths
    |  +--ro path* [path-id]
    |     +--ro _telink* [link-ref]
    |     |  +--ro link-ref      ->
    |     /nd:networks/network[nd:network-id=current()/../network-ref]/lnk:link/link-id
```
Internet-Draft Yang model for requesting Path Computation June 2017

++-ro path-affinities
 ++-ro constraint* [usage]
 ++-ro usage identityref
 ++-ro value? admin-groups
 ++-ro path-srlgs
 ++-ro usage? identityref
 ++-ro values* srlg
 ++-ro optimizations
 ++-ro (algorithm)?
 ++-:(metric) (path-optimization-metric)?
 ++-ro optimization-metric* [metric-type]
 ++-ro metric-type identityref
 ++-ro weight? uint8
 ++-ro tiebreakers
 ++-ro tiebreaker* [tiebreaker-type]
 ++-ro tiebreaker-type identityref
 ++-:(objective-function) (path-optimization-objective-function)?
 ++-ro objective-function
 ++-ro objective-function-type? identityref
augment /te:tunnels-rpc/te:input/te:tunnel-info:
 ++----- request-list* [request-id-number]
 ++----- request-id-number uint32
 ++----- servicePort*
 ++----- source? inet:ip-address
 ++----- destination? inet:ip-address
 ++----- src-tp-id? binary
 ++----- dst-tp-id? binary
 ++----- bidirectional
 ++----- association
 ++----- id? uint16
 ++----- source? inet:ip-address
 ++----- global-source? inet:ip-address
 ++----- type? identityref
 ++----- provisoing? identityref
 ++----- path-constraints
 ++----- path-metric-bound* [metric-type]
 ++----- metric-type identityref
 ++----- upper-bound? uint64

++---- path-affinities
 | +++---- constraint* [usage]
 | | +++---- usage identityref
 | | +++---- value? admin-groups
 | +++---- path-srlgs
 | | +++---- usage? identityref
 | | +++---- values* srlg
augment /te:tunnels-rpc/te:output/te:result:
++--ro response* [response-index]
 | +++--ro response-index uint32
 | +++--ro (response-type)?
 | | +++:(no-path-case)
 | | | +++--ro no-path
 | | +++:(path-case)
 | | +++--ro pathCompService
 | | | +++--ro _path-ref* -> /paths/path/path-id
 | | +++--ro _servicePort
 | | | +++--ro source? inet:ip-address
 | | | +++--ro destination? inet:ip-address
 | | | +++--ro src-tp-id? binary
 | | | +++--ro dst-tp-id? binary
 | | | +++--ro bidirectional
 | | | | +++--ro association
 | | | | | +++--ro id? uint16
 | | | | | +++--ro source? inet:ip-address
 | | | | | +++--ro global-source? inet:ip-address
 | | | | | +++--ro type? identityref
 | | | | | +++--ro provisioning? identityref
 | | +++--ro path-constraints
 | | | +++--ro path-metric-bound* [metric-type]
 | | | | +++--ro metric-type identityref
 | | | | +++--ro upper-bound? uint64
 | | | | +++--ro topology-id? te-types:te-topology-id
 | | | | +++--ro ignore-overload? boolean
 | | | | +++--ro bandwidth-generic
 | | | | | +++--ro te-bandwidth
 | | | | | | +++:(technology)?
 | | | | | | +++:(psc)
| | | +--ro psc? rt-types:bandwidth-type

ieee-float32

---:(otn)

---ro otn* [rate-type]

---ro rate-type identityref

---ro counter? uint16

---:(lsc)

---ro wdm* [spectrum slot]

---ro spectrum identityref

---ro slot int16

---ro width? uint16

---:(generic)

---ro generic? te-bandwidth

---ro disjointness? te-types:te-path-disjointness

---ro setup-priority? uint8

---ro hold-priority? uint8

---ro signaling-type? identityref

---ro path-affinities

---ro constraint* [usage]

---ro usage identityref

---ro value? admin-groups

---ro path-srlgs

---ro usage? identityref

---ro values* srlg

---ro optimizations

---ro (algorithm)?

---:(metric) {path-optimization-metric}?

---ro optimization-metric* [metric-type]

---ro metric-type identityref

---ro weight? uint8

---ro tiebreakers

---ro tiebreaker* [tiebreaker-type]

---ro tiebreaker-type identityref

---:(objective-function) {path-optimization-objective-function}?

---ro objective-function

---ro objective-function-type?
6.2.2. YANG Module

```yang
<CODE BEGINS>file "ietf-te-path-computation.yang"
module ietf-te-path-computation {
    yang-version 1.1;
    // replace with IANA namespace when assigned
    prefix "tepc";

    import ietf-inet-types {
        prefix "inet";
    }

    import ietf-yang-types {
        prefix "yang-types";
    }

    import ietf-network-topology {
        prefix "nt";
    }

    import ietf-te {
        prefix "te";
    }

    import ietf-te-types {
        prefix "te-types";
    }

    organization
        "Traffic Engineering Architecture and Signaling (TEAS)
         Working Group";

    contact
        "WG Web:  <http://tools.ietf.org/wg/teas/>
         WG List:  <mailto:teas@ietf.org>
```

/* Features */

feature stateless-path-computation {
 description "This feature indicates that the system supports stateless path computation.";
}

/* Groupings */
grouping Path {
 list _telink {
 key 'link-ref';
 config false;
 uses nt:link-ref;
 description "List of telink refs.";
 }
 uses te-types:generic-path-constraints;
}
leaf path-id {
 type yang-types:uuid;
 config false;
 description "path-id ref.";
}
description "Path is described by an ordered list of TE Links.";
}

grouping PathCompServicePort {
 leaf source {
 type inet:ip-address;
 description "TE tunnel source address.";
 }
 leaf destination {
 type inet:ip-address;
 description "P2P tunnel destination address";
 }
 leaf src-tp-id {
 type binary;
 description "TE tunnel source termination point identifier.";
 }
 leaf dst-tp-id {
 type binary;
 description "TE tunnel destination termination point identifier.";
 }
 uses te:bidir-assoc-properties;
 description "Path Computation Service Port grouping.";
}

grouping PathComputationService {
 leaf-list _path-ref {
 type leafref {
 path '/paths/path/path-id';
 }
 config false;
 description "List of previously computed path references.";
 }
}
container _servicePort {
 uses PathCompServicePort;
 description "Path Computation Service Port.";
}
uses te-types:generic-path-constraints;
uses te-types:generic-path-optimization;

description "Path computation service.";
}

grouping synchronization-info {
 description "Information for sync";
 list synchronization {
 key "synchronization-index";
 description "sync list";
 leaf synchronization-index {
 type uint32;
 description "index";
 }
 }
 container svec {
 description "Synchronization VECTor";
 leaf relaxable {
 type boolean;
 default true;
 description "If this leaf is true, path computation process is free to ignore svec content.
 otherwise it must take into account this svec.";
 }
 leaf link-diverse {
 type boolean;
 default false;
 description "link-diverse";
 }
 leaf node-diverse {

leaf srlg-diverse {
 type boolean;
 default false;
 description "srlg-diverse";
}

leaf-list request-id-number {
 type uint32;
 description "This list reports the set of M path computation requests that must be synchronized.";
}

uses te-types:generic-path-constraints;

grouping no-path-info {
 description "no-path-info";
 container no-path {
 description "no-path container";
 }
}

/*
 * Root container
 */
container paths {
 list path {
 key "path-id";
 config false;
 uses Path;

 description "List of previous computed paths.";
 }
 description "Root container for path-computation";
}
container pathComputationService {
 config false;
 uses PathComputationService;
 description "Service for computing paths."
}

/**
 * AUGMENTS TO TE RPC
 */
augment "/te:tunnels-rpc/te:input/te:tunnel-info" {
 description "statelessComputeP2PPath input";
 list request-list {
 key "request-id-number";
 description "request-list";
 leaf request-id-number {
 type uint32;
 mandatory true;
 description "Each path computation request is uniquely identified by the request-id-number. It must be present also in rpcs."
 }
 }
 list servicePort {
 min-elements 1;
 uses PathCompServicePort;
 description "List of service ports."
 }
 uses te-types:generic-path-constraints;
 uses te-types:generic-path-optimization;
}

uses synchronization-info;

augment "/te:tunnels-rpc/te:output/te:result" {

}
description "statelessComputeP2PPath output";
list response {
 key response-index;
 config false;
 description "response";
 leaf response-index {
 type uint32;
 description "The list key that has to reuse request-id-number.";
 }
 choice response-type {
 config false;
 description "response-type";
 case no-path-case {
 uses no-path-info;
 }
 case path-case {
 container pathCompService {
 uses PathComputationService;
 description "Path computation service.";
 }
 }
 }
}

Figure 10 - TE path computation YANG module

7. Security Considerations

This document describes use cases of requesting Path Computation using YANG models, which could be used at the ABNO Control Interface [RFC7491] and/or between controllers in ACTN [ACTN-frame]. As such, it does not introduce any new security considerations compared to the ones related to YANG specification, ABNO specification and ACTN Framework defined in [RFC6020], [RFC7950], [RFC7491] and [ACTN-frame].
This document also defines common data types using the YANG data modeling language. The definitions themselves have no security impact on the Internet, but the usage of these definitions in concrete YANG modules might have. The security considerations spelled out in the YANG specification [RFC6020] apply for this document as well.

8. IANA Considerations

This section is for further study: to be completed when the YANG model is more stable.

9. References

9.1. Normative References

9.2. Informative References

10. Acknowledgments

The authors would like to thank Igor Bryskin and Xian Zhang for participating in discussions and providing valuable insights.

The authors would like to thank the authors of the TE Tunnel YANG model [TE-TUNNEL], in particular Igor Bryskin, Vishnu Pavan Beeram, Tarek Saad and Xufeng Liu, for their inputs to the discussions and support in having consistency between the Path Computation and TE Tunnel YANG models.

This document was prepared using 2-Word-v2.0.template.dot.
Contributors

Dieter Beller
Nokia
Email: dieter.beller@nokia.com

Gianmarco Bruno
Ericsson
Email: gianmarco.bruno@ericsson.com

Francesco Lazzeri
Ericsson
Email: francesco.lazzeri@ericsson.com

Young Lee
Huawei
Email: leeyoung@huawei.com

Carlo Perocchio
Ericsson
Email: carlo.perocchio@ericsson.com

Authors’ Addresses

Italo Busi (Editor)
Huawei
Email: italo.busi@huawei.com

Sergio Belotti (Editor)
Nokia
Email: sergio.belotti@nokia.com

Victor Lopez
Telefonica
Email: victor.lopezalvarez@telefonica.com
Abstract

This document describes a BGP community based method to steer traffic under the PCE architecture in the native IP network.

Status of This Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 17, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Table of Contents

1. Introduction ... 2
2. Terminology and Abbreviations 2
3. Mechanism .. 2
4. Security Considerations 4
5. IANA Considerations 4
6. Normative References 4

1. Introduction

In the draft [I-D.wang-teas-pce-native-ip], the scenario for TE in native IP network is described and a dual/multi-BGP sessions solution is proposed to meet the TE requirements. This document is for the same scenario and requirements as [I-D.wang-teas-pce-native-ip], however, a BGP community based method is used for steering traffic instead of dual/multi-BGP sessions.

2. Terminology and Abbreviations

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Mechanism

To differentiate traffics with various priority, BGP community is used to classify route prefixes. Assign a specific next-hop address for a specific BGP community which could be done by BGP route policy. Then through controlling the path for a specific next-hop address we can steer the related traffic.

The following is an example with a simple topology:
Figure 1: A simple topology as an example

In this topology, assume traffic between IP11 and IP21 is normal traffic, traffic between IP12 and IP22 is high priority. The following procedures can fulfill the differentiated traffic steering:

1. On R1, assign BGP community 100:100 for IP11 and 100:200 for IP12. On R2, assign BGP community 100:100 for IP21 and 100:200 for IP22.

2. On R1, use BGP route policy to set the next-hop as lo0 for prefixes with community 100:100 and lo1 for prefixes with community 100:200. Make the same configuration on R2.

3. On R1, set an explicit route to R2’s lo0 through path-1 and another explicit route to R2’s lo1 through path-2. On R2, set an explicit route to R1’s lo0 through path-1 and another explicit route to R1’s lo1 through path-2.

Through the above procedures traffic with different priority can be steered to appointed path as needed. More BGP communities and loopback interfaces/addresses can be created for more traffic classes in a more complex environment.
In a PCE enabled network, the above procedures can be fulfilled in an automated way. PCE can set the binding of BGP community and route prefixes, BGP community and next-hops/loopback addresses. PCE can change the BGP community for specific prefixes to steer the related traffic to a different priority/path. PCE also can set explicit route hop by hop for a specific next-hop/loopback address to steer the related traffic as needed. In addition, PCEP need to be extended to transfer the necessary parameters, such as BGP communities, next-hop/loopback addresses, related route prefixes and explicit route for a specific next-hop. How to extend PCEP is out of this document’s scope.

4. Security Considerations

5. IANA Considerations

6. Normative References

[I-D.wang-teas-pce-native-ip]

Authors’ Addresses

Lu Huang (editor)
China Mobile
32 Xuanwumen West Ave, Xicheng District
Beijing 100053
China

Email: hlisname@yahoo.com

Aijun Wang
China Telecom
Beiqijia Town, Changping District
Beijing
China

Email: wangaj.bri@chinatelecom.cn
A YANG Data Model for Optical Transport Network Topology
draft-ietf-ccamp-otn-topo-yang-05

Abstract

A transport network is a server-layer network designed to provide connectivity services for a client-layer network to carry the client traffic transparently across the server-layer network resources. A transport network can be constructed from equipments utilizing any of a number of different transport technologies such as the evolving Optical Transport Networks (OTN) or packet transport as provided by the MPLS-Transport Profile (MPLS-TP).

This document describes a YANG data model to describe the topologies of an Optical Transport Network (OTN). It is independent of control plane protocols and captures topological and resource related information pertaining to OTN. This model enables clients, which interact with a transport domain controller via a REST interface, for OTN topology related operations such as obtaining the relevant topology resource information.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute...
1. Introduction

A transport network is a server-layer network designed to provide connectivity services for a client-layer network to carry the client traffic transparently across the server-layer network resources. A transport network can be constructed of equipments utilizing any of a
number of different transport technologies such as the Optical Transport Networks (OTN) or packet transport as provided by the MPLS-Transport Profile (MPLS-TP).

This document defines a data model of an OTN network topology, using YANG [RFC7950]. The model can be used by an application exposing to a transport controller via a REST interface. Furthermore, it can be used by an application for the following purposes (but not limited to):

- To obtain a whole view of the network topology information of its interest;
- To receive notifications with regard to the information change of the OTN topology;
- To enforce the establishment and update of a network topology with the characteristic specified in the data model, e.g., by a client controller;

The YANG model defined in this document is independent of control plane protocols and captures topology related information pertaining to an Optical Transport Networks (OTN)-electrical layer, as the scope specified by [RFC7062] and [RFC7138]. Furthermore, it is not a stand-alone model, but augmenting from the TE topology YANG model defined in [I-D.ietf-teas-yang-te-topo]. Following TE topology YANG model, the YANG model defined in this document is interface independent. The applicability of models to interfaces is described in [I-D.ietf-teas-actn-yang].

Optical network technologies, including fixed Dense Wavelength Switched Optical Network (WSON) and flexible optical networks (a.k.a., flexi-grid networks), are covered in [I-D.ietf-ccamp-wson-yang] and [I-D.ietf-ccamp-flexigrid-yang], respectively.

2. Terminology and Notations

A simplified graphical representation of the data model is used in this document. The meaning of the symbols in the YANG data tree presented later in this document is defined in [RFC8340]. They are provided below for reference.

- Brackets "[" and "]" enclose list keys.
- Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only).
Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and leaf-list.

Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":").

Ellipsis ("...") stands for contents of subtrees that are not shown.

Some of the key terms used in this document are listed as follow.

- TS: Tributary Slot.
- TSG: Tributary Slot Granularity.
- TPN: Tributary Port Number.

3. YANG Data Model for OTN Topology

3.1. OTN Topology Data Model Overview

This document aims to describe the data model for OTN topology. As a classic Traffic-engineering (TE) technology, OTN provide TDM switching in transport network. Therefore the YANG module presented in this document augments from a more generic Traffic Engineered (TE) network topology data model, i.e., the ietf-te-topology.yang, as specified in [I-D.ietf-teas-yang-te-topo]. In section 6 of [I-D.ietf-teas-yang-te-topo], the guideline for augmenting TE topology model was provided, and in this draft we respectively augment the OTN attributes, TE bandwidth and TE label.

The entities and TE attributes, such as node, termination points and links, are still applicable for describing an OTN topology and the model presented in this document only specifies with technology-specific attributes/information. In OTN attributes augmentation, mainly OTN-specific parameters are included such as Tributary Slot Granularity (TSG), payload type and so on.

For different order of ODU in OTN technology, the te-bandwidth is augmented to allow specifying the type of ODU container and the number a link can support per priority level. For example, for a ODU3 link, it may advertise 32*ODU0, 16*ODU1, 4*ODU2 available, assuming only a single priority level is supported. If one of ODU2 resource is taken to establish a ODU path, then the availability of this ODU link is updated as 24*ODU0, 12*ODU1, 3*ODU2 available. If there are equipment hardware limitations, then a subset of potential ODU type SHALL be advertised. For instance, an ODU3 link may only support 4*ODU2.
The types of OTN label can be divided into the tributary ports and the tributary slots, represented by TPN or TS list respectively. In the TE-label augmentation, two optional label formats are available for label representation.

Note the model in this document re-uses some attributes defined in ietf-otn-types.yang, which is specified in [I-D.ietf-ccamp-otn-tunnel-model].

The YANG module ietf-otn-topology defined in this document conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342].

3.2. YANG Tree for OTN topology

The following OTN specific attributes have been augmented to TE topology models.

module: ietf-otn-topology
augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
 +--rw otn-topology!
augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes:
 +--rw tsg? identityref
 +--rw distance? uint32
augment /nw:networks/nw:network/nt:node/nt:termination-point/tet:te:
 +--rw supported-payload-types* [index]
 | +--rw index uint16
 | +--rw payload-type? string
 +--rw client-facing? boolean

The technology specific TE bandwidth for OTN topology can be specified using the following augment statements:

 /tet:interface-switching-capability/tet:max-lsp-bandwidth
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odu-type? identityref
 /tet:connectivity-matrices/tet:path-constraints
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 +--rw odu-type identityref
 +--rw number? uint16
/tet:connectivity-matrices/tet:connectivity-matrix
/tet:path-constraints/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 | +--rw odu-type identityref
 | +--rw number? uint16
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:path-constraints/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odulist* [odu-type]
 | +--ro odu-type identityref
 | +--ro number? uint16
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odulist* [odu-type]
 | +--ro odu-type identityref
 | +--ro number? uint16
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:client-layer-adaptation
 /tet:switching-capability/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 | +--rw odu-type identityref
 | +--rw number? uint16
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:path-constraints/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 | +--rw odu-type identityref
 | +--rw number? uint16
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:path-constraints/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 | +--rw odu-type identityref
 | +--rw number? uint16
 /tet:interface-switching-capability/tet:max-lsp-bandwidth
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odu-type? identityref
 /tet:max-link-bandwidth/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 +--rw odu-type identityref
 +--rw number? uint16
 /tet:max-resv-link-bandwidth/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--rw odulist* [odu-type]
 +--rw odun-type identityref
 +--rw number? uint16
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry
 /tet:interface-switching-capability/tet:max-lsp-bandwidth
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odu-type? identityref
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:max-link-bandwidth
 /tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odu-type? identityref
 +--ro number? uint16
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:max-resv-link-bandwidth/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odu-type? identityref
 +--ro number? uint16
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:unreserved-bandwidth/tet:te-bandwidth/tet:technology:
 +--:(otn)
 +--ro odu-type? identityref
 +--ro number? uint16
 /tet:te-link-attributes/tet:interface-switching-capability
 /tet:max-lsp-bandwidth/tet:te-bandwidth/tet:technology:
The technology specific TE label for this OTN topology can be specified using the following augment statements:

```yang
  +--rw range-type? identityref
  +--rw tsg? identityref
  +--rw priority? uint8

  +--rw range-type? identityref
  +--rw tsg? identityref
  +--rw priority? uint8
```

Internet-Draft OTN Topology YANG Model August 2018

| +--rw tpn? uint16
| +--:(tributary-slot)
| +--rw ts? uint16
/tet:path-element/tet:type/tet:label/tet:label-hop
/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
/tet:path-element/tet:type/tet:label/tet:label-hop
/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
/tet:metric/tet:optimization-metric
/tet:explicit-route-exclude-objects
/tet:route-object-exclude-object/tet:type/tet:label
/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
/tet:metric/tet:optimization-metric
/tet:explicit-route-exclude-objects
/tet:route-object-exclude-object/tet:type/tet:label
/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
/tet:connectivity-matrices/tet:path-properties
/tet:path-route-objects/tet:path-route-object/tet:type
/tet:label/hop/tet:te-label/tet:technology:
++--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
Internet-Draft OTN Topology YANG Model August 2018

/tet:label-restrictions/tet:label-restriction:
 +-rw range-type? identityref
 +-rw tsg? identityref
 +-rw priority? uint8

/tet:label-restrictions/tet:label-restriction:
 +-rw range-type? identityref
 +-rw tsg? identityref
 +-rw priority? uint8

| +--rw tpn? uint16
 +--:(tributary-slot)
 +--rw ts? uint16

 /tet:connectivity-matrices/tet:connectivity-matrix
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string

 /tet:connectivity-matrices/tet:connectivity-matrix
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string

 /tet:connectivity-matrices/tet:connectivity-matrix
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-exclude-objects
 /tet:route-object-exclude-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string

 /tet:connectivity-matrices/tet:connectivity-matrix
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-include-objects
 /tet:route-object-include-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string

 /tet:connectivity-matrices/tet:connectivity-matrix
 /tet:path-properties/tet:path-route-objects
 /tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label-restrictions/tet:label-restriction:
 +--ro range-type? identityref
 +--ro tsg? identityref
 +--ro priority? uint8
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label-restrictions/tet:label-restriction:
 /tet:label-start/tet:te-label/tet:technology:
 +-:(otn)
 +-ro (otn-label-type)?
 | +-:(tributary-port)
 | +--ro tpn? uint16
 | +-:(tributary-slot)
 | +-ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label-restrictions/tet:label-restriction:
 /tet:label-end/tet:te-label/tet:technology:
 +-:(otn)
 +-ro (otn-label-type)?
 | +-:(tributary-port)
 | +--ro tpn? uint16
 | +-:(tributary-slot)
 | +-ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:underlay/tet:primary-path/tet:path-element
 /tet:type/tet:label/tet:label-hop/tet:te-label/tet:technology:
 +-:(otn)
 +-ro tpn? uint16
 +-ro tsg? identityref
 +-ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +-:(otn)
 +-ro tpn? uint16
 +-ro tsg? identityref
 +-ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-exclude-objects
 /tet:route-object-exclude-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
+--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-include-objects
 /tet:route-object-include-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
+--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:path-properties/tet:path-route-objects
 /tet:te-label/tet:technology:
+--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:from/tet:label-restrictions
 /tet:label-restriction:
 +--ro range-type? identityref
 +--ro tsg? identityref
 +--ro priority? uint8
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:from/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
+--:(otn)
 +--ro (otn-label-type)?
 +--:(tributary-port)
 | +--ro tpn? uint16
 | +--:(tributary-slot)
 | +--ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:from/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
+--:(otn)
 +--ro (otn-label-type)?
+--:(tributary-port)
 | +--ro tpn? uint16
+--:(tributary-slot)
 +--ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:to/tet:label-restrictions
 /tet:label-restriction:
 +--ro range-type? identityref
 +--ro tsg? identityref
 +--ro priority? uint8
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:to/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 +--:(otn)
 +--ro (otn-label-type)?
 +--:(tributary-port)
 | +--ro tpn? uint16
 +--:(tributary-slot)
 +--ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:to/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
 +--:(otn)
 +--ro (otn-label-type)?
 +--:(tributary-port)
 | +--ro tpn? uint16
 +--:(tributary-slot)
 +--ro ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 +--:(otn)
+--ro tpn? uint16
+--ro tsg? identityref
+--ro ts-list? string
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:metric/tet:optimization-metric
 /tet:explicit-route-exclude-objects
 /tet:route-object-exclude-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:metric/tet:optimization-metric
 /tet:explicit-route-include-objects
 /tet:route-object-include-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:path-properties
 /tet:path-route-objects/tet:path-route-object/tet:type
 /tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:label-restrictions/tet:label-restriction:
 +--rw range-type? identityref
 +--rw tsg? identityref
 +--rw priority? uint8
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:label-restrictions/tet:label-restriction
 /tet:label-start/tet:te-label/tet:technology:
 +--:(otn)
 +--rw (otn-label-type)?:
 +--:(tributary-port)
 | +--rw tpn? uint16
+--:(tributary-slot)
 +--rw ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:label-restrictions/tet:label-restriction/tet:label-end
 /tet:te-label/tet:technology:
+--:(otn)
 +--rw (otn-label-type)?
+--:(tributary-port)
 | +--rw tpn? uint16
+--:(tributary-slot)
 +--rw ts? uint16
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
+--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-exclude-objects
 /tet:route-object-exclude-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
+--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:optimizations/tet:algorithm/tet:metric
 /tet:optimization-metric/tet:explicit-route-include-objects
 /tet:route-object-include-object/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
+--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:path-properties/tet:path-route-objects
 /tet:te-label/tet:technology:
 +--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:local-link-connectivity/tet:label-restrictions
 /tet:label-restriction:
 +--rw range-type? identityref
 +--rw tsg? identityref
 +--rw priority? uint8

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:local-link-connectivity/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 +--:(otn)
 +--rw (otn-label-type)?
 +--:(tributary-port)
 | +--rw tpn? uint16
 +--:(tributary-slot)
 +--rw ts? uint16

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:local-link-connectivity/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
 +--:(otn)
 +--rw (otn-label-type)?
 +--:(tributary-port)
 | +--rw tpn? uint16
 +--:(tributary-slot)
 +--rw ts? uint16

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point/tet:local-link-connectivities
 /tet:local-link-connectivity/tet:underlay/tet:primary-path
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string

augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel-termination-point/tet:local-link-connectivities
/tet:local-link-connectivity/tet:underlay/tet:backup-path
/tet:path-element/tet:type/tet:label/tet:label-hop
/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel-termination-point/tet:local-link-connectivities
/tet:local-link-connectivity/tet:optimizations/tet:algorithm
/tet:metric/tet:optimization-metric
/tet:explicit-route-exclude-objects
/tet:route-object-exclude-object/tet:type/tet:label
/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel-termination-point/tet:local-link-connectivities
/tet:local-link-connectivity/tet:optimizations/tet:algorithm
/tet:metric/tet:optimization-metric
/tet:explicit-route-include-objects
/tet:route-object-include-object/tet:type/tet:label
/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
augment /nw:networks/nw:network/nw:node/tet:te
/tet:tunnel-termination-point/tet:local-link-connectivities
/tet:local-link-connectivity/tet:path-properties
/tet:path-route-objects/tet:path-route-object/tet:type
/tet:label/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--ro tpn? uint16
 +--ro tsg? identityref
 +--ro ts-list? string
/tet:label/tet:label-hop/tet:te-label/tet:technology:
++--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
/tet:label/tet:label-hop/tet:te-label/tet:technology:
 +--:(otn)
 +--rw tpn? uint16
 +--rw tsg? identityref
 +--rw ts-list? string
 +--rw range-type? identityref
 +--rw tsg? identityref
 +--rw priority? uint8
 /tet:label-restrictions/tet:label-restriction:
 +--rw range-type? identityref
 +--rw tsg? identityref
 +--rw priority? uint8
 /tet:label-restrictions/tet:label-restriction/tet:label-start/
 /tet:te-label/tet:technology:
 +--:(otn)
 +--rw (otn-label-type)?
 +--:(tributary-port)
 | +--rw tpn? uint16
 +--:(tributary-slot)
 +--rw ts? uint16
 /tet:label-restrictions/tet:label-restriction/tet:label-end/
 /tet:te-label/tet:technology:
 +--:(otn)
 +--rw (otn-label-type)?
 +--:(tributary-port)
 | +--rw tpn? uint16
 +--:(tributary-slot)
 +--rw ts? uint16
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:label-restrictions
 /tet:label-restriction:
 +--ro range-type? identityref
 +--ro tsg? identityref
 +--ro priority? uint8
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 +--:(otn)
 +--ro (otn-label-type)?
 +--:(tributary-port)
 | +--ro tpn? uint16
 +--:(tributary-slot)
 +--ro ts? uint16
augment /nw:networks/nw:network/nt:link/tet:te
 /tet:information-source-entry/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
---: (otn)
 ---ro (otn-label-type)?
 ---: (tributary-port)
 ---ro tpn? uint16
 ---: (tributary-slot)
 ---ro ts? uint16
 /tet:te-link-attributes/tet:underlay/tet:primary-path
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 ---: (otn)
 ---rw tpn? uint16
 ---rw tsg? identityref
 ---rw ts-list? string
 /tet:te-link-attributes/tet:underlay/tet:backup-path
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 ---: (otn)
 ---rw tpn? uint16
 ---rw tsg? identityref
 ---rw ts-list? string
 /tet:te-link-attributes/tet:label-restrictions
 /tet:label-restriction:
 ---rw range-type? identityref
 ---rw tsg? identityref
 ---rw priority? uint8
 /tet:te-link-attributes/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 ---: (otn)
 ---rw (otn-label-type)?
 ---: (tributary-port)
 ---rw tpn? uint16
 ---: (tributary-slot)
 ---rw ts? uint16
 /tet:te-link-attributes/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
 ---: (otn)
 ---rw (otn-label-type)?
 ---: (tributary-port)
 ---rw tpn? uint16
 ---: (tributary-slot)
 ---rw ts? uint16
module ietf-otn-topology {
 yang-version 1.1;
 prefix "otntopo";
 import ietf-network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf-network-topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf-te-topology {
 prefix "tet";
 reference "I-D.iietf-teas-yang-te-topo: YANG Data Model for Traffic Engineering (TE) Topologies";
 }
 import ietf-otn-types {
 prefix "otn-types";
 reference "I-D.iietf-teas-yang-te: A YANG Data Model for Traffic Engineering Tunnels and Interfaces";
 }
 organization "IETF CCAMP Working Group";
 contact "WG Web: <http://tools.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>
 Editor: Haomian Zheng
 <mailto:zhenghaomian@huawei.com>
 Editor: Aihua Guo
 <mailto:aihuagu@huawei.com>
This module defines a protocol independent Layer 1/ODU topology data model.

Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

revision 2018-08-23 {
 description "Initial Revision";
 reference "RFC XXXX: A YANG Data Model for Optical Transport Network Topology";
 // RFC Ed.: replace XXXX with actual RFC number, update date information and remove this note
}

/*
 * Groupings
 */
grouping otn-link-attributes {
 description "link attributes for OTN";

 leaf tsg {
 type identityref {
 base otn-types:tributary-slot-granularity;
 }
 description "Tributary slot granularity.";
 reference
 "G.709/Y.1331, February 2016: Interfaces for the Optical Transport Network (OTN)";
 }

 leaf distance {
 type uint32;
 description "distance in the unit of kilometers";
 }
}

grouping otn-tp-attributes {
 description "tp attributes for OTN";
 list supported-payload-types {
 key "index";
 description
 "Supported payload types of a TP. The payload type is defined as the generalized PIDs in GMPLS.";
 leaf index {
 type uint16;
 description "payload type index";
 }

 leaf payload-type {
 type string;
 description "the payload type supported by this client tp";
 reference
 "http://www.iana.org/assignments/gmpls-sig-parameters/gmpls-sig-parameters.xhtml";
 }

 leaf client-facing {
 type boolean;
 default 'false';
 description
 "Indicating if it is a client-facing TP.";
 }
 }
}

/*
 * Data nodes
 */
augment "/nw:networks/nw:network/nw:network-types/"
 + "tet:te-topology" {
 container otn-topology {
 presence "indicates a topology type of Optical Transport
 Network (OTN)-electrical layer.";
 description "otn topology type";
 }
 description "augment network types to include otn network";
 }

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes" {
 when "/nw:network-types/tet:te-topology/" + "otntopo:otn-topology" {
 description "Augment only for otn network";
 }
 description "Augment link configuration";
 uses otn-link-attributes;
 }

augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
 + "tet:te" {
 when "/nw:network-types/tet:te-topology/" + "otntopo:otn-topology" {
 description "Augment only for otn network";
 }
 description "OTN TP attributes config in ODU topology";
 uses otn-tp-attributes;
 }

/*
 * Augment TE bandwidth
 */

/* Augment maximum LSP bandwidth of link terminationpoint (LTP) */
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
 + "tet:te/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:bandwidth/tet:technology" {
 when "/nw:network-types/tet:te-topology/" + "otntopo:otn-topology" {
 description "Augment OTN TE bandwidth";
 }
 description "OTN bandwidth";
 case otn {
 uses otn-types:otn-path-bandwidth;
 }
 }

/* Augment bandwidth path constraints of connectivity-matrices */
augment "nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "nw:network-types/tet:te-topology/
 + otntopo:otn-topology"
 {
 description "Augment OTN TE bandwidth";
 }

/* Augment bandwidth path constraints of connectivity-matrix */
augment "nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "nw:network-types/tet:te-topology/
 + otntopo:otn-topology"
 {
 description "Augment OTN TE bandwidth";
 }

case otn {
 uses otn-types:otn-link-bandwidth;
}

/* Augment bandwidth path constraints of connectivity-matrices information-source */
augment "nw:networks/nw:network/nw:node/tet:te/
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "nw:network-types/tet:te-topology/
 + otntopo:otn-topology"
 {
 description "Augment OTN TE bandwidth";
 }

case otn {
 uses otn-types:otn-link-bandwidth;
}

/* Augment bandwidth path constraints of connectivity-matrix information-source */
augment "nw:networks/nw:network/nw:node/tet:te/
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"

when "."/"."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE bandwidth";
 }
}
description "OTN bandwidth.";
case otn {
 uses otn-types:otn-link-bandwidth;
}
}

/* Augment client bandwidth of tunnel termination point (TTP) */
 + "tet:tunnel-termination-point/"
 + "tet:client-layer-adaptation/tet:switching-capability/"
 + "tet:te-bandwidth/tet:technology" {
 when "."/"."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE bandwidth";
 }
 }
description "OTN bandwidth.";
case otn {
 uses otn-types:otn-link-bandwidth;
}
}

/* Augment bandwidth path constraints of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/tet:path-constraints/"
 + "tet:te-bandwidth/tet:technology" {
 when "."/"."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE bandwidth";
 }
 }
description "OTN bandwidth.";
case otn {
 uses otn-types:otn-link-bandwidth;
}
}

/* Augment bandwidth path constraints of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:local-link-connectivity/tet:path-constraints/"
 + "tet:te-bandwidth/tet:technology" {
 when "."/"."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {

description "Augment OTN TE bandwidth";
}
description "OTN bandwidth."
}
case otn {
 uses otn-types:otn-link-bandwidth;
}
}
/* Augment maximum LSP bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
 }
}
description "OTN bandwidth."
}
case otn {
 uses otn-types:otn-path-bandwidth;
}
}
/* Augment maximum bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
 }
}
description "OTN bandwidth."
}
case otn {
 uses otn-types:otn-link-bandwidth;
}
}
/* Augment maximum reservable bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-resv-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
 }
}
description "OTN bandwidth.";
case otn {
 uses otn-types:otn-link-bandwidth;
}

/* Augment unreserved bandwidth of TE Link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:unreserved-bandwidth/
 + "tet:te-bandwidth/tet:technology" {
when "../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.");
 }
 description "OTN bandwidth.");
 case otn {
 uses otn-types:otn-link-bandwidth;
 }
}

/* Augment maximum LSP bandwidth of TE link information-source */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/
 + "tet:interface-switching-capability/
 + "tet:max-lsp-bandwidth/
 + "tet:te-bandwidth/tet:technology" {
when "../../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.");
 }
 description "OTN bandwidth.");
 case otn {
 uses otn-types:otn-path-bandwidth;
 }
}

/* Augment maximum bandwidth of TE link information-source */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/
 + "tet:max-link-bandwidth/
 + "tet:te-bandwidth/tet:technology" {
when "../../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.");
 }
 description "OTN bandwidth.");
 case otn {
 uses otn-types:otn-link-bandwidth;
 }
}
 + "tet:information-source-entry/"
 + "tet:max-resv-link-bandwidth/"
 + "tet:technology/
 when "./././././nw:network-types/tet:te-topology/
 + "otntopo:otn-topology/"
 description "OTN TE bandwidth.";
 }"}
/* Augment unreserved bandwidth of TE link information-source */
 + "tet:information-source-entry/"
 + "tet:unreserved-bandwidth/"
 + "tet:technology/
 when "./././././nw:network-types/tet:te-topology/
 + "otntopo:otn-topology/"
 description "OTN TE bandwidth.";
 }"}
/* Augment maximum LSP bandwidth of TE link template */
 + "tet:link-template/tet:te-link-attributes/
 + "tet:interface-switching-capability/"
 + "tet:max-lsp-bandwidth/"
 + "tet:technology/
 when "./././././nw:network-types/tet:te-topology/
 + "otntopo:otn-topology/"
 description "OTN TE bandwidth.";*/
/*
 * description "OTN bandwidth.";
 case otn {
 uses otn-types:otn-path-bandwidth;
}
+ "tet:link-template/tet:te-link-attributes/
+ "tet:max-link-bandwidth/"
+ "tet:te-bandwidth/tet:technology" {
/*
 when "../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
}
*/
 description "OTN bandwidth.";
 case otn {
 uses otn-types:otn-link-bandwidth;
 }
}
/* Augment maximum reservable bandwidth of TE link template */
+ "tet:link-template/tet:te-link-attributes/
+ "tet:max-resv-link-bandwidth/"
+ "tet:te-bandwidth/tet:technology" {
/*
 when "../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
}
*/
 description "OTN bandwidth.";
 case otn {
 uses otn-types:otn-link-bandwidth;
 }
}
/* Augment unreserved bandwidth of TE link template */
+ "tet:link-template/tet:te-link-attributes/
+ "tet:unreserved-bandwidth/"
+ "tet:te-bandwidth/tet:technology" {
/*
 when "../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "OTN TE bandwidth.";
}
*/
 description "OTN bandwidth.";
case otn {
 uses otn-types:otn-link-bandwidth;
}

/*
 * Augment TE label.
 */

/*/ Augment label restrictions of connectivity-matrices */
augment */nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction" {
 when "../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label restriction.";
 uses otn-types:otn-label-restriction;
 }

/*/ Augment label restrictions start of connectivity-matrices */
augment */nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/
 + "tet:te-label/tet:technology" {
 when "../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
 }

/*/ Augment label restrictions end of connectivity-matrices */
augment */nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/
 + "tet:te-label/tet:technology" {
 when "../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
 }
/* Augment label hop of underlay primary path of connectivity-matrices */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:underlay/tet:primary-path/tet:path-element/
+ "tet:type/tet:label/tet:label-hop/
+ "tet:te-label/tet:technology" {
when "/.../.../.../.../.../.../.../"
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}
/* Augment label hop of underlay backup path of connectivity-matrices */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:underlay/tet:backup-path/tet:path-element/
+ "tet:type/tet:label/tet:label-hop/
+ "tet:te-label/tet:technology" {
when "/.../.../.../.../.../.../.../"
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}
/* Augment label hop of route-exclude of connectivity-matrices */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/
+ "tet:type/tet:label/tet:label-hop/
+ "tet:te-label/tet:technology" {
when "/.../.../.../.../.../.../.../"
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of route-include of connectivity-matrices (added) */
augment "*/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-include-objects/
+ "tet:route-object-include-object/
+ "tet:type/tet:label/tet:label-hop/
+ "tet:te-label/tet:technology"
when ".../.../.../.../.../.../.../.../.../.../
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of path-route of connectivity-matrices */
augment "*/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/tet:label/tet:label-hop/
+ "tet:te-label/tet:technology"
when ".../.../.../.../.../.../.../.../.../.../
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment ingress label restrictions of connectivity-matrix */
augment "*/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/tet:from/
+ "tet:label-restrictions/tet:label-restriction" {
when "../.../.../.../.../.../nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
uses otn-types:otn-label-restriction;
}

/* Augment ingress label restrictions start of connectivity-matrix */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:connectivity-matrix/tet:from/
+ "tet:label-restrictions/tet:label-restriction/tet:label-start/
+ "tet:te-label/tet:technology" {
when "../.../.../.../.../.../" + "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment ingress label restrictions end of connectivity-matrix */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:connectivity-matrix/tet:from/
+ "tet:label-restrictions/tet:label-restriction/tet:label-end/
+ "tet:te-label/tet:technology" {
when "../.../.../.../.../.../" + "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE-label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment egress label restrictions of connectivity-matrix */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:connectivity-matrix/tet:to/"
+ "tet:label-restrictions/tet:label-restriction" {
 when "../../../../../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 uses otn-types:otn-label-restriction;
}
/* Augment egress label restrictions start of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
}
/* Augment egress label restrictions end of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
}
/* Augment label hop of underlay primary path of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
 + "tet:underlay/tet:primary-path/tet:path-element/"
+ "tet:type/tet:label/tet:label-hop/"
+ "tet:te-label/tet:technology" {
when "./.../.../.../.../.../.../
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.");
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of underlay backup path of connectivity-matrix */
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:underlay/tet:backup-path/tet:path-element/
+ "tet:type/tet:label/tet:label-hop/"
+ "tett:te-label/tet:technology" {
when "./.../.../.../.../.../.../
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.");
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of route-exclude of connectivity-matrix */
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/tet:optimizations/"
+ "tet:algorithm/tet:metric/tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "./.../.../.../.../.../.../
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.");
case otn {
 uses otn-types:otn-path-label;
}
}
/* Augment label hop of route-include of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:optimizations/"
 + "tet:algorithm/tet:metric/tet:optimization-metric/"
 + "tet:explicit-route-include-objects/"
 + "tet:route-object-include-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./>....
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
}
description "OTN label."
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label hop of path-route of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./>....
 + "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
}
description "OTN label."
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label restrictions of connectivity-matrices information-source */
 + "tet:information-source-entry/"
 + "tet:connectivity-matrices/tet:label-restrictions/tet:label-restrictio
n" {
 when "./>....
 + "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
}
description "OTN label.";
uses otn-types:otn-label-restriction;
}

/* Augment label restrictions start of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/"
 + "tet:connectivity-matrices/tet:label-restrictions/tet:label-restrictions/"

 + "tet:label-start/tet:te-label/tet:technology" {
 when "./.
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
}

/* Augment label restrictions end of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/"
 + "tet:connectivity-matrices/tet:label-restrictions/tet:label-restrictions/"

 + "tet:label-end/tet:te-label/tet:technology" {
 when "./.
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-link-label;
 }
}

/* Augment label hop of underlay primary path of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/"
 + "tet:connectivity-matrices/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./.
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-path-label;
augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./././././././././././."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label hop of route-exclude of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:optimizations/tet:algorithm/tet:metric/"
+ "tet:optimization-metric/"
+ "tet:explicit-route-exclude-objects/"
+ "tet:route-object-exclude-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./././././././././././."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label hop of route-include of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:optimizations/tet:algorithm/tet:metric/"
+ "tet:optimization-metric/"
+ "tet:explicit-route-include-objects/"
+ "tet:route-object-include-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "./././././././././././."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}

description "OTN label.";

case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of path-route of connectivity-matrices information-source */

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:path-properties/tet:path-route-objects/"
+ "tet:path-route-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "...." {
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-path-label;
 }
 }
}

/* Augment ingress label restrictions of connectivity-matrix information-source */

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:from/tet:label-restrictions/tet:label-restriction" {
 when "...." {
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 uses otn-types:otn-label-restriction;
 }
}

/* Augment ingress label restrictions start of connectivity-matrix information-source */

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:from/tet:label-restrictions/tet:label-restriction/"
+ "tet:label-start/tet:te-label/tet:technology" {
 when "...." {
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"

description "Augment OTN TE label";
}
description "OTN label."
}

case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment ingress label restrictions end of connectivity-matrix information-source */

 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
 + "tet:from/tet:label-restrictions/tet:label-restriction"{
when "/.../.../.../.../.../.../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"{
 description "Augment OTN TE label";
}
description "OTN label."
}

case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment egress label restrictions start of connectivity-matrix information-source */

 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
 + "tet:to/tet:label-restrictions/tet:label-restriction/"
when "/.../.../.../.../.../.../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"{
 description "Augment OTN TE label";
}
description "OTN label."
uses otn-types:otn-label-restriction;
}

/* Augment egress label restrictions start of connectivity-matrix information-source */

 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
 + "tet:to/tet:label-restrictions/tet:label-restriction/"
when "/.../.../.../.../.../.../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"{
 description "Augment OTN TE label";

description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}

/* Augment egress label restrictions end of connectivity-matrix information-source */
augment " /nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:to/tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/tet:te-label/tet:technology" {
when ".../.../.../.../.../.../.../.../.../
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}

/* Augment label hop of underlay primary path of connectivity-matrix information-source */
augment " /nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when ".../.../.../.../.../.../.../.../.../
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}

/* Augment label hop of underlay backup path of connectivity-matrix information-source */
augment " /nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when ".../.../.../.../.../.../.../.../.../"
Internet-Draft OTN Topology YANG Model August 2018

+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of route-exclude of connectivity-matrix information-source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "/nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label hop of route-include of connectivity-matrix information-source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-include-objects/
+ "tet:route-object-include-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "/nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}
/* Augment label hop of path-route of connectivity-matrix information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology/"
 + "when ".//.///.///."
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology/"
 + "description "Augment OTN TE label";"
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label restrictions of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "when ".//.///./././././nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology/"
 + "description "Augment OTN TE label";"
}

/* Augment label restrictions start of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/"
 + "tet:te-label/tet:technology/"
 + "when ".//.///./././././nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology/"
 + "description "Augment OTN TE label";"
}

case otn {
 uses otn-types:otn-link-label;
}
}
/* Augment label restrictions end of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology/"
when ".//...//...//...//...//...//nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}

/* Augment label hop of underlay primary path of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology/"
when ".//...//...//...//...//...//nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}

/* Augment label hop of underlay backup path of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology/"
when ".//...//...//...//...//...//nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
/* Augment label hop of route-exclude of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:optimizations/tet:algorithm/tet:metric/"
 + "tet:optimization-metric/"
 + "tet:explicit-route-exclude-objects/"
 + "tet:route-object-exclude-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
when "././././././././././././"
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"
 description "Augment OTN TE label";
case otn {
 uses otn-types:otn-path-label;
}

/* Augment label hop of route-include of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:optimizations/tet:algorithm/tet:metric/"
 + "tet:optimization-metric/"
 + "tet:explicit-route-include-objects/"
 + "tet:route-object-include-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
when "././././././././././././"
 + "nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology"
 description "Augment OTN TE label";
case otn {
 uses otn-types:otn-path-label;
}

/* Augment label hop of path-route of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when ".//..//..//..//..//..//..//..//..//..//..//..//..//..
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-path-label;
}
}

/* Augment label restrictions of local-link-connectivity (LLC) */
+ "tet:tunnel-termination-point/"
+ "tet:local-link-connectivities/"
+ "tet:label-restrictions/tet:label-restriction" {
when ".//..//..//..//..//..//..//..//..//..//..
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
uses otn-types:otn-label-restriction;
}

/* Augment label restrictions start of local-link-connectivity (LLC) */
+ "tet:tunnel-termination-point/"
+ "tet:local-link-connectivities/"
+ "tet:label-restrictions/tet:label-restriction/
+ "tet:label-start/tet:te-label/tet:technology" {
when ".//..//..//..//..//..//..//..//..//..//..
+ "nw:network-types/tet:te-topology/"
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment label restrictions end of local-link-connectivity (LLC) */
+ "tet:tunnel-termination-point/"
+ "tet:local-link-connectivities/"
Internet-Draft OTN Topology YANG Model August 2018

+ "tet:local-link-connectivity/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/tet:te-label/tet:technology" { when "./././././././././././././"
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn { uses otn-types:otn-link-label;
 }
}

/* Augment label hop of underlay primary path of local-link-connectivity (LLC) */

 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "./././././././././././././"
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn { uses otn-types:otn-path-label;
 }
}

/* Augment label hop of underlay backup path of local-link-connectivity (LLC) */

 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "./././././././././././././"
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn { uses otn-types:otn-path-label;
 }
}
+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/tet:type/
+ "otntopo:otn-topology" { description "Augment OTN TE label";
} case otn {
 uses otn-types:otn-path-label;
} }

+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/tet:type/
+ "otntopo:otn-topology" { description "Augment OTN TE label";
} case otn {
 uses otn-types:otn-path-label;
} }

+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-exclude-objects/
+ "tet:route-object-exclude-object/tet:type/
+ "otntopo:otn-topology" { description "Augment OTN TE label";
} case otn {
 uses otn-types:otn-path-label;
} }

+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../....."
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label."
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label hop of underlay primary path of TE link */
+ "tet:te-link-attributes/
+ "tet:underlay/tet:primary-path/tet:path-element/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../ ../../../....."
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label."
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label hop of underlay backup path of TE link */
+ "tet:te-link-attributes/
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../ ../../../....."
+ "nw:network-types/tet:te-topology/
+ "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label."
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label restrictions of TE link */
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction" {
 when "/nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 uses otn-types:otn-label-restriction;
}
/* Augment label restrictions start of TE link */
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-start/tet:te-label/tet:technology" {
 when "/nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-label-link-label;
 }
}
/* Augment label restrictions end of TE link */
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/tet:te-label/tet:technology" {
 when "/nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 description "OTN label.";
 case otn {
 uses otn-types:otn-label-link-label;
 }
}
/* Augment label restrictions of TE link information-source */
 + "tet:information-source-entry/
 + "tet:label-restrictions/tet:label-restriction" {
 when "/nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
description "OTN label.";
uses otn-types:otn-label-restriction;
}

/* Augment label restrictions start of TE link information-source */
 + "tet:information-source-entry/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-start/tet:te-label/tet:technology"
 when "../../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment label restrictions end of TE link information-source */
 + "tet:information-source-entry/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/tet:te-label/tet:technology"
 when "../../../../../nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
description "OTN label.";
case otn {
 uses otn-types:otn-link-label;
}
}

/* Augment label hop of underlay primary path of TE link template */
 + "tet:link-template/tet:te-link-attributes/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
 when ".../.../.../.../.../.../
 + "nw:network-types/tet:te-topology/
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
}
/*
description "OTN label.";
case otn {

uses otn-types:otn-path-label;
}
}

/* Augment label hop of underlay backup path of TE link template */
augment "nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 /*
 when "../.../..../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 */
 description "OTN label.";
 case otn {
 uses otn-types:otn-path-label;
 }
}

/* Augment label restrictions of TE link template */
augment "nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:label-restrictions/tet:label-restriction/" {
 /*
 when "../.../..../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 */
 description "OTN label.";
 uses otn-types:otn-label-restriction;
}

/* Augment label restrictions start of TE link template */
augment "nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-start/tet:te-label/tet:technology" {
 /*
 when "../.../..../../nw:network-types/tet:te-topology/"
 + "otntopo:otn-topology" {
 description "Augment OTN TE label";
 }
 */
 description "OTN label.";
 case otn {

5. IANA Considerations

6. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC5246].
The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

```
/nw:networks/nw:network/nt:terminiation-point/tet:te
/nw:networks/nw:network/.../tet:te-bandwidth/tet:technology
/nw:networks/nw:network/nw:node/.../tet:te-label/tet:technology
```

Editors note: we are using simplified description by folding similar branches to avoid repetition.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

Editors note: Currently there is no such data nodes, temporarily kept for review.

7. Acknowledgements

We would like to thank Igor Bryskin, Zhe Liu, Zheyu Fan and Daniele Ceccarelli for their comments and discussions.

8. Contributors

Baoquan Rao
Huawei Technologies
Email: raobaoquan@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Huub van Helvoort
Hai Gaoming BV

Zheng, et al.
Expires February 24, 2019
9. References

9.1. Normative References

[I-D.ietf-ccamp-otn-tunnel-model]

[I-D.ietf-teas-yang-te-topo]

9.2. Informative References

[I-D.ietf-ccamp-flexigrid-yang]
Madrid, U., Perdices, D., Lopezalvarez, V., Dios, O.,
King, D., Lee, Y., and G. Galimberti, "YANG data model for
Flexi-Grid Optical Networks", draft-ietf-ccamp-flexigrid-
yang-01 (work in progress), August 2018.

Authors’ Addresses

Haomian Zheng
Huawei Technologies
F3 R&D Center, Huawei Industrial Base, Bantian, Longgang District
Shenzhen, Guangdong 518129
P.R.China

Email: zhenghaomian@huawei.com

Aihua Guo
Huawei Technologies
12007 Sunrise Valley Drive, Suite 325
Reston, VA 20171
U.S.A

Email: aihuaguo@huawei.com
A Yang Data Model for WSON Optical Networks

draft-ietf-ccamp-wson-yang-13

Abstract

This document provides a YANG data model for the routing and wavelength assignment (RWA) TE topology in wavelength switched optical networks (WSONs).

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Lee, et al. Expires February 2019
1. Introduction

This document provides a YANG data model for the routing and wavelength assignment (RWA) Traffic Engineering (TE) topology in wavelength switched optical networks (WSONs). The YANG model described in this document is a WSON technology-specific Yang model based on the information model developed in [RFC7446] and the two encoding documents [RFC7581] and [RFC7579] that developed protocol independent encodings based on [RFC7446].
This document augments the generic TE topology draft [TE-TOPO].

What is not in scope of this document is both impairment-aware WSON and flex-grid.

This document defines two YANG models: ietf-wson-topology (Section 3) and ietf-te-wson-types (Section 4).

2. YANG Model (Tree Structure)

module: ietf-wson-topology
 augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
 +-rw wson-topology!
 augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes:
 +-rw supported-payload-types* [index]
 | +-rw index uint16
 | +-rw payload-type? string
 +-rw client-facing? boolean
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-attributes:
 +-rw wson-node
 +-rw node-type? identityref
 augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point:
 +-rw supported-operational-modes* te-wson-types:operational-mode
 +-rw configured-operational-modes? te-wson-types:operational-mode
 +-rw supported-fec-types* identityref
 +-rw supported-termination-types* identityref
 +-rw supports-bit-stuffing? boolean
 augment /nw:networks/nw:network/nw:node/nt:termination-point/tet:te/tet:interf-
 -switching-capability/tet:max-lsp-bandwidth/tet:te-bandwidth/tet:technology:
 +-:(wson)
 +-rw bandwidth-type? identityref
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-
 -attributes/tet:connectivity-matrices/tet:path-constraints/tet:te-
 -bandwidth/tet:technology:
 +-:(wson)
 +-rw supported-bandwidth-list* identityref
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-
 -attributes/tet:connectivity-matrices/tet:connectivity-matrix/tet:path-
 -constraints/tet:te-bandwidth/tet:technology:
 +-:(wson)
 +-rw supported-bandwidth-list* identityref
 augment /nw:networks/nw:network/nw:node/tet:te/tet:information-source-
 -entry/tet:connectivity-matrices/tet:path-constraints/tet:te-bandwidth/tet:techno-
 logy:
 +-:(wson)
 +-ro supported-bandwidth-list* identityref
 +--:(wson)
 +--ro supported-bandwidth-list* identityref
 +--:(wson)
 +--rw supported-bandwidth-list* identityref
 +--:(wson)
 +--rw supported-bandwidth-list* identityref
 +--:(wson)
 +--rw bandwidth-type? identityref
 +--:(wson)
 +--rw supported-bandwidth-list* identityref
 +--:(wson)
 +--rw supported-bandwidth-list* identityref
 +--:(wson)
 +--rw supported-bandwidth-list* identityref
 +--:(wson)
 +--ro bandwidth-type? identityref
 +--:(wson)
 +--ro supported-bandwidth-list* identityref
 +--:(wson)
 +--ro supported-bandwidth-list* identityref
 +--:(wson)
 | |--ro supported-bandwidth-list* identityref
 +--:(wson)
 | |--rw bandwidth-type? identityref
 +--:(wson)
 | |--rw supported-bandwidth-list* identityref
 +--:(wson)
 | |--rw supported-bandwidth-list* identityref
 +--:(wson)
 | |--rw supported-bandwidth-list* identityref
 +--rw grid-type? identityref
 +--rw priority? uint8
 +--:(wson)
 | |--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | +--rw channel-wavelength? uint32
 +--:(wson)
 | |--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | +--rw channel-wavelength? uint32
 +--:(wson)
 | |--rw (grid-type)?
 | +--:(dwdm)
| +--rw channel-freq? decimal64
| +--rw channel-wavelength? uint32
+--rw grid-type?
 +--rw channel-freq? decimal64
 +--rw channel-wavelength? uint32
+--rw priority? uint8
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | ++--rw channel-wavelength? uint32
 ++--rw grid-type? identityref
 ++--rw priority? uint8
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +--:(wson)
 | +--rw (grid-type)?
 | +--:(dwdm)
 | | +--rw channel-freq? decimal64
 | +--:(cwdm)
++--rw channel-wavelength? uint32
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-
gy:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--: (dwdm)
 | ++--rw channel-freq? decimal64
 ++--: (cwdm)
 ++--rw channel-wavelength? uint32
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-
attributes/tet:connectivity-matrices/tet:connectivity-
matrix/tet:optimizations/tet:algorithm/tet:metric/tet:optimization-
metric/tet:explicit-route-exclude-objects/tet:route-object-exclude-
object/tet:type/tet:label/tet:label-hop/tet:te-label/tet:technology:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--: (dwdm)
 | ++--rw channel-freq? decimal64
 ++--: (cwdm)
 ++--rw channel-wavelength? uint32
 augment /nw:networks/nw:network/nw:node/tet:te/tet:te-node-
attributes/tet:connectivity-matrices/tet:connectivity-
matrix/tet:optimizations/tet:algorithm/tet:metric/tet:optimization-
metric/tet:explicit-route-include-objects/tet:route-object-include-
object/tet:type/tet:label/tet:label-hop/tet:te-label/tet:technology:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--: (dwdm)
 | ++--rw channel-freq? decimal64
 ++--: (cwdm)
 ++--rw channel-wavelength? uint32
 augment /nw:networks/nw:network/nw:node/tet:te/tet:information-source-
entry/tet:connectivity-matrices/tet:label-restrictions/tet:label-restriction:
 ++--ro grid-type? identityref
 ++--ro priority? uint8
 augment /nw:networks/nw:network/nw:node/tet:te/tet:information-source-
entry/tet:connectivity-matrices/tet:label-restrictions/tet:label-restriction/tet:label-
start/tet:te-label/tet:technology:
 +--:(wson)
 | +--ro (grid-type)?
 | | +--:(dwdm)
 | | | +--ro channel-freq? decimal64
 | | +--:(cwdm)
 | | +--ro channel-wavelength? uint32
 | +---:(wson)
 | +--ro (grid-type)?
 | +--:(dwdm)
 | | +--ro channel-freq? decimal64
 | +--:(cwdm)
 | +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 | +--ro channel-wavelength? uint32
 +---:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 | +--ro channel-wavelength? uint32
 +---:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 | +--ro channel-wavelength? uint32

++--(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 +--ro channel-wavelength? uint32
 +--ro grid-type? identityref
 +--ro priority? uint8
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 +--:(cwdm)
 +--ro channel-wavelength? uint32
 +--ro grid-type? identityref
 +--ro priority? uint8
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
| +--ro channel-freq? decimal64
++--:(cwdm)
+--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 ++--:(cwdm)
 +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 ++--:(cwdm)
 +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 ++--:(cwdm)
 +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
 | +--ro channel-freq? decimal64
 ++--:(cwdm)
 +--ro channel-wavelength? uint32
 +--:(wson)
 +--ro (grid-type)?
 +--:(dwdm)
| +--ro channel-freq? decimal64
+--:(cwdm)
+--ro channel-wavelength? uint32
 +#+:(wson)
 ++--ro (grid-type)?
 ++--:(dwdm)
 | | ++--ro channel-freq? decimal64
 ++--:(cwdm)
 | ++--ro channel-wavelength? uint32
 ++--rw grid-type? identityref
 ++--rw priority? uint8
 +#+:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +#+:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +#+:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
 | ++--rw channel-wavelength? uint32
 +#+:(wson)
 ++--rw (grid-type)?
++--:(dwdm)
 | ++--rw channel-freq? decimal64
++--:(cwdm)
 ++--rw channel-wavelength? uint32

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-
point/tet:local-link-
connectivities/tet:optimizations/tet:algorithm/tet:metric/tet:optimization-
metric/tet:explicit-route-exclude-objects/tet:route-object-exclude-
object/tet:type/tet:label/tet:label-hop/tet:te-label/tet:technology:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
 ++--rw channel-wavelength? uint32

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-
point/tet:local-link-
connectivities/tet:optimizations/tet:algorithm/tet:metric/tet:optimization-
metric/tet:explicit-route-include-objects/tet:route-object-include-
object/tet:type/tet:label/tet:label-hop/tet:te-label/tet:technology:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
 ++--rw channel-wavelength? uint32

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-
point/tet:local-link-connectivities/tet:path-properties/tet:path-route-
objects/tet:path-route-object/tet:type/tet:label/tet:label-hop/tet:te-
label/tet:technology:
 ++--:(wson)
 ++--ro (grid-type)?
 ++--:(dwdm)
 | ++--ro channel-freq? decimal64
 ++--:(cwdm)
 ++--ro channel-wavelength? uint32

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-
point/tet:local-link-connectivities/tet:local-link-connectivity/tet:label-
restrictions/tet:label-restriction:
 ++--rw grid-type? identityref
 ++--rw priority? uint8

augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-
point/tet:local-link-connectivities/tet:local-link-connectivity/tet:label-
restrictions/tet:label-restriction/tet:label-start/tet:te-label/tet:technology:
 ++--:(wson)
 ++--rw (grid-type)?
 ++--:(dwdm)
 | ++--rw channel-freq? decimal64
 ++--:(cwdm)
+--rw channel-wavelength? uint32
 +--:(wson)
 +--rw (grid-type)?
 +--:(dwdm)
 +--rw channel-freq? decimal64
 +--:(cwdm)
 +--rw channel-wavelength? uint32
 +--:(wson)
 +--rw (grid-type)?
 +--:(dwdm)
 +--rw channel-freq? decimal64
 +--:(cwdm)
 +--rw channel-wavelength? uint32
 +--:(wson)
 +--rw (grid-type)?
 +--:(dwdm)
 +--rw channel-freq? decimal64
 +--:(cwdm)
 +--rw channel-wavelength? uint32
 +--:(wson)
 +--rw (grid-type)?
 +--:(dwdm)
 +--rw channel-freq? decimal64
 +--:(cwdm)
 +--rw channel-wavelength? uint32
 +--:(wson)
 +--rw (grid-type)?
 +--:(dwdm)
 +--rw channel-freq? decimal64
 +--:(cwdm)
 +--rw channel-wavelength? uint32
| +--rw channel-freq? decimal64
++--:(cwdm)
 +--rw channel-wavelength? uint32
 ++--:(wson)
 +--ro (grid-type)?
 ++--:(dwdm)
 | +--ro channel-freq? decimal64
 ++--:(cwdm)
 +--ro channel-wavelength? uint32
 ++--:(wson)
 +--rw (grid-type)?
 ++--:(dwdm)
 | +--rw channel-freq? decimal64
 ++--:(cwdm)
 +--rw channel-wavelength? uint32
 ++--:(wson)
 +--rw (grid-type)?
 ++--:(dwdm)
 | +--rw channel-freq? decimal64
 ++--:(cwdm)
 +--rw channel-wavelength? uint32
 ++--rw grid-type? identityref
 ++--rw priority? uint8
 ++--:(wson)
 +--rw (grid-type)?
 ++--:(dwdm)
 | +--rw channel-freq? decimal64
 ++--:(cwdm)
 +--rw channel-wavelength? uint32
 ++--:(wson)
 +--rw (grid-type)?
 ++--:(dwdm)
 | +--rw channel-freq? decimal64
++--:(cwdm)
 +++--rw channel-wavelength? uint32
 +++--ro grid-type? identityref
 +++--ro priority? uint8
 +++--:(wson)
 +++--ro (grid-type)?
 ++--:(dwdm)
 | +++--ro channel-freq? decimal64
 ++--:(cwdm)
 +++--rw channel-wavelength? uint32
 +++--:(wson)
 +++--ro (grid-type)?
 ++--:(dwdm)
 | +++--ro channel-freq? decimal64
 ++--:(cwdm)
 +++--ro channel-wavelength? uint32
 +++--:(wson)
 +++--rw (grid-type)?
 ++--:(dwdm)
 | +++--rw channel-freq? decimal64
 ++--:(cwdm)
 +++--rw channel-wavelength? uint32
 +++--:(wson)
 +++--rw (grid-type)?
 ++--:(dwdm)
 | +++--rw channel-freq? decimal64
 ++--:(cwdm)
 +++--rw channel-wavelength? uint32
 +++--rw grid-type? identityref
 +++--rw priority? uint8
3. IETF-WSON-Topology YANG Model

<CODE BEGINS> file "ietf-wson-topology@2018-08-22.yang"

module ietf-wson-topology {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-wson-topology";

 prefix "wson";

 import ietf-network {
 prefix "nw";
 }

 import ietf-network-topology {
 prefix "nt";
 }

 import ietf-te-topology {

 }

prefix "tet";
}

import ietf-te-wson-types {
 prefix "te-wson-types";
}

organization
 "IETF CCAMP Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>";

description
 "This module contains a collection of YANG definitions for
 RWA WSON.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

revision 2018-08-22 {
 description
 "version 13.";

 reference
 "RFC XXX: A Yang Data Model for WSON Optical Networks ";
}

grouping wson-node-attributes {
 description "WSON node attributes";
 container wson-node {
 description "WSON node attributes.";
 leaf node-type {
 type identityref {
 base te-wson-types:wson-node-type;
 }
 description "WSON node type.";
 }
 }
}

grouping wson-link-attributes {
description
"Future WSON link attributes extensions";
}

grouping wson-tp-attributes {
description "wson-tp-attributes";

list supported-payload-types {
 key "index";
description "Supported payload types of a TP. The payload type is defined as the generalized PIDs in GMPLS."
leaf index {
 type uint16;
description "payload type index";
}
leaf payload-type {
 type string;
description "the payload type supported by this client tp";
reference "http://www.iana.org/assignments/gmpls-sig-parameters/gmpls-sig-parameters.xhtml";
}
leaf client-facing {
 type boolean;
default 'false';
description "Indicating if it is a client-facing TP.";
}
}

grouping wson-ttp-attributes {
description "WSON tunnel termination point (e.g. transponder) attributes";

leaf-list supported-operational-modes {
 type te-wson-types:operational-mode;
description "List of all supported vendor-specific mode identifiers";
}
leaf configured-operational-modes {
 type te-wson-types:operational-mode;
description "Vendor-specific mode identifier configured on the TTP.";
}
leaf-list supported-fec-types {
 type identityref {
 base te-wson-types:fec-type;
 }
 description
 "List of all supported FEC types by this TTP."
}

leaf-list supported-termination-types {
 type identityref {
 base te-wson-types:term-type;
 }
 description
 "List of all supported termination types by this TTP."
}

leaf supports-bit-stuffing {
 type boolean;
 description
 "Indicate whether bit stuffing is supported by this TTP."
}

 description "wson-topology augmented";
 container wson-topology {
 presence "indicates a topology of WSON";
 description
 "Container to identify WSON topology type";
 }
}

 description "This augment is only valid for WSON.";
 }
 description "WSON Link augmentation."
 uses wson-link-attributes;
}
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te" {
 when "/nw:networks/nw:network/nw:network-types"
+="/tet:te-topology/wson:wson-topology" {
 description "This augment is only valid for WSON.";
 }
 description "WSON TP attributes.";
 uses wson-tp-attributes;
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes" {
 when "/nw:networks/nw:network/nw:network-types"
+="/tet:te-topology/wson:wson-topology" {
 description "This augment is only valid for WSON.";
 }
 description "WSON Node augmentation.";
 uses wson-node-attributes;
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:tunnel-termination-point" {
 when "/nw:networks/nw:network/nw:network-types"
+="/tet:te-topology/wson:wson-topology" {
 description "This augment is only valid for WSON.";
 }
 description "WSON tunnel termination point augmentation.";
 uses wson-ttp-attributes;
}

/*
 * Augment TE bandwidth
 */

/* Augment maximum LSP bandwidth of link terminationpoint (LTP) */
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te/"
+ "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
+ "tet:bandwidth/tet:technology" {
 when "/.\.\.\.\.\.\.nw:network-types/tet:te-topology/"
+ "wson:wson-topology" {
 description "Augment WSON TE bandwidth";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-path-bandwidth;
 }
}

/* Augment bandwidth path constraints of connectivity-matrices */
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "././././././nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE bandwidth"
}
description "WSON bandwidth.");
case wson {
 uses te-wson-types:wson-link-bandwidth;
}
}

/* Augment bandwidth path constraints of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "././././././nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE bandwidth"
}
description "WSON bandwidth.");
case wson {
 uses te-wson-types:wson-link-bandwidth;
}
}

/* Augment bandwidth path constraints of connectivity-matrices information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "././././././nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE bandwidth"
}
description "WSON bandwidth.");
case wson {
 uses te-wson-types:wson-link-bandwidth;
}
}

/* Augment bandwidth path constraints of connectivity-matrix information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
+ "tet:path-constraints/tet:te-bandwidth/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/"
 + "tet:client-layer-adaptation/tet:switching-capability/"
 + "tet:te-bandwidth/tet:technology" {
 description "Augment WSON TE bandwidth";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}

/* Augment client bandwidth of tunnel termination point (TTP) */
 + "tet:tunnel-termination-point/"
 + "tet:client-layer-adaptation/tet:switching-capability/"
 + "tet:te-bandwidth/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "wson:wson-topology" {
 description "Augment WSON TE bandwidth";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}

/* Augment bandwidth path constraints of local-link-connectivities */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/tet:path-constraints/"
 + "tet:te-bandwidth/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "wson:wson-topology" {
 description "Augment WSON TE bandwidth";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}

/* Augment bandwidth path constraints of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:local-link-connectivity/tet:path-constraints/"
 + "tet:te-bandwidth/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "wson:wson-topology" {

description "Augment WSON TE bandwidth";
)
description "WSON bandwidth.";
case wson {
 uses te-wson-types:wson-link-bandwidth;
}
}

/* Augment maximum LSP bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
when "/nw:networks/nw:network/nt:link/tet:te/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
}
description "WSON bandwidth.";
case wson {
 uses te-wson-types:wson-path-bandwidth;
}
}

/* Augment maximum bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
when "/nw:networks/nw:network/nt:link/tet:te/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
}
description "WSON bandwidth.";
case wson {
 uses te-wson-types:wson-link-bandwidth;
}
}

/* Augment maximum reservable bandwidth of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-resv-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
when "/nw:networks/nw:network/nt:link/tet:te/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
}
description "WSON bandwidth.";
case wson {
/* Augment unreserved bandwidth of TE Link */
 + "tet:te-link-attributes/"
 + "tet:unreserved-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
 }

/* Augment maximum LSP bandwidth of TE link information-source */
 + "tet:information-source-entry/"
 + "tet:interface-switching-capability/"
 + "tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-path-bandwidth;
 }
 }

/* Augment maximum bandwidth of TE link information-source */
 + "tet:information-source-entry/"
 + "tet:max-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
 }
/* Augment maximum reservable bandwidth of TE link information-source */
augment "nwd:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/"
 + "tet:max-resv-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "nwd:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
 }

/* Augment unreserved bandwidth of TE link information-source */
augment "nwd:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/"
 + "tet:unreserved-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "nwd:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
 }

/* Augment maximum LSP bandwidth of TE link template */
augment "nwd:tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:interface-switching-capability/"
 + "tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "nwd:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-path-bandwidth;
 }
 }

/* Augment maximum bandwidth of TE link template */
 + "tet:link-template/tet:te-link-attributes/
 + "tet:max-link-bandwidth/
 + "tet:te-bandwidth/tet:technology" {

 /*
 when "/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 */
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}

/* Augment maximum reservable bandwidth of TE link template */
 + "tet:link-template/tet:te-link-attributes/
 + "tet:max-resv-link-bandwidth/
 + "tet:te-bandwidth/tet:technology" {

 /*
 when "/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 */
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}

/* Augment unreserved bandwidth of TE link template */
 + "tet:link-template/tet:te-link-attributes/
 + "tet:unreserved-bandwidth/
 + "tet:te-bandwidth/tet:technology" {

 /*
 when "/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "WSON TE bandwidth.";
 }
 */
 description "WSON bandwidth.";
 case wson {
 uses te-wson-types:wson-link-bandwidth;
 }
}
Augment TE label.

Augment label restrictions of connectivity-matrices */

 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction"
when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology"
 { description "Augment WSON TE label";
 }
description "WSON label.";
uses te-wson-types:wson-label-restriction;

Augment label restrictions start of connectivity-matrices */

 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-start/
 + "tet:te-label/tet:technology"
when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology"
 { description "Augment WSON TE label";
 }
description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

Augment label restrictions end of connectivity-matrices */

 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/
 + "tet:label-restriction/tet:label-end/
 + "tet:te-label/tet:technology"
when "./././././.nw:network-types/tet:te-topology/
 + "wson:wson-topology"
 { description "Augment WSON TE label";
 }
description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
/* Augment label hop of underlay primary path of connectivity-matrices */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:underlay/tet:primary-path/tet:path-element/"
 + "tet:type/tet:label/tet:label-hop/"
 + "tet:te-label/tet:technology" {
when "/nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of underlay backup path of connectivity-matrices */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:underlay/tet:backup-path/tet:path-element/"
 + "tet:type/tet:label/tet:label-hop/"
 + "tet:te-label/tet:technology" {
when "/nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of route-exclude of connectivity-matrices */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:optimizations/tet:algorithm/tet:metric/"
 + "tet:optimization-metric/"
 + "tet:explicit-route-exclude-objects/"
 + "tet:route-object-exclude-object/"
 + "tet:type/tet:label/tet:label-hop/"
 + "tet:te-label/tet:technology" {
when "/nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }

description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}

/* Augment label hop of route-include of connectivity-matrices (added) */
augment "/(nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:optimizations/tet:algorithm/tet:metric/
 + "tet:optimization-metric/
 + "tet:explicit-route-include-objects/
 + "tet:route-object-include-object/
 + "tet:type/tet:label/tet:label-hop/
 + "tet:te-label/tet:technology"
when ".../.../.../.../.../.../.../.../.../..."/
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of path-route of connectivity-matrices */
augment "/(nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:path-properties/tet:path-route-objects/
 + "tet:path-route-object/tet:type/tet:label/tet:label-hop/
 + "tet:te-label/tet:technology"
when ".../.../.../.../.../.../.../.../.../..."/
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment ingress label restrictions of connectivity-matrix */
augment "/(nw:networks/nw:network/nw:node/tet:te/
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/tet:from/
 + "tet:label-restrictions/tet:label-restriction"
when "./././././././."
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }

 description "WSON label.";
 uses te-wson-types:wson-label-restriction;
}

/* Augment ingress label restrictions end of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:from/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-start/"
 + "tet:te-label/tet:technology" {
 when "./././././././././././././././././/"
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }

 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment egress label restrictions of connectivity-matrix */
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"

+ "tet:label-restrictions/tet:label-restriction" {
 when "../../../../../../../../...
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 uses te-wson-types:wson-label-restriction;
}

/* Augment egress label restrictions start of connectivity-matrix */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-start/"
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../...
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
 }

/* Augment egress label restrictions end of connectivity-matrix */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-end/"
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../...
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
 }

/* Augment label hop of underlay primary path of connectivity-matrix */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:underlay/tet:primary-path/tet:path-element/"
+ "tet:type/tet:label/tet:label-hop/"
+ "tet:te-label/tet:technology" {
 when ".././../.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of underlay backup path of connectivity-matrix */
augment "./nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/"
 + "tet:underlay/tet:backup-path/tet:path-element/"
 + "tet:type/tet:label/tet:label-hop/"
 + "tet:te-label/tet:technology" {
 when ".././../.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
 }

/* Augment label hop of route-exclude of connectivity-matrix */
augment "./nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:optimizations/"
 + "tet:algorithm/tet:metric/tet:optimization-metric/"
 + "tet:explicit-route-exclude-objects/"
 + "tet:route-object-exclude-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when ".././../.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
 }
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/tet:optimizations/
+ "tet:algorithm/tet:metric/tet:optimization-metric/
+ "tet:explicit-route-include-objects/
+ "tet:route-object-include-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "../../../../../nw:network-types/tet:te-topology/
+ wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
} }
*/

+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "../../../../../nw:network-types/tet:te-topology/
+ wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
} }
*/

+ "tet:information-source-entry/
+ "tet:connectivity-matrices/tet:label-restrictions/
+ "tet:label-restriction" {
when "../../../../../nw:network-types/tet:te-topology/
+ wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
 uses te-wson-types:wson-label-restriction;
}

/* Augment label restrictions start of connectivity-matrices information-source */
augment "*/
 when "*/
 description "Augment WSON TE label";
 uses te-wson-types:wson-link-label;
}

/* Augment label restrictions end of connectivity-matrices information-source */
augment "*/
 when "*/
 description "Augment WSON TE label";
 uses te-wson-types:wson-link-label;
}

/* Augment label hop of underlay primary path of connectivity-matrices information-source */
augment "*/
 when "*/
 description "Augment WSON TE label";
 uses te-wson-types:wson-link-label;
description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of underlay backup path of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "././././././././././."}
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of route-exclude of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:optimizations/tet:algorithm/tet:metric/
 + "tet:optimization-metric/
 + "tet:explicit-route-exclude-objects/
 + "tet:route-object-exclude-object/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "././././././././././."}
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of route-include of connectivity-matrices information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-include-objects/
+ "tet:route-object-include-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of path-route of connectivity-matrices information-source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment ingress label restrictions of connectivity-matrix information-source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/
+ "tet:from/tet:label-restrictions/tet:label-restriction" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
}
description "WSON label.";
uses te-wson-types:wson-label-restriction;
/* Augment ingress label restrictions start of connectivity-matrix information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix"
 + "tet:from/tet:label-restrictions/
 + "tet:label-restriction"
 + "tet:label-start/tet:te-label/tet:technology" { when "././././././././././././."
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" { description "Augment WSON TE label";
 case wson {
 uses te-wson-types:wson-link-label;
 }
 }
 }
}

/* Augment ingress label restrictions end of connectivity-matrix information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix"
 + "tet:from/tet:label-restrictions/
 + "tet:label-restriction"
 + "tet:label-end/tet:te-label/tet:technology" { when "././././././././././././."
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" { description "Augment WSON TE label";
 case wson {
 uses te-wson-types:wson-link-label;
 }
 }
 }
}

/* Augment egress label restrictions of connectivity-matrix information-source */
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix"
 + "tet:to/tet:label-restrictions/tet:label-restriction" { when "././././././././././././."
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" { description "Augment WSON TE label";
 }
 }
}
description "WSON label.";
uses te-wson-types:wson-label-restriction;
}

/* Augment egress label restrictions start of connectivity-matrix information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:to/tet:label-restrictions/tet:label-restriction/
 + "tet:label-start/tet:te-label/tet:technology" {
 when ".../.../.../.../.../.../.../"
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment egress label restrictions end of connectivity-matrix information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:to/tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/tet:te-label/tet:technology" {
 when ".../.../.../.../.../.../.../"
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment label hop of underlay primary path of connectivity-matrix information-source */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when ".../.../.../.../.../.../.../"
 + "nw:network-types/tet:te-topology/"
+ "wson:wson-topology" {
 description "Augment WSON TE label";
}
source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix"
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric"
+ "tet:explicit-route-inclusion-objects/"
+ "tet:route-object-inclusion-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of path-route of connectivity-matrix information-source */
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix"
+ "tet:path-properties/tet:path-route-objects/"
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label restrictions of local-link-connectivities */
+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:label-restrictions/tet:label-restrictions/"
 when "../../../../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
uses te-wson-types:wson-label-restriction;
}

/* Augment label restrictions start of local-link-connectivities */
augment "lw/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-start/
 + "tet:te-label/tet:technology"
when "lw/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-link-label;
}

/* Augment label restrictions end of local-link-connectivities */
augment "lw/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:label-restrictions/tet:label-restriction/
 + "tet:label-end/
 + "tet:te-label/tet:technology"
when "lw/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-link-label;
}

/* Augment label hop of underlay primary path of local-link-connectivities */
augment "lw/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
when "lw/nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of underlay backup path of local-link-connectivities */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "./././././././././././././." + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of route-exclude of local-link-connectivities */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/"
 + "tet:optimizations/tet:algorithm/tet:metric/"
 + "tet:optimization-metric/"
 + "tet:explicit-route-exclude-objects/"
 + "tet:route-object-exclude-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "./././././././././././././." + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}
}

/* Augment label hop of route-include of local-link-connectivities */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/"
+ "tet:optimizations/tet:algorithm/tet:metric/
+ "tet:optimization-metric/
+ "tet:explicit-route-include-objects/
+ "tet:route-object-include-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of path-route of local-link-connectivities */
augment "'/nw:networks/nw:network/nw:node/tet:te/
+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label restrictions of local-link-connectivity (LLC) */
augment "'/nw:networks/nw:network/nw:node/tet:te/
+ "tet:tunnel-termination-point/
+ "tet:local-link-connectivities/
+ "tet:label-restrictions/tet:label-restriction" {
 when "../../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 uses te-wson-types:wson-label-restriction;
}

/* Augment label restrictions start of local-link-connectivity (LLC) */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-start/tet:te-label/tet:technology" { when "./.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" { description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment label restrictions end of local-link-connectivity (LLC) */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-end/tet:te-label/tet:technology" { when "./.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" { description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment label hop of underlay primary path of local-link-connectivity (LLC) */
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/"
 + "tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "./.
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" { description "Augment WSON TE label";
 }
 description "WSON label.";
case wson {
 uses te-wson-types:wson-path-label;
}

/* Augment label hop of underlay backup path of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
}

/* Augment label hop of route-exclude of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:optimizations/tet:algorithm/tet:metric/
 + "tet:optimization-metric/
 + "tet:explicit-route-exclude-objects/
 + "tet:route-object-exclude-object/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "/nw:networks/nw:network/nw:node/tet:te/
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:optimizations/tet:algorithm/tet:metric/
 + "tet:optimization-metric/
 + "tet:explicit-route-exclude-objects/
 + "tet:route-object-exclude-object/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
}

/* Augment label hop of route-include of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/"
/* Augment label hop of path-route of local-link-connectivity (LLC) */
 + "tet:tunnel-termination-point/
 + "tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "tet:path-properties/tet:path-route-objects/
 + "tet:path-route-object/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../.../.../.../.../.../.../.../.../
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of underlay primary path of TE link */
 + "tet:te-link-attributes/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../.../.../.../.../.../.../.../.../
 + "nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}
/* Augment label hop of underlay backup path of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label restrictions of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction" {
when "../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 uses te-wson-types:wson-label-restriction;
 case wson {
 uses te-wson-types:wson-label-restriction;
 }
}

/* Augment label restrictions start of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction/"
 + "tet:label-start/tet:te-label/tet:technology" {
when "../../../../../nw:network-types/tet:te-topology/
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 case wson {
 uses te-wson-types:wson-link-label;
 }
}

/* Augment label restrictions end of TE link */
augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
+ "tet:label-restrictions/tet:label-restriction/
+ "tet:label-end/tet:te-label/tet:technology" {
when "../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-link-label;
}
}

/* Augment label restrictions of TE link information-source */
+ "tet:information-source-entry/"
+ "tet:label-restrictions/tet:label-restriction" {
when "../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
uses te-wson-types:wson-label-restriction;
}

/* Augment label restrictions start of TE link information-source */
+ "tet:information-source-entry/"
+ "tet:label-restrictions/tet:label-restriction/
+ "tet:label-start/tet:te-label/tet:technology" {
when "../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-link-label;
}
}

/* Augment label restrictions end of TE link information-source */
+ "tet:information-source-entry/"
+ "tet:label-restrictions/tet:label-restriction/
+ "tet:label-end/tet:te-label/tet:technology" {
when "../../../nw:network-types/tet:te-topology/
+ "wson:wson-topology" {
 description "Augment WSON TE label";
}
description "WSON label.";
case wson {
 uses te-wson-types:wson-link-label;
}

/* Augment label hop of underlay primary path of TE link template */
augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
/*
 when "../../../../../"
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
*/
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label hop of underlay backup path of TE link template */
augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
/*
 when "../../../../../"
 + "nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
*/
 description "WSON label.";
 case wson {
 uses te-wson-types:wson-path-label;
 }
}

/* Augment label restrictions of TE link template */
augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:label-restrictions/tet:label-restriction" {
/*
 when "../../../../../nw:network-types/tet:te-topology/"
 + "wson:wson-topology" {
 description "Augment WSON TE label";
 }
*/
4. IETF-TE-WSON-Types YANG Model

<CODE BEGINS> file "ietf-te-wson-types@2018-08-15.yang"
module ietf-te-wson-types {

prefix "te-wson-types";

organization
 "IETF CCAMP Working Group";
contact
 "WG Web: <http://tools.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>
 Editor: Aihua Guo
 <mailto:aihuaguo@huawei.com>
 Editor: Young Lee
 <mailto:leeyoung@huawei.com>";
description
 "This module defines WSON types."
revision "2018-08-15" {
description
 "Revision 3";
 reference "TBD";
}
typedef operational-mode {
 type string;
description
 "Vendor-specific mode that guarantees interoperability.
 It must be an string with the following format:
 B-DScW-ytz(v) where all these attributes are conformant
 to the ITU-T recomendation."
 reference "ITU-T G.698.2 (11/2009) Section 5.3";
}
identity wson-node-type {
 description
 "WSON node type.";
 reference
 "RFC6163";
}

identity wson-node-foadm {
 base wson-node-type;
 description
 "Fixed OADM node.";
}
identity wson-node-roadm {
 base wson-node-type;
 description
 "ROADM or OXC node.";
}

identity wson-node-ila {
 base wson-node-type;
 description
 "ILA (In-Line Amplifier) node.";
}

identity wavelength-assignment {
 description
 "Wavelength selection base";
}

identity unspecified-wavelength-assignment {
 base wavelength-assignment;
 description
 "No method specified";
}

identity first-fit-wavelength-assignment {
 base wavelength-assignment;
 description
 "All the available wavelengths are numbered,
 and this WA method chooses the available wavelength
 with the lowest index.";
}

identity random-wavelength-assignment {
 base wavelength-assignment;
 description
 "This WA method chooses an available
 wavelength randomly.";
}

identity least-loaded-wavelength-assignment {
 base wavelength-assignment;
 description
 "This WA method selects the wavelength that
 has the largest residual capacity on the most loaded
 link along the route (in multi-fiber networks).";
identity wson-grid-type {
 description
 "WSON grid type."
}

identity wson-grid-dwdm {
 base wson-grid-type;
 description
 "DWDM grid."
}

identity wson-grid-cwdm {
 base wson-grid-type;
 description
 "CWDM grid."
}

identity wson-bandwidth-type {
 description
 "Bandwidth type carried by a single wavelength channel."
}

identity wson-bw-otu1 {
 base wson-bandwidth-type;
 description
 "OTU1 (2.66G)"
}

identity wson-bw-otule {
 base wson-bandwidth-type;
 description
 "OTUle(11.04G)"
}

identity wson-bw-otulf {
 base wson-bandwidth-type;
 description
 "OTUlf(11.27G)"
}

identity wson-bw-otu2 {
 base wson-bandwidth-type;
 description
 "OTU2 (6.31G)"
}
"OTU2 (10.70G)";
}

identity wson-bw-otu2e {
 base wson-bandwidth-type;
 description
 "OTU2e (11.09G)";
}

identity wson-bw-otu2f {
 base wson-bandwidth-type;
 description
 "OTU2f (11.31G)";
}

identity wson-bw-otu3 {
 base wson-bandwidth-type;
 description
 "OTU3 (43.01G)";
}

identity wson-bw-otu3e1 {
 base wson-bandwidth-type;
 description
 "OTU3e1 (44.57G)";
}

identity wson-bw-otu3e2 {
 base wson-bandwidth-type;
 description
 "OTU3e2 (44.58G)";
}

identity wson-bw-otu4 {
 base wson-bandwidth-type;
 description
 "OTU4 (111.80G)";
}

identity wson-bw-otucn {
 base wson-bandwidth-type;
 description
 "OTUCn (beyond 100G)";
}
identity dwdm-ch-spctype {
 description
 "DWDM channel spacing type.";
}

identity dwdm-100ghz {
 base dwdm-ch-spctype;
 description
 "100GHz channel spacing";
}

identity dwdm-50ghz {
 base dwdm-ch-spctype;
 description
 "50GHz channel spacing";
}

identity dwdm-25ghz {
 base dwdm-ch-spctype;
 description
 "25GHz channel spacing";
}

identity dwdm-12p5ghz {
 base dwdm-ch-spctype;
 description
 "12.5GHz channel spacing";
}

identity cwdm-ch-spctype {
 description
 "CWDM channel spacing type.";
}

identity cwdm-20nm {
 base cwdm-ch-spctype;
 description
 "20nm channel spacing";
}

identity fec-type {
 description
 "FEC type.";
}
identity g-fec {
 base fec-type;
 description
 "G-FEC."
}

identity e-fec {
 base fec-type;
 description
 "E-FEC."
}

identity no-fec {
 base fec-type;
 description
 "No FEC."
}

identity term-type {
 description
 "Termination type."
}

identity term-phys {
 base term-type;
 description
 "PHYS."
}

identity term-otu {
 base term-type;
 description
 "OTU."
}

identity term-odu {
 base term-type;
 description
 "ODU."
}

identity term-opu {
 base term-type;
 description
 "OPU."
}

identity term-section {
 base term-type;
 description
 "Section."

grouping wson-path-bandwidth {
 description "WSON path bandwidth attributes";
 leaf bandwidth-type {
 type identityref {
 base wson-bandwidth-type;
 }
 description "WSON bandwidth type";
 }
}

grouping wson-link-bandwidth {
 description "WSON link bandwidth attributes";
 leaf-list supported-bandwidth-list {
 type identityref {
 base wson-bandwidth-type;
 }
 description "WSON bandwidth type";
 }
}

grouping wson-label {
 description "Generic label for WSON links and paths";
 choice grid-type {
 description "Label for DWDM or CWDM grid";
 case dwdm {
 leaf channel-freq {
 type decimal64 {
 fraction-digits 5;
 }
 units THz;
 description "The DWDM frequency in THz, e.g. 193.12500";
 reference "RFC6205";
 }
 }
 case cwdm {
 leaf channel-wavelength {
 type uint32;
 units nm;
 }
 }
 }
}
grouping wson-link-label {
 description
 "Link label information for WSON links, for label-start/end";
 uses te-wson-types:wson-label;
}

grouping wson-path-label {
 description
 "Path label information for WSON links, for label-hop";
 uses te-wson-types:wson-label;
}

grouping wson-label-restriction {
 description
 "WSON label restriction.";
 leaf grid-type {
 type identityref {
 base te-wson-types:wson-grid-type;
 }
 description "Grid type";
 }
 leaf priority {
 type uint8;
 description "priority.";
 }
}

grouping wson-label-step {
 description "Label step information for WSON";
 choice wson-grid-type {
 description
 "WSON grid-type: DWDM, CWDM, etc.";
 case dwdm {
 leaf wson-dwdm {
 type identityref {
 "The CWDM wavelength in nanometer, e.g. 1511";
 reference
 "RFC6205";
 }
 }
 }
 }
 leaf grid-type {
 type identityref {
 base te-wson-types:wson-grid-type;
 }
 description "Grid type";
 }
 leaf priority {
 type uint8;
 description "priority.";
 }
}

5. Security Considerations

The configuration, state, and action data defined in this document are designed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF protocol operations and content.

A number of configuration data nodes defined in this document are writable/deletable (i.e., "config true") These data nodes may be considered sensitive or vulnerable in some network environments.
6. IANA Considerations

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

--
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--

This document registers the following YANG modules in the YANG Module Names registry [RFC7950]:

--
name: ietf-wson-topology
reference: RFC XXXX (TDB)
--
name: ietf-te-wson-types
reference: RFC XXXX (TDB)
--

7. Acknowledgments

This document was prepared using 2-Word-v2.0.template.dot.
8. References

8.1. Normative References

8.2. Informative References

9. Contributors

Authors’ Addresses

Young Lee (ed.)
Huawei Technologies
5340 Legacy Drive, Building 3
Plano, TX 75023
USA

Phone: (469) 277-5838
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies India Pvt. Ltd,
Near EPIP Industrial Area, Kundalahalli Village, Whitefield,
Bangalore - 560 037 [H1-2A-245]
Email: dhruv.dhody@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Aihua Guo
Huawei Technologies
Email: aihuaguo@huawei.com

Victor Lopez
Telefonica
Email: victor.lopezalvarez@telefonica.com

Daniel King
University of Lancaster
Email: d.king@lancaster.ac.uk

Bin Yeong Yoon
ETRI
218 Gaijeongro, Yuseong-gu
Daejeon, Korea
Email: byyun@etri.re.kr

Ricard Vilalta
CTTC
Email: ricard.vilalta@cttc.es
Abstract

Traffic Engineered networks have a variety of mechanisms to facilitate the separation of the data plane and control plane. They also have a range of management and provisioning protocols to configure and activate network resources. These mechanisms represent key technologies for enabling flexible and dynamic networking. The term "Traffic Engineered network" refers to a network that uses any connection-oriented technology under the control of a distributed or centralized control plane to support dynamic provisioning of end-to-end connectivity.

Abstraction of network resources is a technique that can be applied to a single network domain or across multiple domains to create a single virtualized network that is under the control of a network operator or the customer of the operator that actually owns the network resources.

This document provides a framework for Abstraction and Control of Traffic Engineered Networks (ACTN) to support virtual network services and connectivity services.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

2. Overview
 2.1. Terminology
 2.2. VNS Model of ACTN
 2.2.1. Customers
 2.2.2. Service Providers
 2.2.3. Network Operators

3. ACTN Base Architecture
 3.1. Customer Network Controller
 3.2. Multi-Domain Service Coordinator
 3.3. Provisioning Network Controller
 3.4. ACTN Interfaces

4. Advanced ACTN Architectures
 4.1. MDSC Hierarchy
 4.2. Functional Split of MDSC Functions in Orchestrators

5. Topology Abstraction Methods
 5.1. Abstraction Factors
 5.2. Abstraction Types
 5.2.1. Native/White Topology
 5.2.2. Black Topology
 5.2.3. Grey Topology
 5.3. Methods of Building Grey Topologies
The term "Traffic Engineered network" refers to a network that uses any connection-oriented technology under the control of a distributed or centralized control plane to support dynamic provisioning of end-to-end connectivity. Traffic Engineered (TE) networks have a variety of mechanisms to facilitate the separation of data plane and control plane including distributed signaling for path setup and protection, centralized path computation for planning and traffic engineering, and a range of management and provisioning protocols to configure and activate network resources. These mechanisms represent key technologies for enabling flexible and dynamic networking. Some examples of networks that are in scope of this definition are optical networks, Multiprotocol Label Switching (MPLS) Transport Profile (MPLS-TP) networks [RFC5654], and MPLS-TE networks [RFC2702].

One of the main drivers for Software Defined Networking (SDN) [RFC7149] is a decoupling of the network control plane from the data
plane. This separation has been achieved for TE networks with the development of MPLS/GMPLS [RFC3945] and the Path Computation Element (PCE) [RFC4655]. One of the advantages of SDN is its logically centralized control regime that allows a global view of the underlying networks. Centralized control in SDN helps improve network resource utilization compared with distributed network control. For TE-based networks, a PCE may serve as a logically centralized path computation function.

This document describes a set of management and control functions used to operate one or more TE networks to construct virtual networks that can be presented to customers and that are built from abstractions of the underlying TE networks. For example, a link in the customer’s network is constructed from a path or collection of paths in the underlying networks. We call this set of functions "Abstraction and Control of Traffic Engineered Networks" (ACTN).

2. Overview

Three key aspects that need to be solved by SDN are:

. Separation of service requests from service delivery so that the configuration and operation of a network is transparent from the point of view of the customer, but remains responsive to the customer’s services and business needs.

. Network abstraction: As described in [RFC7926], abstraction is the process of applying policy to a set of information about a TE network to produce selective information that represents the potential ability to connect across the network. The process of abstraction presents the connectivity graph in a way that is independent of the underlying network technologies, capabilities, and topology so that the graph can be used to plan and deliver network services in a uniform way.

. Coordination of resources across multiple independent networks and multiple technology layers to provide end-to-end services regardless of whether the networks use SDN or not.

As networks evolve, the need to provide support for distinct services, separated service orchestration, and resource abstraction have emerged as key requirements for operators. In order to support multiple customers each with its own view of and control of the server network, a network operator needs to partition (or "slice") or manage sharing of the network resources. Network slices can be assigned to each customer for guaranteed usage which is a step further than shared use of common network resources.
Furthermore, each network represented to a customer can be built from virtualization of the underlying networks so that, for example, a link in the customer’s network is constructed from a path or collection of paths in the underlying network.

ACTN can facilitate virtual network operation via the creation of a single virtualized network or a seamless service. This supports operators in viewing and controlling different domains (at any dimension: applied technology, administrative zones, or vendor-specific technology islands) and presenting virtualized networks to their customers.

The ACTN framework described in this document facilitates:

- Abstraction of the underlying network resources to higher-layer applications and customers [RFC7926].
- Virtualization of particular underlying resources, whose selection criterion is the allocation of those resources to a particular customer, application, or service [ONF-ARCH].
- TE Network slicing of infrastructure to meet specific customers’ service requirements.
- Creation of an abstract environment allowing operators to view and control multi-domain networks as a single abstract network.
- The presentation to customers of networks as a virtual network via open and programmable interfaces.

2.1. Terminology

The following terms are used in this document. Some of them are newly defined, some others reference existing definitions:

- Domain: A domain [RFC4655] is any collection of network elements within a common sphere of address management or path computation responsibility. Specifically within this document we mean a part of an operator’s network that is under common management (i.e., under shared operational management using the same instances of a tool and the same policies). Network elements will often be grouped into domains based on technology types, vendor profiles, and geographic proximity.
- Abstraction: This process is defined in [RFC7926].
. TE Network Slicing: In the context of ACTN, a TE network slice is a collection of resources that is used to establish a logically dedicated virtual network over one or more TE networks. TE network slicing allows a network operator to provide dedicated virtual networks for applications/customers over a common network infrastructure. The logically dedicated resources are a part of the larger common network infrastructures that are shared among various TE network slice instances which are the end-to-end realization of TE network slicing, consisting of the combination of physically or logically dedicated resources.

. Node: A node is a vertex on the graph representation of a TE topology. In a physical network topology, a node corresponds to a physical network element (NE) such as a router. In an abstract network topology, a node (sometimes called an abstract node) is a representation as a single vertex of one or more physical NEs and their connecting physical connections. The concept of a node represents the ability to connect from any access to the node (a link end) to any other access to that node, although "limited cross-connect capabilities" may also be defined to restrict this functionality. Network abstraction may be applied recursively, so a node in one topology may be created by applying abstraction to the nodes in the underlying topology.

. Link: A link is an edge on the graph representation of a TE topology. Two nodes connected by a link are said to be "adjacent" in the TE topology. In a physical network topology, a link corresponds to a physical connection. In an abstract network topology, a link (sometimes called an abstract link) is a representation of the potential to connect a pair of points with certain TE parameters (see [RFC7926] for details). Network abstraction may be applied recursively, so a link in one topology may be created by applying abstraction to the links in the underlying topology.

. Abstract Topology: The topology of abstract nodes and abstract links presented through the process of abstraction by a lower layer network for use by a higher layer network.

. A Virtual Network (VN) is a network provided by a service provider to a customer for the customer to use in any way it wants as though it was a physical network. There are two views of a VN as follows:
a) The VN can be abstracted as a set of edge-to-edge links (a Type 1 VN). Each link is referred as a VN member and is formed as an end-to-end tunnel across the underlying networks. Such tunnels may be constructed by recursive slicing or abstraction of paths in the underlying networks and can encompass edge points of the customer’s network, access links, intra-domain paths, and inter-domain links.

b) The VN can also be abstracted as a topology of virtual nodes and virtual links (a Type 2 VN). The operator needs to map the VN to actual resource assignment, which is known as virtual network embedding. The nodes in this case include physical end points, border nodes, and internal nodes as well as abstracted nodes. Similarly the links include physical access links, inter-domain links, and intra-domain links as well as abstract links.

Clearly a Type 1 VN is a special case of a Type 2 VN.

. Access link: A link between a customer node and a operator node.

. Inter-domain link: A link between domains under distinct management administration.

. Access Point (AP): An AP is a logical identifier shared between the customer and the operator used to identify an access link. The AP is used by the customer when requesting a VNS. Note that the term "TE Link Termination Point" (LTP) defined in [TE-Topo] describes the end points of links, while an AP is a common identifier for the link itself.

. VN Access Point (VNAP): A VNAP is the binding between an AP and a given VN.

. Server Network: As defined in [RFC7926], a server network is a network that provides connectivity for another network (the Client Network) in a client-server relationship.

2.2. VNS Model of ACTN

A Virtual Network Service (VNS) is the service agreement between a customer and operator to provide a VN. When a VN is a simple connectivity between two points, the difference between VNS and connectivity service becomes blurred. There are three types of VNS defined in this document.
Type 1 VNS refers to a VNS in which the customer is allowed to create and operate a Type 1 VN.

Type 2a and 2b VNS refer to VNSs in which the customer is allowed to create and operate a Type 2 VN. With a Type 2a VNS, the VN is statically created at service configuration time and the customer is not allowed to change the topology (e.g., by adding or deleting abstract nodes and links). A Type 2b VNS is the same as a Type 2a VNS except that the customer is allowed to make dynamic changes to the initial topology created at service configuration time.

VN Operations are functions that a customer can exercise on a VN depending on the agreement between the customer and the operator.

- VN Creation allows a customer to request the instantiation of a VN. This could be through off-line pre-configuration or through dynamic requests specifying attributes to a Service Level Agreement (SLA) to satisfy the customer’s objectives.

- Dynamic Operations allow a customer to modify or delete the VN. The customer can further act upon the virtual network to create/modify/delete virtual links and nodes. These changes will result in subsequent tunnel management in the operator’s networks.

There are three key entities in the ACTN VNS model:

- Customers
- Service Providers
- Network Operators

These entities are related in a three tier model as shown in Figure 1.

Ceccarelli, Lee, et al. Expires November 2018
The commercial roles of these entities are described in the following sections.

2.2.1. Customers

Basic customers include fixed residential users, mobile users, and small enterprises. Each requires a small amount of resources and is characterized by steady requests (relatively time invariant). Basic customers do not modify their services themselves: if a service change is needed, it is performed by the provider as a proxy.

Advanced customers include enterprises and governments. Such customers ask for both point-to-point and multipoint connectivity with high resource demands varying significantly in time. This is one of the reasons why a bundled service offering is not enough and it is desirable to provide each advanced customer with a customized virtual network service. Advanced customers may also have the ability to modify their service parameters within the scope of their virtualized environments. The primary focus of ACTN is Advanced Customers.

As customers are geographically spread over multiple network operator domains, they have to interface to multiple operators and may have to support multiple virtual network services with different underlying objectives set by the network operators. To enable these
customers to support flexible and dynamic applications they need to control their allocated virtual network resources in a dynamic fashion, and that means that they need a view of the topology that spans all of the network operators. Customers of a given service provider can in turn offer a service to other customers in a recursive way.

2.2.2. Service Providers

In the scope of ACTN, service providers deliver VNSs to their customers. Service providers may or may not own physical network resources (i.e., may or may not be network operators as described in Section 2.2.3). When a service provider is the same as the network operator, this is similar to existing VPN models applied to a single operator although it may be hard to use this approach when the customer spans multiple independent network operator domains.

When network operators supply only infrastructure, while distinct service providers interface to the customers, the service providers are themselves customers of the network infrastructure operators. One service provider may need to keep multiple independent network operators because its end-users span geographically across multiple network operator domains. In some cases, service provider is also a network operator when it owns network infrastructure on which service is provided.

2.2.3. Network Operators

Network operators are the infrastructure operators that provision the network resources and provide network resources to their customers. The layered model described in this architecture separates the concerns of network operators and customers, with service providers acting as aggregators of customer requests.

3. ACTN Base Architecture

This section provides a high-level model of ACTN showing the interfaces and the flow of control between components.

The ACTN architecture is based on a 3-tier reference model and allows for hierarchy and recursion. The main functionalities within an ACTN system are:

- Multi-domain coordination: This function oversees the specific aspects of different domains and builds a single abstracted end-to-end network topology in order to coordinate end-to-end path computation and path/service provisioning. Domain
sequence path calculation/determination is also a part of this function.

- Abstraction: This function provides an abstracted view of the underlying network resources for use by the customer – a customer may be the client or a higher level controller entity. This function includes network path computation based on customer service connectivity request constraints, path computation based on the global network-wide abstracted topology, and the creation of an abstracted view of network resources allocated to each customer. These operations depend on customer-specific network objective functions and customer traffic profiles.

- Customer mapping/translation: This function is to map customer requests/commands into network provisioning requests that can be sent from the Multi-Domain Service Coordinator (MDSC) to the Provisioning Network Controller (PNC) according to business policies provisioned statically or dynamically at the Operations Support System (OSS)/Network Management System (NMS). Specifically, it provides mapping and translation of a customer’s service request into a set of parameters that are specific to a network type and technology such that network configuration process is made possible.

- Virtual service coordination: This function translates customer service-related information into virtual network service operations in order to seamlessly operate virtual networks while meeting a customer’s service requirements. In the context of ACTN, service/virtual service coordination includes a number of service orchestration functions such as multi-destination load balancing, guarantees of service quality, bandwidth and throughput. It also includes notifications for service fault and performance degradation and so forth.

The base ACTN architecture defines three controller types and the corresponding interfaces between these controllers. The following types of controller are shown in Figure 2:

- CNC - Customer Network Controller
- MDSC - Multi-Domain Service Coordinator
- PNC - Provisioning Network Controller

Figure 2 also shows the following interfaces:

- CMI - CNC-MDSC Interface
- MPI - MDSC-PNC Interface
3.1. Customer Network Controller

A Customer Network Controller (CNC) is responsible for communicating a customer’s VNS requirements to the network operator over the CNC-MDSC Interface (CMI). It has knowledge of the end-points associated
with the VNS (expressed as APs), the service policy, and other QoS information related to the service.

As the Customer Network Controller directly interfaces to the applications, it understands multiple application requirements and their service needs. The capability of a CNC beyond its CMI role is outside the scope of ACTN and may be implemented in different ways. For example, the CNC may in fact be a controller or part of a controller in the customer’s domain, or the CNC functionality could also be implemented as part of a service provider’s portal.

3.2. Multi-Domain Service Coordinator

A Multi-Domain Service Coordinator (MDSC) is a functional block that implements all of the ACTN functions listed in Section 3 and described further in Section 4.2. Two functions of the MDSC, namely, multi-domain coordination and virtualization/abstraction are referred to as network-related functions while the other two functions, namely, customer mapping/translation and virtual service coordination are referred to as service-related functions. The MDSC sits at the center of the ACTN model between the CNC that issues connectivity requests and the Provisioning Network Controllers (PNCs) that manage the network resources. The key point of the MDSC (and of the whole ACTN framework) is detaching the network and service control from underlying technology to help the customer express the network as desired by business needs. The MDSC envelopes the instantiation of the right technology and network control to meet business criteria. In essence it controls and manages the primitives to achieve functionalities as desired by the CNC.

In order to allow for multi-domain coordination a 1:N relationship must be allowed between MDSCs and PNCs.

In addition to that, it could also be possible to have an M:1 relationship between MDSCs and PNC to allow for network resource partitioning/sharing among different customers not necessarily connected to the same MDSC (e.g., different service providers) but all using the resources of a common network infrastructure operator.

3.3. Provisioning Network Controller

The Provisioning Network Controller (PNC) oversees configuring the network elements, monitoring the topology (physical or virtual) of
the network, and collecting information about the topology (either raw or abstracted).

The PNC functions can be implemented as part of an SDN domain controller, a Network Management System (NMS), an Element Management System (EMS), an active PCE-based controller [Centralized] or any other means to dynamically control a set of nodes and implementing a north bound interface from the standpoint of the nodes (which is out of the scope of this document). A PNC domain includes all the resources under the control of a single PNC. It can be composed of different routing domains and administrative domains, and the resources may come from different layers. The interconnection between PNC domains is illustrated in Figure 3.

3.4. ACTN Interfaces

Direct customer control of transport network elements and virtualized services is not a viable proposition for network operators due to security and policy concerns. Therefore, the network has to provide open, programmable interfaces, through which customer applications can create, replace and modify virtual network resources and services in an interactive, flexible and dynamic fashion.

Three interfaces exist in the ACTN architecture as shown in Figure 2.

- CMI: The CNC-MDSC Interface (CMI) is an interface between a CNC and an MDSC. The CMI is a business boundary between customer and network operator. It is used to request a VNS for an application. All service-related information is conveyed over this interface (such as the VNS type, topology, bandwidth, and
Most of the information over this interface is agnostic of the technology used by network operators, but there are some cases (e.g., access link configuration) where it is necessary to specify technology-specific details.

MPI: The MDSC-PNC Interface (MPI) is an interface between an MDSC and a PNC. It communicates requests for new connectivity or for bandwidth changes in the physical network. In multi-domain environments, the MDSC needs to communicate with multiple PNCs each responsible for control of a domain. The MPI presents an abstracted topology to the MDSC hiding technology specific aspects of the network and hiding topology according to policy.

SBI: The Southbound Interface (SBI) is out of scope of ACTN. Many different SBIs have been defined for different environments, technologies, standards organizations, and vendors. It is shown in Figure 3 for reference reason only.

4. Advanced ACTN Architectures

This section describes advanced configurations of the ACTN architecture.

4.1. MDSC Hierarchy

A hierarchy of MDSCs can be foreseen for many reasons, among which are scalability, administrative choices, or putting together different layers and technologies in the network. In the case where there is a hierarchy of MDSCs, we introduce the terms higher-level MDSC (MDSC-H) and lower-level MDSC (MDSC-L). The interface between them is a recursion of the MPI. An implementation of an MDSC-H makes provisioning requests as normal using the MPI, but an MDSC-L must be able to receive requests as normal at the CMI and also at the MPI. The hierarchy of MDSCs can be seen in Figure 4.

Another implementation choice could foresee the usage of an MDSC-L for all the PNCs related to a given technology (e.g., Internet Protocol (IP)/Multiprotocol Label Switching (MPLS)) and a different MDSC-L for the PNCs related to another technology (e.g., Optical Transport Network (OTN)/Wavelength Division Multiplexing (WDM)) and an MDSC-H to coordinate them.
The hierarchy of MDSC can be recursive, where an MDSC-H is in turn an MDSC-L to a higher level MDSC-H.

4.2. Functional Split of MDSC Functions in Orchestrators

An implementation choice could separate the MDSC functions into two groups, one group for service-related functions and the other for network-related functions. This enables the implementation of a service orchestrator that provides the service-related functions of the MDSC and a network orchestrator that provides the network-related functions of the MDSC. This split is consistent with the Yet Another Next Generation (YANG) service model architecture described in [Service-YANG]. Figure 5 depicts this and shows how the ACTN interfaces may map to YANG models.
5. Topology Abstraction Methods

Topology abstraction is described in [RFC7926]. This section discusses topology abstraction factors, types, and their context in the ACTN architecture.

Abstraction in ACTN is performed by the PNC when presenting available topology to the MDSC, or by an MDSC-L when presenting topology to an MDSC-H. This function is different to the creation of a VN (and particularly a Type 2 VN) which is not abstraction but construction of virtual resources.

5.1. Abstraction Factors

As discussed in [RFC7926], abstraction is tied with policy of the networks. For instance, per an operational policy, the PNC would not provide any technology specific details (e.g., optical parameters for Wavelength Switched Optical Network (WSON) in the abstract topology it provides to the MDSC. Similarly, policy of the...
networks may determine the abstraction type as described in Section 5.2.

There are many factors that may impact the choice of abstraction:

- Abstraction depends on the nature of the underlying domain networks. For instance, packet networks may be abstracted with fine granularity while abstraction of optical networks depends on the switching units (such as wavelengths) and the end-to-end continuity and cross-connect limitations within the network.

- Abstraction also depends on the capability of the PNCs. As abstraction requires hiding details of the underlying network resources, the PNC’s capability to run algorithms impacts the feasibility of abstraction. Some PNC may not have the ability to abstract native topology while other PNCs may have the ability to use sophisticated algorithms.

- Abstraction is a tool that can improve scalability. Where the native network resource information is of large size there is a specific scaling benefit to abstraction.

- The proper abstraction level may depend on the frequency of topology updates and vice versa.

- The nature of the MDSC’s support for technology-specific parameters impacts the degree/level of abstraction. If the MDSC is not capable of handling such parameters then a higher level of abstraction is needed.

- In some cases, the PNC is required to hide key internal topological data from the MDSC. Such confidentiality can be achieved through abstraction.

5.2. Abstraction Types

This section defines the following three types of topology abstraction:

- Native/White Topology (Section 5.2.1)
- Black Topology (Section 5.2.2)
- Grey Topology (Section 5.2.3)

5.2.1. Native/White Topology

This is a case where the PNC provides the actual network topology to the MDSC without any hiding or filtering of information, i.e., no
abstraction is performed. In this case, the MDSC has the full knowledge of the underlying network topology and can operate on it directly.

5.2.2. Black Topology

A black topology replaces a full network with a minimal representation of the edge-to-edge topology without disclosing any node internal connectivity information. The entire domain network may be abstracted as a single abstract node with the network’s access/egress links appearing as the ports to the abstract node and the implication that any port can be ‘cross-connected’ to any other. Figure 6 depicts a native topology with the corresponding black topology with one virtual node and inter-domain links. In this case, the MDSC has to make a provisioning request to the PNCs to establish the port-to-port connection. If there is a large number of inter-connected domains, this abstraction method may impose a heavy coordination load at the MDSC level in order to find an optimal end-to-end path since the abstraction hides so much information that it is not possible to determine whether an end-to-end path is feasible without asking each PNC to set up each path fragment. For this reason, the MPI might need to be enhanced to allow the PNCs to be queried for the practicality and characteristics of paths across the abstract node.

```
+----------+
| Abstract |
| Node     |
+----------+
```
5.2.3. Grey Topology

A grey topology represents a compromise between black and white topologies from a granularity point of view. In this case, the PNC exposes an abstract topology containing all PNC domains border nodes and an abstraction of the connectivity between those border nodes. This abstraction may contain either physical or abstract nodes/links.

Two types of grey topology are identified:
- In a type A grey topology, border nodes are connected by a full mesh of TE links (see Figure 7).
- In a type B grey topology, border nodes are connected over a more detailed network comprising internal abstract nodes and abstracted links. This mode of abstraction supplies the MDSC with more information about the internals of the PNC domain and allows it to make more informed choices about how to route connectivity over the underlying network.
5.3. Methods of Building Grey Topologies

This section discusses two different methods of building a grey topology:

. Automatic generation of abstract topology by configuration (Section 5.3.1)
. On-demand generation of supplementary topology via path computation request/reply (Section 5.3.2)

5.3.1. Automatic Generation of Abstract Topology by Configuration

Automatic generation is based on the abstraction/summarization of the whole domain by the PNC and its advertisement on the MPI. The level of abstraction can be decided based on PNC configuration parameters (e.g., "provide the potential connectivity between any PE and any ASBR in an MPLS-TE network").

Note that the configuration parameters for this abstract topology can include available bandwidth, latency, or any combination of defined parameters. How to generate such information is beyond the scope of this document.

This abstract topology may need to be periodically or incrementally updated when there is a change in the underlying network or the use of the network resources that make connectivity more or less available.

5.3.2. On-demand Generation of Supplementary Topology via Path Compute Request/Reply

While abstract topology is generated and updated automatically by configuration as explained in Section 5.3.1, additional supplementary topology may be obtained by the MDSC via a path compute request/reply mechanism.

The abstract topology advertisements from PNCs give the MDSC the border node/link information for each domain. Under this scenario,
when the MDSC needs to create a new VN, the MDSC can issue path
computation requests to PNCs with constraints matching the VN
request as described in [ACTN-YANG]. An example is provided in
Figure 8, where the MDSC is creating a P2P VN between AP1 and AP2.
The MDSC could use two different inter-domain links to get from
domain X to domain Y, but in order to choose the best end-to-end
path it needs to know what domain X and Y can offer in terms of
connectivity and constraints between the PE nodes and the border
nodes.

![Diagram](image.png)

Figure 8: A Multi-Domain Example
The MDSC issues a path computation request to PNC.X asking for
potential connectivity between PE1 and border node BrdrX.1 and
between PE1 and BrdrX.2 with related objective functions and TE
metric constraints. A similar request for connectivity from the
border nodes in domain Y to PE2 will be issued to PNC.Y. The MDSC
merges the results to compute the optimal end-to-end path including
the inter domain links. The MDSC can use the result of this
computation to request the PNCs to provision the underlying
networks, and the MDSC can then use the end-to-end path as a virtual
link in the VN it delivers to the customer.

5.4. Hierarchical Topology Abstraction Example
This section illustrates how topology abstraction operates in
different levels of a hierarchy of MDSCs as shown in Figure 9.
In the example depicted in Figure 9, there are four domains under control of PNCs PNC1, PNC2, PNC3, and PNC4. MDSC-L1 controls PNC1.
and PNC2 while MDSC-L2 controls PNC3 and PNC4. Each of the PNCs provides a grey topology abstraction that presents only border nodes and links across and outside the domain. The abstract topology MDSC-L1 that operates is a combination of the two topologies from PNC1 and PNC2. Likewise, the abstract topology that MDSC-L2 operates is shown in Figure 9. Both MDSC-L1 and MDSC-L2 provide a black topology abstraction to MDSC-H in which each PNC domain is presented as a single virtual node. MDSC-H combines these two topologies to create the abstraction topology on which it operates. MDSC-H sees the whole four domain networks as four virtual nodes connected via virtual links.

5.5. VN Recursion with Network Layers

In some cases the VN supplied to a customer may be built using resources from different technology layers operated by different operators. For example, one operator may run a packet TE network and use optical connectivity provided by another operator.

As shown in Figure 10, a customer asks for end-to-end connectivity between CE A and CE B, a virtual network. The customer’s CNC makes a request to Operator 1’s MDSC. The MDSC works out which network resources need to be configured and sends instructions to the appropriate PNCs. However, the link between Q and R is a virtual link supplied by Operator 2: Operator 1 is a customer of Operator 2.

To support this, Operator 1 has a CNC that communicates to Operator 2’s MDSC. Note that Operator 1’s CNC in Figure 10 is a functional component that does not dictate implementation: it may be embedded in a PNC.
6. Access Points and Virtual Network Access Points

In order to map identification of connections between the customer’s sites and the TE networks and to scope the connectivity requested in the VNS, the CNC and the MDSC refer to the connections using the Access Point (AP) construct as shown in Figure 11.

--- is a link
--- is a virtual link
Let’s take as an example a scenario shown in Figure 11. CE1 is connected to the network via a 10 Gbps link and CE2 via a 40 Gbps link. Before the creation of any VN between AP1 and AP2 the customer view can be summarized as shown in Table 1.

<table>
<thead>
<tr>
<th>End Point</th>
<th>Access Link Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP id</td>
<td>CE, port</td>
</tr>
<tr>
<td>AP1</td>
<td>CE1, portX</td>
</tr>
<tr>
<td>AP2</td>
<td>CE2, portZ</td>
</tr>
</tbody>
</table>

Table 1: AP - Customer View

On the other hand, what the operator sees is shown in Figure 12.

Which results in a summarization as shown in Table 2.
A Virtual Network Access Point (VNAP) needs to be defined as binding between an AP and a VN. It is used to allow for different VNs to start from the same AP. It also allows for traffic engineering on the access and/or inter-domain links (e.g., keeping track of bandwidth allocation). A different VNAP is created on an AP for each VN.

In this simple scenario we suppose we want to create two virtual networks. The first with VN identifier 9 between AP1 and AP2 with bandwidth of 1 Gbps, while the second with VN identifier 5, again between AP1 and AP2 and with bandwidth 2 Gbps.

The operator view would evolve as shown in Table 3.

6.1. Dual-Homing Scenario

Often there is a dual homing relationship between a CE and a pair of PEs. This case needs to be supported by the definition of VN, APs, and VNAPs. Suppose CE1 connected to two different PEs in the
operator domain via AP1 and AP2 and that the customer needs 5 Gbps of bandwidth between CE1 and CE2. This is shown in Figure 12.

```
+---------+----------+----------+-------------+-----------+
|End Point | Access Link/VNAP Bw|
+---------+----------+----------+-------------+-----------+
|AP/VNAPId| CE,port  | MaxResBw | AvailableBw |Dual Homing|
+---------+----------+----------+-------------+-----------+
|AP1      |CE1,portW |10 Gbps   |5 Gbps       |           |
|         |          |5 Gbps    |N.A.         |VNAP2.9    |
+---------+----------+----------+-------------+-----------+
|AP2      |CE1,portY |40 Gbps   |35 Gbps      |           |
|         |          |5 Gbps    |N.A.         |VNAP1.9    |
+---------+----------+----------+-------------+-----------+
|AP3      |CE2,portX |50 Gbps   |45 Gbps      |           |
|         |          |5 Gbps    |N.A.         |NONE       |
+---------+----------+----------+-------------+-----------+
```

Table 4: Dual-Homing - Customer View after VN Creation

7. Advanced ACTN Application: Multi-Destination Service

A further advanced application of ACTN is in the case of Data Center selection, where the customer requires the Data Center selection to be based on the network status; this is referred to as Multi-Destination in [ACTN-REQ]. In terms of ACTN, a CNC could request a
VNS between a set of source APs and destination APs and leave it up to the network (MDSC) to decide which source and destination access points to be used to set up the VNS. The candidate list of source and destination APs is decided by a CNC (or an entity outside of ACTN) based on certain factors which are outside the scope of ACTN.

Based on the AP selection as determined and returned by the network (MDSC), the CNC (or an entity outside of ACTN) should further take care of any subsequent actions such as orchestration or service setup requirements. These further actions are outside the scope of ACTN.

Consider a case as shown in Figure 14, where three data centers are available, but the customer requires the data center selection to be based on the network status and the connectivity service setup between the AP1 (CE1) and one of the destination APs (AP2 (DC-A), AP3 (DC-B), and AP4 (DC-C)). The MDSC (in coordination with PNCs) would select the best destination AP based on the constraints, optimization criteria, policies, etc., and setup the connectivity service (virtual network).

7.1. Pre-Planned End Point Migration

Furthermore, in case of Data Center selection, customer could request for a backup DC to be selected, such that in case of failure, another DC site could provide hot stand-by protection. As shown in Figure 15 DC-C is selected as a backup for DC-A. Thus, the VN should be setup by the MDSC to include primary connectivity.
between AP1 (CE1) and AP2 (DC-A) as well as protection connectivity between AP1 (CE1) and AP4 (DC-C).

```
| CE1 | Domain X | Domain Y | DC-A |
```

```
+----+ ( ) ( ) +----+
AP1- - - - AP2 |
```

```
| DC-D | DC-C |
```

```
+----+ +----+
```

Figure 15: Pre-planned End-Point Migration

7.2. On the Fly End-Point Migration

Compared to pre-planned end point migration, on the fly end point selection is dynamic in that the migration is not pre-planned but decided based on network condition. Under this scenario, the MDSC would monitor the network (based on the VN Service-level Agreement (SLA) and notify the CNC in case where some other destination AP would be a better choice based on the network parameters. The CNC should instruct the MDSC when it is suitable to update the VN with the new AP if it is required.

8. Manageability Considerations

The objective of ACTN is to manage traffic engineered resources, and provide a set of mechanisms to allow customers to request virtual connectivity across server network resources. ACTN supports multiple customers each with its own view of and control of a virtual network built on the server network, the network operator will need to partition (or "slice") their network resources, and manage the resources accordingly.

The ACTN platform will, itself, need to support the request, response, and reservations of client and network layer connectivity. It will also need to provide performance monitoring and control of traffic engineered resources. The management requirements may be categorized as follows:
The ACTN framework and interfaces are defined to enable traffic engineering for virtual network services and connectivity services. Network operators may have other Operations, Administration, and Maintenance (OAM) tasks for service fulfillment, optimization, and assurance beyond traffic engineering. The realization of OAM beyond abstraction and control of traffic engineered networks is not considered in this document.

8.1. Policy

Policy is an important aspect of ACTN control and management. Policies are used via the components and interfaces, during deployment of the service, to ensure that the service is compliant with agreed policy factors and variations (often described in SLAs), these include, but are not limited to: connectivity, bandwidth, geographical transit, technology selection, security, resilience, and economic cost.

Depending on the deployment of the ACTN architecture, some policies may have local or global significance. That is, certain policies may be ACTN component specific in scope, while others may have broader scope and interact with multiple ACTN components. Two examples are provided below:

- A local policy might limit the number, type, size, and scheduling of virtual network services a customer may request via its CNC. This type of policy would be implemented locally on the MDSC.

- A global policy might constrain certain customer types (or specific customer applications) to only use certain MDSCs, and be restricted to physical network types managed by the PNCs. A global policy agent would govern these types of policies.

The objective of this section is to discuss the applicability of ACTN policy: requirements, components, interfaces, and examples. This section provides an analysis and does not mandate a specific method for enforcing policy, or the type of policy agent that would
be responsible for propagating policies across the ACTN components. It does highlight examples of how policy may be applied in the context of ACTN, but it is expected further discussion in an applicability or solution specific document, will be required.

8.2. Policy Applied to the Customer Network Controller

A virtual network service for a customer application will be requested by the CNC. The request will reflect the application requirements and specific service needs, including bandwidth, traffic type and survivability. Furthermore, application access and type of virtual network service requested by the CNC, will be need adhere to specific access control policies.

8.3. Policy Applied to the Multi-Domain Service Coordinator

A key objective of the MDSC is to support the customer’s expression of the application connectivity request via its CNC as a set of desired business needs, therefore policy will play an important role.

Once authorized, the virtual network service will be instantiated via the CNC-MDSC Interface (CMI); it will reflect the customer application and connectivity requirements, and specific service transport needs. The CNC and the MDSC components will have agreed connectivity end-points; use of these end-points should be defined as a policy expression when setting up or augmenting virtual network services. Ensuring that permissible end-points are defined for CNCs and applications will require the MDSC to maintain a registry of permissible connection points for CNCs and application types.

Conflicts may occur when virtual network service optimization criteria are in competition. For example, to meet objectives for service reachability a request may require an interconnection point between multiple physical networks; however, this might break a confidentially policy requirement of specific type of end-to-end service. Thus an MDSC may have to balance a number of the constraints on a service request and between different requested services. It may also have to balance requested services with operational norms for the underlying physical networks. This balancing may be resolved using configured policy and using hard and soft policy constraints.

8.4. Policy Applied to the Provisioning Network Controller

The PNC is responsible for configuring the network elements, monitoring physical network resources, and exposing connectivity
(direct or abstracted) to the MDSC. It is therefore expected that policy will dictate what connectivity information will be exported between the PNC, via the MDSC-PNC Interface (MPI), and MDSC.

Policy interactions may arise when a PNC determines that it cannot compute a requested path from the MDSC, or notices that (per a locally configured policy) the network is low on resources (for example, the capacity on key links become exhausted). In either case, the PNC will be required to notify the MDSC, which may (again per policy) act to construct a virtual network service across another physical network topology.

Furthermore, additional forms of policy-based resource management will be required to provide virtual network service performance, security and resilience guarantees. This will likely be implemented via a local policy agent and additional protocol methods.

9. Security Considerations

The ACTN framework described in this document defines key components and interfaces for managed traffic engineered networks. Securing the request and control of resources, confidentially of the information, and availability of function, should all be critical security considerations when deploying and operating ACTN platforms.

Several distributed ACTN functional components are required, and implementations should consider encrypting data that flows between components, especially when they are implemented at remote nodes, regardless these data flows are on external or internal network interfaces.

The ACTN security discussion is further split into two specific categories described in the following sub-sections:

- Interface between the Customer Network Controller and Multi-Domain Service Coordinator (MDSC), CNC-MDSC Interface (CMI)

- Interface between the Multi-Domain Service Coordinator and Provisioning Network Controller (PNC), MDSC-PNC Interface (MPI)

From a security and reliability perspective, ACTN may encounter many risks such as malicious attack and rogue elements attempting to connect to various ACTN components. Furthermore, some ACTN components represent a single point of failure and threat vector, and must also manage policy conflicts, and eavesdropping of communication between different ACTN components.
The conclusion is that all protocols used to realize the ACTN framework should have rich security features, and customer, application and network data should be stored in encrypted data stores. Additional security risks may still exist. Therefore, discussion and applicability of specific security functions and protocols will be better described in documents that are use case and environment specific.

9.1. CNC-MDSC Interface (CMI)

Data stored by the MDSC will reveal details of the virtual network services, and which CNC and customer/application is consuming the resource. The data stored must therefore be considered as a candidate for encryption.

CNC Access rights to an MDSC must be managed. The MDSC must allocate resources properly, and methods to prevent policy conflicts, resource wastage, and denial of service attacks on the MDSC by rogue CNCs, should also be considered.

The CMI will likely be an external protocol interface. Suitable authentication and authorization of each CNC connecting to the MDSC will be required, especially, as these are likely to be implemented by different organizations and on separate functional nodes. Use of the AAA-based mechanisms would also provide role-based authorization methods, so that only authorized CNC’s may access the different functions of the MDSC.

9.2. MDSC-PNC Interface (MPI)

Where the MDSC must interact with multiple (distributed) PNCs, a PKI-based mechanism is suggested, such as building a TLS or HTTPS connection between the MDSC and PNCs, to ensure trust between the physical network layer control components and the MDSC. Trust anchors for the PKI can be configured to use a smaller (and potentially non-intersecting) set of trusted Certificate Authorities (CAs) than in the Web PKI.

Which MDSC the PNC exports topology information to, and the level of detail (full or abstracted), should also be authenticated, and specific access restrictions and topology views should be configurable and/or policy-based.

10. IANA Considerations

This document has no actions for IANA.
11. References

11.1. Informative References

12. Contributors

Adrian Farrel
Old Dog Consulting
Email: adrian@olddog.co.uk

Italo Busi
Huawei
Email: Italo.Busi@huawei.com

Khuzema Pithewan
Infinera
Email: k pithewan@infinera.com

Michael Scharf
Nokia
Email: michael.scharf@nokia.com

Luyuan Fang
eBay
Email: luyuanf@gmail.com

Diego Lopez
Telefonica I+D
Don Ramon de la Cruz, 82
28006 Madrid, Spain
Email: diego@tid.es

Sergio Belotti
Alcatel Lucent
Via Trento, 30
Vimercate, Italy
Email: sergio.belotti@nokia.com

Daniel King
Lancaster University
Email: d.king@lancaster.ac.uk

Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: dhruv.ietf@gmail.com

Ceccarelli, Lee, et al. Expires November 2018
APPENDIX A - Example of MDSC and PNC Functions Integrated in A Service/Network Orchestrator

This section provides an example of a possible deployment scenario, in which Service/Network Orchestrator can include a number of functionalities, among which, in the example below, PNC functionalities for domain 2 and MDSC functionalities to coordinate the PNC1 functionalities (hosted in a separate domain controller) and PNC2 functionalities (co-hosted in the network orchestrator).

Customer

Service/Network Orchestrator

Domain Controller

Ceccarelli, Lee, et al. Expires November 2018
Abstract

This draft provides an information model for Abstraction and Control of Traffic Engineered Networks (ACTN).

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 21, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction...3
1.1. Terminology...4
2. ACTN Common Interfaces Information Model.......................4
3. Virtual Network primitives.....................................5
 3.1. VN Instantiate..6
 3.2. VN Modify..7
 3.3. VN Delete..7
 3.4. VN Update..7
 3.5. VN Compute..7
 3.6. VN Query..8
4. Traffic Engineering (TE) primitives............................8
 4.1. TE Instantiate..9
 4.2. TE Modify..9
 4.3. TE Delete..9
 4.4. TE Topology Update (for TE resources).....................9
 4.5. Path Compute...10
5. VN Objects..10
 5.1. VN Identifier..11
 5.2. VN Service Characteristics................................11
 5.3. VN End-Point...13
 5.4. VN Objective Function....................................14
 5.5. VN Action Status...15

Lee & Belotti, et al. Expire December 2018
1. Introduction

This draft provides an information model for Abstraction and Control of Traffic Engineered Networks (ACTN). The information model described in this document covers the interface requirements identified in the ACTN architecture and framework document [ACTN-Frame].

The ACTN reference architecture [ACTN-Frame] identifies a three-tier control hierarchy comprising the following as depicted in Figure 1:

- Customer Network Controllers (CNCs)
- Multi-Domain Service Coordinator (MDSC)
- Provisioning Network Controllers (PNCs).
The two interfaces with respect to the MDSC, one north of the MDSC and the other south of the MDSC are referred to as CMI (CNC-MDSC Interface) and MPI (MDSC-PNC Interface), respectively. This document models these two interfaces and derivative interfaces thereof (e.g., MDSC to MDSC in a hierarchy of MDSCs) as a single common interface.

1.1. Terminology

The terms "Virtual Network (VN)" and "Virtual Network Service (VNS)" are defined in [ACTN-Frame] and the other key terms such as "abstraction", "abstract topology", "Path", "VN node", and "VN link" are defined in [RFC7926].

2. ACTN Common Interfaces Information Model

This section provides an ACTN common interface information model to describe primitives, objects, their properties (represented as attributes), their relationships, and the resources for the service applications needed in the ACTN context.

The standard interface is described between a client controller and a server controller. A client-server relationship is recursive between a CNC and an MDSC and between an MDSC and a PNC. In the CMI,
the client is a CNC while the server is an MDSC. In the MPI, the client is an MDSC and the server is a PNC. There may also be MDSC-MDSC interface(s) that need to be supported. This may arise in a hierarchy of MDSCs in which workloads may need to be partitioned to multiple MDSCs.

Basic primitives (messages) are required between the CNC-MDSC and MDSC-PNC controllers. These primitives can then be used to support different ACTN network control functions like network topology request/query, VN service request, path computation and connection control, VN service policy negotiation, enforcement, routing options, etc.

There are two different types of primitives depending on the type of interface:

- Virtual Network primitives at CMI
- Traffic Engineering primitives at MPI

As well described in [ACTN-Frame], at the CMI level, there is no need for detailed TE information since the basic functionality is to translate customer service information into virtual network service operation.

At the MPI level, MDSC has the main scope for multi-domain coordination and creation of a single e2e abstracted network view which is strictly related to TE information.

As for topology, this document employs two types of topology:

- The first type is referred to as virtual network topology which is associated with a VN. Virtual network topology is a customized topology for view and control by the customer. See Section 3.1 for details.

- The second type is referred to as TE topology which is associated with provider network operation on which we can apply policy to obtain the required level of abstraction to represent the underlying physical network topology.

3. Virtual Network primitives

This section provides a list of main VN primitives related to virtual network which are necessary to satisfy ACTN requirements specified in [ACTN-REQ]

The following VN Action primitives are supported:
VN Action is an object describing the main VN primitives. VN Action can assume one of the mentioned above primitives values.

<VN Action> ::= <VN Instantiate> | <VN Modify> | <VN Delete> | <VN Update> | <VN Path Compute> | <VN Query>

All these actions will solely happen at CMI level between Customer Network Controller (CNC) and Multi Domain Service Coordinator (MDSC).

3.1. VN Instantiate

VN Instantiate refers to an action from customers/applications to request the creation of VNs. VN Instantiate is for CNC-to-MDSC communication. Depending on the agreement between client and provider, VN instantiate can imply different VN operations. There are two types of VN instantiation:

VN type 1: VN is viewed as a set of edge-to-edge links (VN members).

VN type 2: VN is viewed as a VN-topology comprising virtual nodes and virtual links.

Please see [ACTN-Frame] for full details regarding the types of VN.
3.2. VN Modify

VN Modify refers to an action issued from customers/applications to modify an existing VN (i.e., an instantiated VN). VN Modify is for CNC-to-MDSC communication.

VN Modify, depending of the type of VN instantiated, can be a modification of the characteristics of VN members (edge-to-edge links) in case of VN type 1, or a modification of an existing virtual topology (e.g., adding/deleting virtual nodes/links) in case of VN type 2.

3.3. VN Delete

VN Delete refers to an action issued from customers/applications to delete an existing VN. VN Delete is for CNC-to-MDSC communication.

3.4. VN Update

VN Update refers to any update to the VN that needs to be updated to the customers. VN Update is MDSC-to-CNC communication. VN Update fulfills a push model at CMI level, to make customers aware of any specific changes in the topology details related to the instantiated VN.

VN Update, depending of the type of VN instantiated, can be an update of VN members (edge-to-edge links) in case of VN type 1, or an update of virtual topology in case of VN type 2.

The connection-related information (e.g., LSPs) update association with VNs will be part of the "translation" function that happens in MDSC to map/translate VN request into TE semantics. This information will be provided in case customer optionally wants to have more detailed TE information associated with the instantiated VN.

3.5. VN Compute

VN Compute consists of Request and Reply. Request refers to an action from customers/applications to request a VN computation.

VN Compute Reply refers to the reply in response to VN Compute Request.
VN Compute Request/Reply is to be differentiated from a VN Instantiate. The purpose of VN Compute is a priori exploration to compute network resources availability and getting a possible VN view in which path details can be specified matching customer/applications constraints. This a priori exploration may not guarantee the availability of the computed network resources at the time of instantiation.

3.6. VN Query

VN Query refers to an inquiry pertaining to a VN that has already been instantiated. VN Query fulfills a pull model that permits getting a topology view.

VN Query Reply refers to the reply in response to VN Query. The topology view returned by VN Query Reply would be consistent with the topology type instantiated for any specific VN.

4. Traffic Engineering (TE) primitives

This section provides a list of the main TE primitives necessary to satisfy ACTN requirements specified in [ACTN-REQ] related to typical TE operations supported at the MPI level.

The TE action primitives defined in this section should be supported at the MPI consistently with the type of topology defined at the CMI.

The following TE action primitives are supported:

- TE Instantiate/Modify/Delete
- TE Topology Update (See Section 4.4. for the description)
- Path Compute

TE Action is an object describing the main TE primitives.

TE Action can assume one of the mentioned above primitives values.

<TE Action> ::= <TE Instantiate> |
 <TE Modify> |
 <TE Delete> |
 <TE Topology Update> |
All these actions will solely happen at MPI level between Multi Domain Service Coordinator (MDSC) and Provisioning Network Controller (PNC).

4.1. TE Instantiate

TE Instantiate refers to an action issued from MDSC to PNC to instantiate new TE tunnels.

4.2. TE Modify

TE Modify refers to an action issued from MDSC to PNC to modify existing TE tunnels.

4.3. TE Delete

TE Delete refers to an action issued from MDSC to PNC to delete existing TE tunnels.

4.4. TE Topology Update (for TE resources)

TE Topology Update is a primitive specifically related to MPI to provide TE resource update between any domain controller towards MDSC regarding the entire content of any "domain controller" actual TE topology or an abstracted filtered view of TE topology depending on negotiated policy.

See [TE-TOPO] for detailed YANG implementation of TE topology update.

\[
\text{TE Topology Update} ::= \text{TE-topology-list}
\]

\[
\text{TE-topology-list} ::= \text{TE-topology} \ [\text{TE-topology-list}]
\]

\[
\text{TE-topology} ::= [\text{Abstraction}] \ \text{TE-Topology-identifier} \ \text{Node-list} \ \text{Link-list}
\]
<Node-list> ::= <Node>[<Node-list>]

<Node> ::= <Node> <TE Termination Point-list>

<TE Termination Point-list> ::= <TE Termination Point> [<TE-Termination Point-list>]

<Link-list> ::= <Link>[<Link-list>]

Where

Abstraction provides information on level of abstraction (as determined a priori).

TE-topology-identifier is an identifier that identifies a specific te-topology, e.g., te-types:te-topology-id [TE-TOPO].

Node-list is detailed information related to a specific node belonging to a te-topology, e.g., te-node-attributes [TE-TOPO].

Link-list is information related to the specific link related belonging to a te-topology, e.g., te-link-attributes [TE-TOPO].

TE Termination Point-list is detailed information associated with the termination points of te-link related to a specific node, e.g., interface-switching-capability [TE-TOPO].

4.5. Path Compute

Path Compute consists of Request and Reply. Request refers to an action from MDSC to PNC to request a path computation.

Path Compute Reply refers to the reply in response to Path Compute Request.

The context of Path Compute is described in [Path-Compute].

5. VN Objects

This section provides a list of objects associated to VN action primitives.
5.1. VN Identifier

VN Identifier is a unique identifier of the VN.

5.2. VN Service Characteristics

VN Service Characteristics describes the customer/application requirements against the VNs to be instantiated.

\[
\text{<VN Service Characteristics>} ::= \text{<VN Connectivity Type>} \\
\quad \text{<VN Directionality>} \\
\quad (\text{<VN Traffic Matrix>}\ldots) \\
\quad \text{<VN Survivability>}
\]

Where

\[
\text{<VN Connectivity Type>} ::= \text{<P2P>}|\text{<P2MP>}|\text{<MP2MP>}|\text{<MP2P>}|\text{<Multi-destination>}
\]

The Connectivity Type identifies the type of required VN Service. In addition to the classical type of services (e.g. P2P/P2MP etc.), ACTN defines the "multi-destination" service that is a new P2P service where the end points are not fixed. They can be chosen among a list of pre-configured end points or dynamically provided by the CNC.

VN Directionality indicates if a VN is unidirectional or bidirectional. This implies that each VN member that belongs to the VN has the same directionality as the VN.

\[
\text{<VN Traffic Matrix>} ::= \text{<Bandwidth>} \\
\quad [\text{<VN Constraints>}] \\
\]

The VN Traffic Matrix represents the traffic matrix parameters for the required service connectivity. Bandwidth is a mandatory parameter and a number of optional constraints can be specified in the VN Constraints (e.g. diversity, cost). They can include objective functions and TE metrics bounds as specified in [RFC5541].

Further details on the VN constraints are specified below:

\[
\text{<VN Constraints>} ::= [\text{<Layer Protocol}>]
\]
Layer Protocol identifies the layer topology at which the VN service is requested. It could be for example MPLS, ODU, and OCh.

Diversity allows asking for diversity constraints for a VN Instantiate/Modify or a VN Path Compute. For example, a new VN or a path is requested in total diversity from an existing one (e.g. diversity exclusion).

\[
\langle \text{Diversity} \rangle \ ::= \ (\langle \text{VN-exclusion} \rangle \ (\langle \text{VN-id} \rangle\ldots)) \ | \\
(\langle \text{VN-Member-exclusion} \rangle \ (\langle \text{VN-Member-id} \rangle\ldots))
\]

Metric can include all the Metrics (cost, delay, delay variation, latency), bandwidth utilization parameters defined and referenced by [RFC3630] and [RFC7471].

As for VN Objective Function See Section 5.4.

VN Survivability describes all attributes related to the VN recovery level and its survivability policy enforced by the customers/applications.

\[
\langle \text{VN Survivability} \rangle \ ::= \ \langle \text{VN Recovery Level} \rangle \\
[\langle \text{VN Tunnel Recovery Level} \rangle] \\
[\langle \text{VN Survivability Policy} \rangle]
\]

Where:

VN Recovery Level is a value representing the requested level of resiliency required against the VN. The following values are defined:

- Unprotected VN
- VN with per tunnel recovery: The recovery level is defined against the tunnels composing the VN and it is specified in the VN Tunnel Recovery Level.

\[
\langle \text{VN Tunnel Recovery Level} \rangle \ ::= \ 0:1|1+1|1:1|1:N|M:N
\]
The VN Tunnel Recovery Level indicates the type of protection or restoration mechanism applied to the VN. It augments the recovery types defined in [RFC4427].

\[\text{<VN Survivability Policy> ::= [<Local Reroute Allowed>] [<Domain Preference>] [<Push Allowed>] [<Incremental Update>]}\]

Where:

Local Reroute Allowed is a delegation policy to the Server to allow or not a local reroute fix upon a failure of the primary LSP.

Domain Preference is only applied on the MPI where the MDSC (client) provides a domain preference to each PNC (server), e.g., when an inter-domain link fails, then PNC can choose the alternative peering with this info.

Push Allowed is a policy that allows a server to trigger an updated VN topology upon failure without an explicit request from the client. Push action can be set as default unless otherwise specified.

Incremental Update is another policy that triggers an incremental update from the server since the last period of update. Incremental update can be set as default unless otherwise specified.

5.3. VN End-Point

VN End-Point Object describes the VN’s customer end-point characteristics.

\[\text{<VN End-Point> ::= (<Access Point Identifier> [<Access Link Capability>])}\]
Access Point Identifier represents a unique identifier of the client end-point. They are used by the customer to ask for the setup of a virtual network instantiation. A VN End-Point is defined against each AP in the network and is shared between customer and provider. Both the customer and the provider will map it against their own physical resources.

Access Link Capability identifies the capabilities of the access link related to the given access point. (e.g., max-bandwidth, bandwidth availability, etc.)

Source Indicator indicates if an end-point is source or not.

5.4. VN Objective Function

The VN Objective Function applies to each VN member (i.e., each E2E tunnel) of a VN.

The VN Objective Function can reuse objective functions defined in [RFC5541] section 4.

For a single path computation, the following objective functions are defined:

- MCP is the Minimum Cost Path with respect to a specific metric (e.g. shortest path).
- MLP is the Minimum Load Path, that means find a path composed by te-link least loaded.
- MBP is the Maximum residual Bandwidth Path.

For a concurrent path computation, the following objective functions are defined:

- MBC is to Minimize aggregate Bandwidth Consumption.
- MLL is to Minimize the Load of the most loaded Link.
- MCC is to Minimize the Cumulative Cost of a set of paths.
5.5. VN Action Status

VN Action Status is the status indicator whether the VN has been successfully instantiated, modified, or deleted in the server network or not in response to a particular VN action.

Note that this action status object can be implicitly indicated and thus not included in any of the VN primitives discussed in Section 3.

5.6. VN Topology

When a VN is seen by the customer as a topology, it is referred to as VN topology. This is associated with VN Type 2, which is composed of virtual nodes and virtual links.

<VN Topology> ::= <VN node list> <VN link list>

<VN node list> ::= <VN node> [<VN node list>]

<VN link list> ::= <VN link> [<VN link list>]

5.7. VN Member

VN Member describes details of a VN Member which is a list of a set of VN Members represented as VN_Member_List.

<VN_Member_List> ::= <VN Member> [<VN_Member_List>]

Where <VN Member> ::= <Ingress VN End-Point>

[<VN Associated LSP>]

<VN Member> ::= <Ingress VN End-Point>

[<VN Associated LSP>]

<Ingress VN End-Point> is the VN End-Point information for the ingress portion of the AP. See Section 5.3 for VN End-Point details.

<Egress VN End-Point> is the VN End-Point information for the egress portion of the AP. See Section 5.3 for VN End-Point details.
VN Associated LSP describes the instantiated LSPs in the Provider’s network for the VN Type 1. It describes the instantiated LSPs over the VN topology for VN Type 2.

5.7.1. VN Computed Path

The VN Computed Path is the list of paths obtained after the VN path computation request from a higher controller. Note that the computed path is to be distinguished from the LSP. When the computed path is signaled in the network (and thus the resource is reserved for that path), it becomes an LSP.

<VN Computed Path> ::= (<Path>...)

5.7.2. VN Service Preference

This section provides VN Service preference. VN Service is defined in Section 2.

<VN Service Preference> ::= [<Location Service Preference >]
 [<Client-specific Preference >]
 [<End-Point Dynamic Selection Preference >]

Where

Location Service Preference describes the End-Point Location’s (e.g. Data Centers) support for certain Virtual Network Functions (VNFs) (e.g., security function, firewall capability, etc.) and is used to find the path that satisfies the VNF constraint.

Client-specific Preference describes any preference related to Virtual Network Service (VNS) that application/client can enforce via CNC towards lower level controllers. For example, CNC can enforce client-specific preferences, e.g., selection of a destination data center from the set of candidate data centers based on some criteria in the context of VM migration. MSDC/PNC should then provide the data center interconnection that supports the client-specific preference.
End-Point Dynamic Selection Preference describes if the End-Point (e.g. Data Center) can support load balancing, disaster recovery or VM migration and so can be part of the selection by MDSC following service Preference enforcement by CNC.

6. TE Objects

6.1. TE Tunnel Characteristics

Tunnel Characteristics describes the parameters needed to configure TE tunnel.

<Tunnel Characteristics> ::= [<Tunnel Type>]
 [Tunnel Id]
 [Tunnel Layer]
 [Tunnel end-point]
 [Tunnel protection-restoration]
 [Tunnel Constraints]
 [Tunnel Optimization]

Where

<Tunnel Type> ::= <P2P>|<P2MP>|<MP2MP>|<MP2P>

The Tunnel Type identifies the type of required tunnel. In this draft, only P2P model is provided.

Tunnel Id is the TE tunnel identifier

Tunnel Layer represents the layer technology of the LSPs supporting the tunnel

<Tunnel End Points> ::= <Source> <Destination>

<Tunnel protection-restoration> ::= <prot 0:1>|<prot 1+1>|<prot 1:1>|<prot 1:N>|prot <M:N>|<restoration>
Tunnel Constraints are the base tunnel configuration constraints parameters. Where \langleTunnel Constraints\rangle ::= \langleTopology Id\rangle

\langleBandwidth\rangle

\langleDisjointness\rangle

\langleSRLG\rangle

\langlePriority\rangle

\langleAffinities\rangle

\langleTunnel Optimization\rangle

\langleObjective Function\rangle

Topology Id references the topology used to compute the tunnel path.

Bandwidth is the bandwidth used as parameter in path computation.

\langleDisjointness\rangle ::= \langlenode\rangle $|$ \langlelink\rangle $|$ \langlesrlg\rangle

Disjointness provides the type of resources from which the tunnel has to be disjointed.

SRLG is a group of physical resources impacted by the same risk from which an E2E tunnel is required to be disjointed.

\langlePriority\rangle ::= \langleHolding Priority\rangle \langleSetup Priority\rangle

where

Setup Priority indicates the level of priority for taking resources from another tunnel [RFC3209]

Holding Priority indicates the level of priority to hold resources avoiding preemption from another tunnel [RFC3209]

Affinities it represent structure to validate link belonging to path of the tunnel [RFC3209]

\langleTunnel Optimization\rangle ::= \langleMetric\rangle $|$ \langleObjective Function\rangle
Metric can include all the Metrics (cost, delay, delay variation, latency), bandwidth utilization parameters defined and referenced by [RFC3630] and [RFC7471].

<Objective Function> ::= <objective function type>

<objective function type> ::= <MCP> | <MLP> | <MBP> | <MBC> | <MLL> | <MCC>

See chapter 5.4 for objective function type description.

7. Mapping of VN primitives with VN Objects

This section describes the mapping of VN primitives with VN Objects based on Section 5.

<VN Instantiate> ::= <VN Service Characteristics>

<VN Member-List>

[<VN Service Preference>]

[<VN Topology>]

<VN Modify> ::= <VN identifier>

<VN Service Characteristics>

<VN Member-List>

[<VN Service Preference>]

[<VN Topology>]

<VN Delete> ::= <VN Identifier>

<VN Update> ::= <VN Identifier>
8. Mapping of TE primitives with TE Objects

This section describes the mapping of TE primitives with TE Objects based on Section 6.

<TE Instantiate> ::= <TE Tunnel Characteristics>

<TE Modify> ::= <TE Tunnel Characteristics>

<TE Delete> ::= <Tunnel Id>
9. Security Considerations

The ACTN information model is not directly relevant when considering potential security issues. Rather, it defines a set of interfaces for traffic engineered networks. The underlying protocols, procedures, and implementations used to exchange the information model described in this draft will need to secure the request and control of resources with proper authentication and authorization mechanisms. In addition, the data exchanged over the ACTN interfaces discussed in this document requires verification of data integrity. Backup or redundancies should also be available to restore the affected data to its correct state.

Implementations of the ACTN framework will have distributed functional components that will exchange a concrete instantiation that adheres to this information model. Implementations should encrypt data that flows between them, especially when they are implemented at remote nodes and irrespective of whether these data flows are on external or internal network interfaces. The information model may contain customer, application and network data that for business or privacy reasons may be considered sensitive. It should be stored only in an encrypted data store.

The ACTN security discussion is further split into two specific interfaces:

- Interface between the Customer Network Controller and Multi Domain Service Coordinator (MDSC), CNC-MDSC Interface (CMI)
- Interface between the Multi Domain Service Coordinator and Provisioning Network Controller (PNC), MDSC-PNC Interface (MPI)

See the detailed discussion of the CMI and MPI in Sections 9.1 and 9.2, respectively in [ACTN-Frame].
The conclusion is that all data models and protocols used to realize the ACTN info model should have rich security features as discussed in this section. Additional security risks may still exist. Therefore, discussion and applicability of specific security functions and protocols will be better described in documents that are use case and environment specific.

10. IANA Considerations

This document has no actions for IANA.

11. References

11.1. Normative References

11.2. Informative References

13. Contributors

Contributors’ Addresses

Haomian Zheng
Huawei Technologies
Email: zhenghaomian@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Authors’ Addresses

Young Lee (Editor)
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277-5838
Email: leeyoung@huawei.com

Sergio Belotti (Editor)
Alcatel Lucent
Via Trento, 30
Vimercate, Italy
Email: sergio.belotti@alcatel-lucent.com

Dhruv Dhody
Huawei Technologies,
Divyashree Technopark, Whitefield
Bangalore, India
Email: dhruv.ietf@gmail.com

Lee & Belotti, et al.
Expire December 2018
Abstract

This document provides a set of functional requirements for abstraction and control of Traffic Engineering networks to facilitate virtual network operation via the creation of a single virtualized network or a seamless service. This supports operators in viewing and controlling different domains (at any dimension: applied technology, administrative zones, or vendor-specific technology islands) as a single virtualized network.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 1, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction...3
 1.1. Requirements Language.....................................4
2. High-level ACTN requirements...................................4
 2.1. Service-Specific Requirements.............................5
 2.2. Network-Related Requirements..............................7
3. Security Considerations..9
4. IANA Considerations..9
5. References..10
 5.1. Normative References.....................................10
 5.2. Informative References...................................10
6. Contributors..11
Authors’ Addresses...12
1. Introduction

This document provides a set of functional requirements for Abstraction and Control of Traffic Engineering (TE) Networks (ACTN) identified in various use-cases specified by the operators. [ACTN-Frame] defines the base reference architecture and terminology.

ACTN refers to the set of virtual network service operations needed to coordinate, control and manage large-scale multi-domain TE networks so as to facilitate network programmability, automation, efficient resource sharing, and end-to-end virtual service aware connectivity.

These operations are summarized as follows:

- Abstraction and coordination of underlying network resources independent of how these resources are managed or controlled, so that higher-layer entities can dynamically control virtual networks based on those resources. Control includes creating, modifying, monitoring, and deleting virtual networks.

- Collation of the identifiers and other attributes of the resources from multiple TE networks (multiple technologies, equipment from multiple vendors, under the control of multiple administrations) through a process of recursive abstraction to present a customer with a single virtual network. This is achieved by presenting the network domain as an abstracted topology to the customer via open and programmable interfaces. Recursive abstraction allows for the recursion of abstracted data in a hierarchy of controllers. It is expected that the recursion levels should be at least three levels: customer level, multi-domain network level, and domain network level.

- Coordination of end-to-end virtual network services and applications via allocation of network resources to meet specific service, application and customer requirements. Refer to [ACTN-Frame] for the definition of coordination.

- Adaptation of customer requests (to control virtual resources) to the physical network resources performing the necessary mapping, translation, isolation and, policy that allows conveying, managing and enforcing customer policies with respect to the services and the network of the customer.
- Provision via a data model and virtual control capability to customers who request virtual network services. Note that these customers could, themselves, be service providers.

ACTN solutions will build on, and extend, existing TE constructs and TE mechanisms wherever possible and appropriate. Support for controller-based approaches is specifically included in the possible solution set.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. High-level ACTN requirements

This section provides a summary of use-cases in terms of two categories: (i) service-specific requirements; (ii) network-related requirements. All these requirements are specified by operators that are interested in implementing ACTN.

Service-specific requirements listed below are uniquely applied to the work scope of ACTN. Service-specific requirements are related to the virtual service coordination function. These requirements are related to customer’s Virtual Networks (VN) in terms of service policy associated with VNs such as service performance objectives, VN endpoint location information for certain required service specific functions (e.g., security and others), VN survivability requirement, or dynamic service control policy, etc.

Network-related requirements are related to and necessary for coherent/seamless for the virtual network operation function. These requirements are related to multi-domain and multi-layer signaling, routing, protection/restoration and re-optimization/re-grooming, etc.

Each requirement specified in Sections 2.1 and 2.2 is derived from ACTN use-cases: [CHENG], [DHODY], [FANG], [KLEE], [KUMAKI], [LOPEZ], [SHIN], [XU], [XU2], and [SUZUKI].
2.1. Service-Specific Requirements

1. Requirement 1: Virtual Network Service (VNS) creation

Customer MUST be able to request/instantiate the VNS to the network within the confines of mutual agreement between customer and network operator and network operator’s capability. A VNS is the service agreement between a customer and provider to provide a VN [ACTN-Frame]. There are different types of VNS in terms of the VN types the customer is allowed to operate (e.g., a VN type can be simply a set of edge-to-edge links, or it can comprise of virtual nodes and virtual links, etc.). The customer MUST be able to express VNS preference that captures Service Level Agreements (SLA) associated with virtual network service (e.g., Endpoint selection preference, routing preference, time-related preference, etc.)

Reference: [KLEE], [LOPEZ], [SHIN], [DHODY], [FANG].

2. Requirement 2: Virtual Network Service Query

Customer SHOULD be able to request VNS Query ("Can you give me these VN(s)?") that include the following parameters:

- VN type: various VN types defined by the customer (e.g., path, graph, etc.)
- VN end-points (Customer Edge interface information)
- VN Topology Service-specific Objective Functions (e.g., a set of objective functions as defined in [RFC5541] to be supported on the paths, but not limited to).
- VN constraints requirement (e.g., Maximum Latency threshold, Minimum Bandwidth, etc.)

Reference: [KUMAKI], [FANG], [CHENG].

3. Requirement 3: VNS Instantiation ("Please create a VNS for me")

Customer MUST be able to instantiate VNS that includes various VNS related parameters:
- VN type: various VN types defined by the customer (e.g., Type 1, Type 2, etc. See [ACTN-Frame] for the definition of VN Type 1 and Type 2).
- VN end-points (Customer Edge interface information)
- VN Topology Service-specific Objective Functions (e.g., a set of objective functions as defined in [RFC5541] to be supported on the paths, but not limited to).
- VN constraints requirement (e.g., Maximum Latency threshold, Minimum Bandwidth, etc.)
- VN Topology diversity when there are multiple instances of VNS (e.g., VN1 and VN2 must be disjoint; Node/link disjoint from other VNs)

Note that Requirement 3 provides specific details of Requirement 1.

Reference: [KUMAKI], [FANG], [CHENG].

4. Requirement 4: VNS Lifecycle Management & Operation (M&O)
Customer MUST be able to perform the following VNS operations:

- VNS Delete: Customer MUST be able to delete VNS.
- VNS Modify: Customer MUST be able to modify VNS related parameters during the lifecycle of the instantiated VNS.

Reference: [FANG], [KUMAKI], [LOPEZ], [DHODY], [FANG], [KLEE].

5. Requirement 5: VNS Isolation
Customer’s VN should be able to use arbitrary network topology, routing, or forwarding functions as well as customized control mechanisms independent of the underlying physical network and of other coexisting virtual networks. Other customers’ VNS operation MUST NOT impact a particular customer’s VNS network operation.

Reference: [KUMAKI], [FANG], [LOPEZ]

6. Requirement 6: Multi-Destination Coordination
Customer MUST be able to define and convey service/preference requirements for multi-destination applications (e.g., set of candidate sources/destinations, thresholds for load balancing, disaster recovery preference, etc.)

Reference: [FANG], [LOPEZ], [SHIN].

7. Requirement 7: VNS Performance Monitoring

The customer MUST be able to define performance monitoring parameters and its associated preference such as frequency of report, abstraction/aggregation level of performance data (e.g., VN level, tunnel level, etc.) with dynamic feedback loop from the network.

Reference: [XU], [XU2], [DHODY], [CHENG]

8. Requirement 8: VNS Confidentiality and Security Requirements

The following confidentiality/security requirements MUST be supported in all interfaces:

- Securing the request and control of resources, confidentially of the information, and availability of function.
- Trust domain verification between a customer entity and a network entity. It verifies if a trust relationship has been established between these entities.
- Encrypting data that flow between components, especially when they are implemented at remote nodes, regardless if these are external or internal network interfaces.

Reference: [KUMAKI], [FANG], [LOPEZ]

2.2. Network-Related Requirements

1. Requirement 1: Virtual Network Service Coordination

Network MUST be able to support the following VNS operations:
- VNS Create: Upon customer’s VNS creation request, network MUST be able to create VNS within the confines of network resource availability.
- VNS Delete: Upon customer’s VNS deletion request, network MUST be able to delete VNS.
- VNS Modify: Upon customer’s VNS modification request, network MUST be able to modify VNS related parameters during the lifecycle of the instantiated VNS.
- VNS Monitor: Upon customer’s VNS performance monitoring setup, the network MUST be able to support VNS level Operations, Administration and Management (OAM) Monitoring under service agreement.

Reference: [FANG], [KUMAKI], [LOPEZ], [DHODY], [FANG], [KLEE].

2. Requirement 2: Topology Abstraction Capability

The network MUST be capable of managing its networks based on the principle of topology abstraction to be able to scale multi-layer, multi-domain networks.

Reference: [KLEE], [LOPEZ], [DHODY], [CHENG].

3. Requirement 3: Multi-Domain & Multi-layer Coordination

Network coordination for multi-domain and multi-layer path computation and path setup operation MUST be provided:

- End-to-end path computation across multi-domain networks (based on abstract topology from each domain)
- Domain sequence determination
- Request for path signaling to each domain controller
- Alternative TE path computation if any of the domain controllers cannot find its domain path

Reference: [CHENG], [DHODY], [KLEE], [LOPEZ], [SHIN], [SUZUKI].

4. Requirement 4: End-to-End Path Protection
End-to-end Path Protection Operations MUST be provided with seamless coordination between domain-level protection schemes and cross-domain protection schemes.

Reference: [CHENG], [KLEE], [DHODY], [LOPEZ], [SHIN].

5. Requirement 5: Dynamicity of virtual network control operations

Dynamic virtual network control operations MUST be supported. This includes, but is not limited to, the following:

- Real-time VNS control (e.g., fast recovery/reroute upon network failure).
- Fast convergence of abstracted topologies upon changes due to failure or reconfiguration across the network domain view, the multi-domain network view and the customer view.
- Large-scale VNS operation (e.g., the ability to process tens of thousands of connectivity requests) for time-sensitive applications.

Reference: [SHIN], [XU], [XU2], [KLEE], [KUMAKI], [SUZUKI].

3. Security Considerations

The ACTN requirements described in this document do not directly bear specific security concerns. When these requirements are implemented in specific interfaces, securing the request and control of resources, confidentiality of the information, and availability of function, should all be critical security considerations.

4. IANA Considerations

This document has no actions for IANA.
5. References

5.1. Normative References

5.2. Informative References

6. Contributors

Dhruv Dhody
Huawei Technologies
Email: dhruv.ietf@gmail.com

Sergio Belotti
Nokia
Via Trento, 30
Vimercate, Italy
Email: sergio.belotti@nokia.com

Khuzema Pithewan
Peloton Technology
Email: khuzemap@gmail.com

Yunbin Xu
CATR
Email: xuyunbin@ritt.cn

Toshiaki Suzuki
Hitachi
Authors’ Addresses

Young Lee (Editor)
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277-5838
Email: leeyoung@huawei.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan, 48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com

Takuya Miyasaka
KDDI
Email: ta-miyasaka@kddi.com

Jong Yoon Shin
SKT
Email: jongyoon.shin@sk.com

Kwang-koog Lee
KT
Email: kwangkoog.lee@kt.com
Abstract

Operators are looking to introduce services over Segment Routing (SR) LSPs in networks running Resource Reservation Protocol (RSVP-TE) LSPs. In some instances, operators are also migrating existing services from RSVP-TE to SR LSPs. For example, there might be certain services that are well suited for SR and need to co-exist with RSVP-TE in the same network. Such introduction or migration of traffic to SR might require co-existence with RSVP-TE in the same network for an extended period of time depending on the operator’s intent. The following document provides solution options for keeping the traffic engineering database consistent across the network, accounting for the different bandwidth utilization between SR and RSVP-TE.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 17, 2018.
1. Introduction

Introduction of SR [I-D.ietf-spring-segment-routing] in the same network domain as RSVP-TE [RFC3209] presents the problem of accounting for SR traffic and making RSVP-TE aware of the actual available bandwidth on the network links. RSVP-TE is not aware of how much bandwidth is being consumed by SR services on the network links and hence both at computation time (for a distributed computation) and at signaling time RSVP-TE LSPs will incorrectly place loads. This is true where RSVP-TE paths are distributed or centrally computed without a common entity managing both SR and RSVP-TE computation for the entire network domain.
The problem space can be generalized as a dark bandwidth problem to cases where any other service exists in the network that runs in parallel across common links and whose bandwidth is not reflected in the available and reserved values in the traffic engineering database (TED). In most practical instances given the static nature of the traffic demands, limiting the available reservable bandwidth available to RSVP-TE has been an acceptable solution. However, in the case of SR traffic, there is assumed to be very dynamic traffic demands and there is considerable risk associated with stranding capacity or overbooking service traffic resulting in traffic drops.

The high level requirements to consider are:

1. Placement of SR LSPs in the same domain as RSVP-TE LSPs must not introduce inaccuracies in the TED used by distributed or centralized path computation engines.

2. Engines that compute RSVP-TE paths may have no knowledge of the existence of the SR paths in the same domain.

3. Engines that compute RSVP-TE paths should not require a software upgrade or change to their path computation logic.

4. Protocol extensions should be avoided or be minimal as in many cases this co-existence of RSVP-TE and SR may be needed only during a transition phase.

5. Placement of SR LSPs in the same domain as RSVP-TE LSPs that are computed in a distributed fashion must not require migration to a central controller architecture for the RSVP-TE LSPs.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Solution options

The following section lists SR and RSVP co-existence solution options. A specific solution is not recommended as all solutions are valid even though some may not satisfy all the requirements. If a solution is acceptable for an operator based on their deployment model then such a solution can be chosen.
3.1. Static partitioning of bandwidth

In this model, the static reservable bandwidth of an interface can be statically partitioned between SR and RSVP-TE and each can operate within that bandwidth allocation and SHOULD NOT preempt each other.

While it is possible to configure RSVP-TE to only reserve up to a certain maximum link bandwidth and manage the remaining link bandwidth for other services, this is a deployment where SR and RSVP-TE are separated in the same network (ships in the night) and can lead to suboptimal link bandwidth utilization not allowing each to consume more, if required and constraining the respective deployments.

The downside of this approach is the inability to use the reservable bandwidth effectively and inability to use bandwidth left unused by the other protocol.

3.2. Centralized management of available capacity

In this model, a central controller performs path placement for both RSVP-TE and SR LSPs. The controller manages and updates its own view of the in-use and the available capacity. As the controller is a single common entity managing the network it can have a unified and consistent view of the available capacity at all times.

A practical drawback of this model is that it requires the introduction of a central controller managing the RSVP-TE LSPs as a prerequisite to the deployment of any SR LSPs. Therefore, this approach is not practical for networks where distributed TE with RSVP-TE LSPs is already deployed, as it requires a redesign of the network and is not backwards compatible. This does not satisfy requirement 5.

Note that it is not enough for the controller to just maintain the unified view of the available capacity, it must also perform the path computation for the RSVP-TE LSPs, as the reservations for the SR LSPs are not reflected in the TED.

3.3. Flooding SR utilization in IGP

Using techniques in [RFC7810], [RFC7471] and [RFC7823], the SR utilization information can be flooded in IGP-TE and the RSVP-TE path computation engine (CSPF) can be changed to consider this information. This requires changes to the RSVP-TE path computation logic and would require upgrades in deployments where distributed computation is done across the network.
This does not fit with requirements 3 and 4 mentioned earlier.

3.4. Running SR over RSVP-TE

SR can run over dedicated RSVP-TE LSPs that carry only SR traffic. In this model, the LSPs can be one-hop or multi-hop and can provide bandwidth reservation for the SR traffic based on functionality such as auto-bandwidth. The model of deployment would be similar in nature to running LDP over RSVP-TE. This would allow the TED to stay consistent across the network and any other RSVP-TE LSPs will also be aware of the SR traffic reservations. In this approach, non-SR traffic MUST NOT take the SR-dedicated RSVP-TE LSPs, unless required by policy.

The drawback of this solution is that it requires SR to rely on RSVP-TE for deployment. Furthermore, the accounting accuracy/frequency of this method is dependent on performance of auto-bandwidth for RSVP-TE. Note that for this method to work, the SR-dedicated RSVP-TE LSPs must be set up with the best setup and hold priorities in the network.

3.5. TED consistency by reflecting SR traffic

The solution relies on dynamically measuring SR traffic utilization on each TE interface and reducing the bandwidth allowed for use by RSVP-TE. It is assumed that SR traffic receives precedence in terms of the placement on the path over RSVP traffic (that is, RSVP traffic can be preempted from the path in case of insufficient resources). This is logically equivalent to SR traffic having the best preemption priority in the network. Note that this does not necessarily mean that SR traffic has higher QoS priority, in fact, SR and RSVP traffic may be in the same QoS class.

Reducing the bandwidth allowed for use by RSVP-TE can be explored using the three parameters available in IGP-TE ([RFC5305],[RFC3630]), namely Maximum-Link-Bandwidth, Maximum-Reservable-Bandwidth and Unreserved-Bandwidth.

- Maximum-Link-Bandwidth: This parameter can be adjusted to accommodate the bandwidth required for SR traffic with cascading impacts on Maximum-Reservable-Bandwidth and Unreserved-Bandwidth. However, changing the maximum bandwidth for the TE link will prevent any compute engine for SR or RSVP from determining the real static bandwidth of the TE link. Further, when the Maximum-Reservable-Bandwidth is derived from the Maximum-Link-Bandwidth, its definition changes since Maximum-Link-Bandwidth will account for the SR traffic.
o Unreserved-Bandwidth: SR traffic could directly adjust the Unreserved-Bandwidth, without impacting Maximum-Link-Bandwidth or Maximum-Reservable-Bandwidth. This model is equivalent to the option described in Section 3.4. Furthermore this would result in overloading IGP-TE advertisements to directly reflect both RSVP-TE bandwidth bookings and SR bandwidth measurements.

o Maximum-Reservable-Bandwidth: As the preferred option, SR traffic could adjust the Maximum-Reservable-Bandwidth, with cascading impact on the Unreserved-Bandwidth.

The following methodology can be used at every TE node for this solution, using the following parameters:

o T: Traffic statistics collection time interval

o k: The number of traffic statistics samples that can provide a smoothing function to the statistics collection. The value of k is a constant integer multiplier greater or equal to 1.

o N: Traffic averaging calculation (adjustment) interval such that N = k * T

o Maximum-Reservable-Bandwidth: The maximum available bandwidth for RSVP-TE.

If Differentiated-Service (Diffserv)-aware MPLS Traffic Engineering (DS-TE) [RFC4124] is enabled, the Maximum-Reservable-Bandwidth SHOULD be interpreted as the aggregate bandwidth constraint across all Class-Types independent of the Bandwidth Constraints model.

o Initial Maximum-Reservable-Bandwidth: The Maximum-reservable-bandwidth for TE when no SR traffic or RSVP-TE reservations exist on the interface.

o RSVP-unreserved-bandwidth-at-priority-X: Maximum-Reservable-Bandwidth - sum of (existing reservations at priority X and all priorities better than X)

o SR traffic threshold percentage: The percentage difference of traffic demand that when exceeded can result in a change to the RSVP-TE Maximum-Reservable-Bandwidth

o IGP-TE update threshold: Specifies the frequency at which IGP-TE updates should be triggered based on TE bandwidth updates on a link
M: An optional multiplier that can be applied to the SR traffic average. This multiplier provides the ability to grow or shrink the bandwidth used by SR. Appendix A offers further guidance on M.

At every interval T, each node SHOULD collect the SR traffic statistics for each of its TE interfaces. The measured SR traffic includes all labelled SR traffic and any traffic entering the SR network over that TE interface. Further, at every interval N, given a configured SR traffic threshold percentage and a set of collected SR traffic statistics samples across the interval N, the SR traffic average (or any other traffic metric depending on the algorithm used) over this period is calculated. This method of sampling traffic statistics and adjusting bandwidth reservation accordingly is similar to how bandwidth gets adjusted for auto-bandwidth RSVP-TE LSPs.

If the difference between the new calculated SR traffic average and the current SR traffic average (that was computed in the prior adjustment) is at least SR traffic threshold percentage, then two values MUST be updated:

- **New Maximum-Reservable-Bandwidth = Initial Maximum-Reservable-Bandwidth - (new SR traffic average * M)**
- **New RSVP-unreserved-bandwidth-at-priority-X = New Maximum-Reservable-Bandwidth - sum of (existing reservations at priority X and all priorities better than X)**

A DS-TE LSR that advertises Bandwidth Constraints TLV should update the bandwidth constraints for class-types based on operator policy. For example, when Russian Dolls Model (RDM) [RFC4127] is in use, then only BC0 may be updated. Whereas, when Maximum Allocation Model (MAM) [RFC4125] is in use, then all BCs may be updated equally such that the total value updated is equal to the newly calculated SR traffic average.

Note that the computation of the new RSVP-unreserved-bandwidth-at-priority-X MAY result in RSVP-TE LSPs being hard or soft preempted. Such preemption will be based on relative priority (e.g. low to high) between RSVP-TE LSPs. The IGP-TE update threshold SHOULD allow for more frequent flooding of unreserved bandwidth. From an operational point of view, an implementation SHOULD be able to expose both the configured and the actual values of the Maximum-Reservable-Bandwidth.

If LSP preemption is not acceptable, then the RSVP-TE Maximum-Reservable-Bandwidth cannot be reduced below what is currently reserved by RSVP-TE on that interface. This may result in bandwidth not being available for SR traffic. Thus, it is required that any
external controller managing SR LSPs SHOULD be able to detect this situation (for example by subscribing to TED updates [RFC7752]) and SHOULD take action to reroute existing SR paths.

Generically, SR traffic (or any non-RSVP-TE traffic) should have its own priority allocated from the available priorities. This would allow SR to preempt other traffic according to the preemption priority order.

In this solution, the logic to retrieve the statistics, calculating averages and taking action to change the Maximum-Reservable-Bandwidth is an implementation choice, and all changes are local in nature. However, note that this is a new network trigger for RSVP-TE preemption and thus is a consideration for the operator.

The above solution offers the advantage of not introducing new network-wide mechanisms especially during scenarios of migrating to SR in an existing RSVP-TE network and reusing existing protocol mechanisms.

4. Acknowledgements

The authors would like to thank Steve Ulrich for his detailed review and comments.

5. Contributors

The following individuals contributed to this document:

Chandra Ramachandran
Juniper Networks
Email: csekar@juniper.net

Raveendra Torvi
Juniper Networks
Email: rtorvi@juniper.net

Sudharsana Venkataraman
Juniper Networks
Email: sudharsana@juniper.net

Martin Vigoureux
Nokia
Email: martin.vigoureux@nokia.com
6. IANA Considerations

This draft does not have any request for IANA.

7. Security Considerations

This document describes solution options for the co-existence of RSVP-TE and SR LSPs in the same administrative domain. The security considerations for SR are described in [I-D.ietf-spring-segment-routing]. The security considerations pertaining to RSVP-TE are described in [RFC5920]. The security considerations of each architecture are typically unaffected by the presence of the other. However, when RSVP-TE and SR LSPs co-exist, it is possible for a hijacked SR traffic stream to maliciously consume sufficient bandwidth and cause disruption to RSVP-TE LSPs. With the solution option specified in Section 3.5, the impact to RSVP-TE traffic can be controlled and paths re-routed. Some latent risk of disruption still remains because this solution option relies on taking statistics samples and adopting to new traffic flows only after the adjustment period. The defensive mechanisms described in the base SR security framework should be employed to guard against situations that result in SR traffic hijacking or denial of service.

8. References

8.1. Normative References

[I-D.ietf-spring-segment-routing]

8.2. Informative References

Appendix A. Multiplier value range

The following is a suggestion for the range of values for M:

M is a per-node positive real number that ranges from 0 to 2 with a default of 1 and may be expressed as a percentage.

- If M < 1, then the SR traffic average is being understated, which can result in the link getting full even though Maximum-Reservable-Bandwidth does not reach zero.

- If M > 1, then the SR traffic average is overstated, thereby resulting in the Maximum-Reservable-Bandwidth reaching zero before the link gets full. If the reduction of Maximum-Reservable-Bandwidth becomes a negative value, then a value of zero SHOULD be used and advertised.

Authors’ Addresses

Harish Sitaraman (editor)
Juniper Networks
1133 Innovation Way
Sunnyvale, CA 94089
US

Email: hsitaraman@juniper.net

Vishnu Pavan Beeram
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
US

Email: vbeeram@juniper.net
Ina Minei
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
US
Email: inaminei@google.com

Siva Sivabalan
Cisco Systems, Inc.
2000 Innovation Drive
Kanata, Ontario K2K 3E8
Canada
Email: msiva@cisco.com
Abstract

This document defines a YANG data model for the configuration and management of RSVP (Resource Reservation Protocol) to establish Traffic-Engineered (TE) Label-Switched Paths (LSPs) for MPLS (Multi-Protocol Label Switching) and other technologies.

The model defines a generic RSVP-TE module for signaling LSPs that is technology agnostic. The generic RSVP-TE module is to be augmented by technology specific RSVP-TE modules that define technology specific data. This document defines the augmentation for RSVP-TE MPLS LSPs model.

This model covers data for the configuration, operational state, remote procedural calls, and event notifications.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

1. Introduction

YANG [RFC6020] is a data definition language that was introduced to define the contents of a conceptual data store that allows networked devices to be managed using NETCONF [RFC6241]. YANG is proving relevant beyond its initial confines, as bindings to other interfaces (e.g. ReST) and encoding other than XML (e.g. JSON) are being defined. Furthermore, YANG data models can be used as the basis of implementation for other interfaces, such as CLI and programmatic APIs.
This document defines a generic YANG data model for configuring and managing RSVP-TE LSP(s) [RFC3209]. The RSVP-TE generic model augments the RSVP base and extended models defined in [I-D.ietf-teas-yang-rsvp], and adds TE extensions to the RSVP protocol [RFC2205] model configuration and state data. The technology specific RSVP-TE models augment the generic RSVP-TE model with additional technology specific parameters. For example, this document also defines the MPLS RSVP-TE model for configuring and managing MPLS RSVP TE LSP(s).

In addition to augmenting the RSVP YANG module, the modules defined in this document augment the TE Interfaces, Tunnels and LSP(s) YANG module defined in [I-D.ietf-teas-yang-te] to define additional parameters to enable signaling for RSVP-TE.

1.1. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

1.2. Tree Diagram

A simplified graphical representation of the data model is presented in each section of the model. The following notations are used for the YANG model data tree representation.
<status> <flags> <name> <opts> <type>

<status> is one of:
 + for current
 x for deprecated
 o for obsolete

<flags> is one of:
 rw for read-write configuration data
 ro for read-only non-configuration data
 -x for execution rpcs
 -n for notifications

<name> is the name of the node

If the node is augmented into the tree from another module, its name is printed as <prefix>:<name>

<opts> is one of:
 ? for an optional leaf or node
 ! for a presence container
 * for a leaf-list or list
 Brackets [<keys>] for a list’s keys
 Curly braces (<condition>) for optional feature that make node conditional
 Colon : for marking case nodes
 Ellipses ("...") subtree contents not shown

Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":").

<type> is the name of the type for leafs and leaf-lists.

1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.
Table 1: Prefixes and corresponding YANG modules

2. Design Considerations

2.1. Module Hierarchy

The data pertaining to RSVP-TE in this document is divided into two modules: a technology agnostic RSVP-TE module that holds generic parameters for RSVP-TE applicable to all technologies, and a technology specific RSVP-TE module (e.g. for MPLS RSVP-TE) that holds parameters specific to the technology.

This document defines YANG data models for RSVP-TE, and RSVP-TE MPLS configuration, state, notification and RPCs. The relationship between the different modules is depicted in Figure 1.
2.2. RSVP-TE Generic Model

The RSVP-TE generic module augments the RSVP base and extended YANG modules defined in [I-D.ietf-teas-yang-rsvp] as well as the TE tunnels and interfaces module [I-D.ietf-teas-yang-te] to cover parameters specific to the configuration and management of RSVP-TE interfaces, tunnels and LSP(s).

2.2.1. Tree Diagram

There are three types of configuration and state data nodes in this module:

- those augmenting or extending the base RSVP module
- those augmenting or extending the base TE module
- those that are specific to the RSVP-TE module

Below is a YANG tree representation for data items defined in the RSVP-TE generic module:

```
module: ietf-rsvp-te
  augment
```

Figure 1: Relationship of RSVP and RSVP-TE modules with other protocol modules
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
rsvp:rsvp/rsvp:globals:
 +--rw global-soft-preemption!
 +--rw soft-preemption-timeout? uint16
augment
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
rsvp:rsvp/rsvp:interfaces:
 +--rw rsvp-te-interface-attributes
 +--ro state
augment
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
rsvp:rsvp/rsvp:globals/rsvp:sessions/rsvp:session/rsvp:state/
rsvp:psbs/rsvp:psb:
 +--ro tspec-average-rate? rt-types:bandwidth-ieee-float32
 +--ro tspec-size? rt-types:bandwidth-ieee-float32
 +--ro tspec-peak-rate? rt-types:bandwidth-ieee-float32
 +--ro min-policed-unit? uint32
 +--ro max-packet-size? uint32
augment
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
rsvp:rsvp/rsvp:globals/rsvp:sessions/rsvp:session/rsvp:state/
rsvp:rsbs/rsvp:rsb:
 +--ro fspec-average-rate? rt-types:bandwidth-ieee-float32
 +--ro fspec-size? rt-types:bandwidth-ieee-float32
 +--ro fspec-peak-rate? rt-types:bandwidth-ieee-float32
 +--ro min-policed-unit? uint32
 +--ro max-packet-size? uint32
augment
/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/
rsvp:rsvp/rsvp:neighbors:
augment /te:te/te:tunnels/te:tunnel:
 +--rw lsp-signaled-name? string
 +--rw local-recording-desired? boolean
 +--rw se-style-desired? boolean
 +--rw path-reevaluation-request? boolean
 +--rw soft-preemption-desired? boolean
 +--rw lsp-rerouting? enumeration
 +--rw lsp-integrity-required? boolean
 +--rw lsp-contiguous? boolean
 +--rw lsp-stitching-desired? boolean
 +--rw lsp-preplanned? boolean
 +--rw lsp-oob-mapping? boolean
 +--rw retry-timer? uint16

augment /te:te:tunnels/te:tunnel/te:state:
 +--ro lsp-signaled-name? string
 +--ro local-recording-desired? boolean
 +--ro se-style-desired? boolean
 +--ro path-reevaluation-request? boolean
 +--ro soft-preemption-desired? boolean
 +--ro lsp-rerouting? enumeration
 +--ro lsp-integrity-required? boolean
 +--ro lsp-contiguous? boolean
 +--ro lsp-stitching-desired? boolean
 +--ro lsp-preplanned? boolean
 +--ro lsp-oob-mapping? boolean
 +--ro retry-timer? uint16

augment /te:te:lsps-state/te:lsp:
 +--ro associated-rsvp-session? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/
 rsvp:rsvp/globals/sessions/session/local-index
 +--ro lsp-signaled-name? string
 +--ro local-recording-desired? boolean
 +--ro se-style-desired? boolean
 +--ro path-reevaluation-request? boolean
 +--ro soft-preemption-desired? boolean
 +--ro lsp-rerouting? enumeration
 +--ro lsp-integrity-required? boolean
 +--ro lsp-contiguous? boolean
 +--ro lsp-stitching-desired? boolean
 +--ro lsp-preplanned? boolean
 +--ro lsp-oob-mapping? boolean
 +--ro retry-timer? uint16

 +--ro explicit-route-objects
 +--ro incoming-explicit-route-hop* [index]
 +--ro index -> ../state/index
 +--ro state
 +--ro index? uint32
 +--ro (type)?
 +---:(numbered)
 +--ro numbered-hop
 | +--ro address? te-types:te-tp-id
 | +--ro hop-type? te-hop-type
 | +--ro direction? te-link-direction
 +---:(as-number)
 +--ro as-number-hop
 | +--ro as-number? binary
 | +--ro hop-type? te-hop-type
 +---:(unnumbered)
 +--ro unnumbered-hop
 | +--ro node-id? te-types:te-node-id
 | +--ro link-tp-id? te-types:te-tp-id
 | +--ro hop-type? te-hop-type
Internet-Draft RSVP YANG Data Model February 2018

| | +--ro link-tp-id? te-types:te-tp-id
| | +--:(label)
| | +--ro value? rt-types:generalized-label
| | +--ro label-flags? binary
| +--ro outgoing-record-route-subobjects
| +--ro outgoing-record-route-subobject* [index]
| +--ro index -> ../state/index
| +--ro state
| | +--ro index? uint32
| | +--ro (type)?
| | +--:(numbered)
| | | +--ro address? te-types:te-tp-id
| | | +--ro ip-flags? binary
| | +--:(unnumbered)
| | | +--ro node-id? te-types:te-node-id
| | | +--ro link-tp-id? te-types:te-tp-id
| | +--:(label)
| | +--ro value? rt-types:generalized-label
| | +--ro label-flags? binary
| augment
| /te:te/te:tunnels/te:tunnel/te:p2p-primary-paths/te:p2p-primary-path/
| te:state/te:lsp/te:lsp:
| +--ro associated-rsvp-session? ->
| /rt:routing/control-plane-protocols/control-plane-protocol/
| rsvp:rsvp/globals/sessions/session/local-index
| +--ro lsp-signaled-name? string
| +--ro local-recording-desired? boolean
| +--ro se-style-desired? boolean
| +--ro path-reevaluation-request? boolean
| +--ro soft-preemption-desired? boolean
| +--ro lsp-rerouting? enumeration
| +--ro lsp-integrity-required? boolean
| +--ro lsp-contiguous? boolean
| +--ro lsp-stitching-desired? boolean
| +--ro lsp-preplanned? boolean
| +--ro lsp-oob-mapping? boolean
| +--ro explicit-route-objects
| | +--ro incoming-explicit-route-hop* [index]
| | +--ro index -> ../state/index
| | +--ro state
| | | +--ro index? uint32
| | | +--ro (type)?
| | | +--:(numbered)
| | | | +--ro numbered-hop
| | | | +--ro address? te-types:te-tp-id
| | | | +--ro hop-type? te-hop-type
| | | | +--ro direction? te-link-direction
| | | +--:(as-number)
++--ro state
 ++--ro index? uint32
 ++--ro (type)?
 ++--:(numbered)
 ++--ro address? te-types:te-tp-id
 ++--ro ip-flags? binary
 ++--:(unnumbered)
 ++--ro node-id? te-types:te-node-id
 ++--ro link-tp-id? te-types:te-tp-id
 ++--:(label)
 ++--ro value? rt-types:generalized-label
 ++--ro label-flags? binary
 ++--ro outgoing-record-route-subobjects
++--ro outgoing-record-route-subobject* [index]
++--ro index --> ../state/index
++--ro state
 ++--ro index? uint32
 ++--ro (type)?
 ++--:(numbered)
 ++--ro address? te-types:te-tp-id
 ++--ro ip-flags? binary
 ++--:(unnumbered)
 ++--ro node-id? te-types:te-node-id
 ++--ro link-tp-id? te-types:te-tp-id
 ++--:(label)
 ++--ro value? rt-types:generalized-label
 ++--ro label-flags? binary

augment
/te:te/te:tunnels/te:tunnel/te:p2p-secondary-paths/
te:p2p-secondary-path/te:state/te:lsp/te:lsp:
 ++--ro associated-rsvp-session? -->
/rt:routing/control-plane-protocols/control-plane-protocol/
 rsvp:rsvp/globals/sessions/session/local-index
 ++--ro lsp-signaled-name? string
 ++--ro local-recording-desired? boolean
 ++--ro se-style-desired? boolean
 ++--ro path-reevaluation-request? boolean
 ++--ro soft-preemption-desired? boolean
 ++--ro lsp-rerouting? enumeration
 ++--ro lsp-integrity-required? boolean
 ++--ro lsp-contiguous? boolean
 ++--ro lsp-stitching-desired? boolean
 ++--ro lsp-preplanned? boolean
 ++--ro lsp-oob-mapping? boolean
++--ro explicit-route-objects
 ++--ro incoming-explicit-route-hop* [index]
 ++--ro index --> ../state/index
 ++--ro state
2.2.2. YANG Module

<CODE BEGINS> file "ietf-rsvp-te@2018-02-19.yang"
module ietf-rsvp-te {

 namespace "urn:ietf:params:xml:ns:yang:ietf-rsvp-te";

 prefix "rsvp-te";

Figure 2: RSVP-TE model Tree diagram
import ietf-rsvp {
 prefix rsvp;
}

import ietf-routing {
 prefix "rt";
}

import ietf-routing-types {
 prefix rt-types;
}

import ietf-te {
 prefix te;
}

import ietf-te-device {
 prefix te-dev;
}

/* Import TE generic types */
import ietf-te-types {
 prefix te-types;
}

organization
"IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/teas/>
WG List: <mailto:teas@ietf.org>
WG Chair: Lou Berger
<mailto:lberger@labn.net>
WG Chair: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>
Editor: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>
Editor: Tarek Saad
<mailto:tsaad@cisco.com>
Editor: Rakesh Gandhi
<mailto:rgandhi@cisco.com>
grouping lsp-record-route-information_state {
 description "recorded route information grouping";
 container incoming-record-route-subobjects {
 description "RSVP recorded route object incoming information";
 list incoming-record-route-subobject {
 when "../../te:origin-type != 'ingress'" {
 description "Applicable on non-ingress LSPs only";
 }
 key "index";
 description "List of RSVP Path record-route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "RRO subobject index";
 }
 container state {
 config false;
 description "";
 }
 }
 }
}

/**
 * RSVP-TE LSPs groupings.
 */

/*
* This module contains the RSVP-TE YANG generic data model."
*/
"State parameters for the record route hop";
uses te-types:record-route-subobject_state;
}
}
}
container outgoing-record-route-subobjects {
 description "RSVP recorded route object outgoing information";
 list outgoing-record-route-subobject {
 when "../..//te:origin-type != 'egress'" {
 description "Applicable on non-egress LSPs only";
 }
 key "index";
 description
 "List of RSVP Resv record-route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "RRO subobject index";
 }
 }
 container state {
 config false;
 description
 "State parameters for the record route hop";
 uses te-types:record-route-subobject_state;
 }
}
}

grouping lsp-explicit-route-information_state {
 description "RSVP-TE LSP explicit-route information";
 container explicit-route-objects {
 description "Explicit route object information";
 list incoming-explicit-route-hop {
 when "../..//te:origin-type != 'ingress'" {
 description "Applicable on non-ingress LSPs only";
 }
 key "index";
 description
 "List of incoming RSVP Path explicit-route objects";
 leaf index {
 type leafref {
 path "../state/index";
 }
 description "ERO subobject index";
 }
 }
 }
 container state {

config false;
description
 "State parameters for the explicit route hop";
 uses te-types:explicit-route-hop;

}
}
list outgoing-explicit-route-hop {
 when ".//te:origin-type != 'egress'" {
 description "Applicable on non-egress LSPs only";
 }
key "index";
description
 "List of outgoing RSVP Path explicit-route objects";
leaf index {
 type leafref {
 path ".//state/index";
 }
 description "ERO subobject index";
}
container state {
 config false;
description
 "State parameters for the explicit route hop";
 uses te-types:explicit-route-hop;
}
}
}

grouping lsp-attributes-flags_config {
description
 "Configuration parameters relating to RSVP-TE LSP
 attribute flags";
leaf lsp-rerouting {
 type enumeration {
 enum end-to-end-routing {
 description
 "End-to-end routing desired";
 reference "RFC4920, RFC5420";
 }
 enum boundary-rerouting {
 description
 "Boundary rerouting desired";
 reference "RFC4920, RFC5420";
 }
 enum segment-based-rerouting {
 description
 "Segment-based rerouting desired";
 }
 enum LSP-protection {
 description
 "LSP protection desired";
 reference "RFC4920, RFC5420";
 }
 enum LSP-failure-mode {
 description
 "LSP failure mode desired";
 reference "RFC4920, RFC5420";
 }
 }
}

leaf lsp-integrity-required {
 type boolean;
 description "LSP integrity desired";
 reference "RFC4875";
}
leaf lsp-contiguous {
 type boolean;
 description "Contiguous LSP";
 reference "RFC5151";
}
leaf lsp-stitching-desired {
 type boolean;
 description "Stitched LSP";
 reference "RFC5150";
}
leaf lsp-preplanned {
 type boolean;
 description "Preplanned LSP";
 reference "RFC6001";
}
leaf lsp-oob-mapping {
 type boolean;
 description "Mapping is done out-of-band";
 reference "RFC6511";
}

grouping lsp-session-attributes-obj-flags_config {
 description "Configuration parameters relating to RSVP-TE LSP session attribute flags";
 reference "RFC4859: Registry for RSVP-TE Session Flags";
 leaf local-recording-desired {
 type boolean;
 description "Path recording is desired.";
 reference "RFC3209";
 }
 leaf se-style-desired {
 type boolean;
 description "SE Style desired";
 reference "RFC3209";
 }
}
leaf path-reevaluation-request {
 type boolean;
 description "Path re-evaluation request";
 reference "RFC4736";
}

leaf soft-preemption-desired {
 type boolean;
 description "Soft-preemption is desired";
 reference "RFC5712";
}

}

grouping lsp-properties_config {
 description
 "Configuration parameters relating to RSVP-TE LSP
 session attribute flags";
 leaf lsp-signaled-name {
 type string;
 description
 "Sets the session name to use in the session
 attribute object.";
 }
 uses lsp-session-attributes-obj-flags_config;
 uses lsp-attributes-flags_config;
}

grouping tunnel-properties_config {
 description "RSVP-TE Tunnel properties grouping";
 leaf retry-timer {
 type uint16 {
 range 1..600;
 }
 units seconds;
 description
 "sets the time between attempts to establish the
 LSP";
 }
}

/*** End of RSVP-TE LSP groupings ***/

/**
 * RSVP-TE generic global properties.
 */

grouping global-soft-preemption_config {
 description
"Configuration for global RSVP-TE soft preemption";
leaf soft-preemption-timeout {
 type uint16 {
 range 0..300;
 }
default 0;
description "Timeout value for soft preemption to revert to hard preemption";
}

grouping global-soft-preemption {
 description "Top level group for RSVP-TE soft-preemption";
 container global-soft-preemption {
 presence "Enables soft preemption on a node.";
 description "Top level container for RSVP-TE soft-preemption";
 uses global-soft-preemption_config;
 }
}

/*** End of RSVP-TE generic global properties. ***/

/*** End of RSVP-TE generic groupings ***/

/* RSVP-TE interface generic groupings. */

grouping rsvp-te-interface-attributes {
 description "Top level grouping for RSVP-TE interface properties.";
 container rsvp-te-interface-attributes {
 description "Top level container for RSVP-TE interface properties";
 container state {
 config false;
 description "State information associated with RSVP-TE bandwidth";
 }
 }
}

/*** End of RSVP-TE generic groupings ***/

/* RSVP-TE global properties */
augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:globals" {
 description
 "RSVP-TE augmentation to RSVP globals";
 uses global-soft-preemption;
}

/* Linkage to the base RSVP all links */
 description
 "RSVP-TE generic data augmentation pertaining to interfaces";
 uses rsvp-te-interface-attributes;
}

/* Linkage to per RSVP interface */
 description
 "RSVP-TE generic data augmentation pertaining to specific interface";
 uses rsvp-te-interface-attributes;
}

/* add augmentation for sessions and neighbors */
 description
 "RSVP-TE generic data augmentation pertaining to session";
 /* To be added */
 leaf tspec-average-rate {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Tspec Token Bucket Average Rate";
 reference "RFC2210: RSVP with INTSERV";
 }
 leaf tspec-size {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Tspec Token Bucket Burst Rate";
 reference "RFC2210";
 }
 leaf tspec-peak-rate {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Tspec Token Bucket Peak Data Rate";
 reference "RFC2210";
}
leaf min-policed-unit {
 type uint32;
 description "Ts遇上 Minimum Policed Unit";
 reference "RFC2210";
}
leaf max-packet-size {
 type uint32;
 description "Ts遇上 Maximum Packet Size";
 reference "RFC2210";
}

augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:globals/"
+ "rsvp:sessions/rsvp:session/rsvp:state/rsvp:rsbs/rsvp:rsb" {
 description "RSVP-TE generic data augmentation pertaining to session";
 leaf fspec-average-rate {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Fspec Token Bucket Average Rate";
 reference "RFC2210";
 }
 leaf fspec-size {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Fspec Token Bucket Burst Rate";
 reference "RFC2210";
 }
 leaf fspec-peak-rate {
 type rt-types:bandwidth-ieee-float32;
 units "Bytes per second";
 description "Fspec Token Bucket Peak Data Rate";
 reference "RFC2210";
 }
 leaf min-policed-unit {
 type uint32;
 description "Fspec Minimum Policed Unit";
 reference "RFC2210";
 }
 leaf max-packet-size {
 type uint32;
 description "Fspec Maximum Packet Size";
 reference "RFC2210";
 }
}

augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:neighbors" {
 description
 "RSVP-TE generic data augmentation pertaining to neighbors";
 /* To be added */
}

/**
 * RSVP-TE generic augmentations of generic TE model.
 */

/* TE tunnel augmentation */
augment "/te:te/te:tunnels/te:tunnel" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p-primary-paths/te:p2p-primary-path" +
 "/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the path signaling protocol is RSVP-TE ";
 }
 description
 "RSVP-TE generic data augmentation pertaining to TE tunnels";
 uses lsp-properties_config;
 uses tunnel-properties_config;
}

augment "/te:te/te:tunnels/te:tunnel/te:state" {
 when "/te:te/te:tunnels/te:tunnel" +
 "/te:p2p-primary-paths/te:p2p-primary-path" +
 "/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the path signaling protocol is RSVP-TE ";
 }
 description
 "RSVP-TE generic data augmentation pertaining to TE tunnels";
 uses lsp-properties_config;
 uses tunnel-properties_config;
}

/* TE LSP augmentation */
grouping rsvp-te-lsp-properties {
 description "RSVP-TE LSP properties grouping";
 leaf associated-rsvp-session {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol/rsvp:rsvp/rsvp:globals/"
 + "rsvp:sessions/rsvp:session/rsvp:local-index";
 }
 description
 "If the signalling protocol specified for this path is
RSVP-TE, this leaf provides a reference to the associated session within the RSVP-TE protocol sessions list, such that details of the signaling can be retrieved.

uses lsp-properties_config;
uses lsp-explicit-route-information_state;
uses lsp-record-route-information_state;

augment "/te:te/te:lsps-state/te:lsp" {
 when "/te:te/te:lsps-state/te:lsp" +
 "/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
 }
 description
 "RSVP-TE generic data augmentation pertaining to specific TE LSP";
 uses rsvp-te-lsp-properties;
}

augment "/te:te:tunnels/te:tunnel/te:p2p-primary-paths" +
 "/te:p2p-primary-path/te:state/te:lsps/te:lsp" {
 when "/te:te:tunnels/te:tunnel/te:p2p-primary-paths" +
 "/te:p2p-primary-path/te:state/te:lsps/te:lsp" +
 "/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
 }
 description
 "RSVP-TE generic data augmentation pertaining to specific TE LSP";
 uses rsvp-te-lsp-properties;
}

augment "/te:te:tunnels/te:tunnel/te:p2p-secondary-paths" +
 "/te:p2p-secondary-path/te:state/te:lsps/te:lsp" {
 when "/te:te:tunnels/te:tunnel/te:p2p-primary-paths" +
 "/te:p2p-primary-path/te:state/te:lsps/te:lsp" +
 "/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
 }
 description
 "RSVP-TE generic data augmentation pertaining to specific TE LSP";
 uses rsvp-te-lsp-properties;
2.3. RSVP-TE MPLS Model

The MPLS RSVP-TE YANG module augments the RSVP-TE generic module with parameters to configure and manage signaling of MPLS RSVP-TE LSPs. RSVP-TE YANG modules for other dataplane technologies (e.g., OTN or WDM) are outside the scope of this document and are defined in other documents.

2.3.1. Tree Diagram

The following are possible types of configuration and state data nodes in this module:

- those augmenting or extending the generic RSVP-TE module
- those augmenting or extending the TE module
- those that are specific to the RSVP-TE MPLS module

Below is a YANG tree representation for data items defined in the RSVP-TE MPLS module:

```yang
module: ietf-rsvp-te-mpls
    augment /rt:routing/rt:control-plane-protocols/
        rt:control-plane-protocol/rsvp:
            +--rw fast-reroute-local-revertive
            +--rw rsvp-frr-local-revert-delay? uint32
    augment /rt:routing/rt:control-plane-protocols/
        rt:control-plane-protocol/rsvp/rsvp:interfaces:
    augment /rt:routing/rt:control-plane-protocols/
        rt:control-plane-protocol/rsvp/rsvp:globals/
        rsvp:sessions/rsvp:session/rsvp:state:
```

Figure 3: RSVP TE generic YANG module
rt:control-plane-protocol/rsvp:rsvp/rsvp:neighbors:
augment /te:te/tunnels/te:tunnel:
 +--rw local-protection-desired? empty
 +--rw bandwidth-protection-desired? empty
 +--rw node-protection-desired? empty
 +--rw non-php-desired? empty
 +--rw entropy-label-cap? empty
 +--rw oam-mep-entities-desired? empty
 +--rw oam-mip-entities-desired? empty
augment /te:te/te:lsps-state/te:lsp:
 +--ro state
 | +--ro local-protection-desired? empty
 | +--ro bandwidth-protection-desired? empty
 | +--ro node-protection-desired? empty
 | +--ro non-php-desired? empty
 | +--ro entropy-label-cap? empty
 | +--ro oam-mep-entities-desired? empty
 | +--ro oam-mip-entities-desired? empty
 +--ro backup-info
 +--ro state
 +--ro backup-tunnel-name? string
 +--ro backup-frr-on? uint8
 +--ro backup-protected-lsp-num? uint32
augment /te:te/tunnels/te:tunnel/te:p2p-primary-paths/
 te:p2p-primary-path/te:state/te:lsps/te:lsp:
 +--ro state
 | +--ro local-protection-desired? empty
 | +--ro bandwidth-protection-desired? empty
 | +--ro node-protection-desired? empty
 | +--ro non-php-desired? empty
 | +--ro entropy-label-cap? empty
 | +--ro oam-mep-entities-desired? empty
 | +--ro oam-mip-entities-desired? empty
 +--ro backup-info
 +--ro state
 +--ro backup-tunnel-name? string
 +--ro backup-frr-on? uint8
 +--ro backup-protected-lsp-num? uint32
augment /te:te/tunnels/te:tunnel/te:p2p-secondary-paths/
 te:p2p-secondary-path/te:state/te:lsps/te:lsp:
 +--ro state
 | +--ro local-protection-desired? empty
 | +--ro bandwidth-protection-desired? empty
 | +--ro node-protection-desired? empty
 | +--ro non-php-desired? empty
 | +--ro entropy-label-cap? empty
 | +--ro oam-mep-entities-desired? empty
 | +--ro oam-mip-entities-desired? empty
+++ro backup-info
+++ro state
 +++ro backup-tunnel-name? string
 +++ro backup-frr-on? uint8
 +++ro backup-protected-lsp-num? uint32
++augment /te:te/te-dev:interfaces/te-dev:interface:
 +++rw bandwidth-mpls-reservable
 +++rw (bandwidth-value)?
 | +++:(absolute)
 | +++rw absolute-value? uint32
 ++:(percentage)
 | +++rw percent-value? uint32
 +++rw (bc-model-type)?
 +++:(bc-model-rdm)
 +++rw bc-model-rdm
 +++rw bandwidth-mpls-constraints
 +++rw maximum-reservable? uint32
 +++rw bc-value* uint32
 +++:(bc-model-mam)
 +++rw bc-model-mam
 +++rw bandwidth-mpls-constraints
 +++rw maximum-reservable? uint32
 +++rw bc-value* uint32
 +++:(bc-model-mar)
 +++rw bc-model-mar
 +++rw bandwidth-mpls-constraints
 +++rw maximum-reservable? uint32
 +++rw bc-value* uint32
++augment /te:te/te-dev:interfaces/te-dev:interface:
 +++rw rsvp-te-frr-backups
 +++rw (type)?
 +++:(static-tunnel)
 +++rw static-tunnel-backups
 +++rw static-backup* [backup-tunnel-name]
 +++rw backup-tunnel-name ->
 /te:te/tunnels/tunnel/name
 +++:(auto-tunnel)
 +++rw auto-tunnel-backups
 +++rw auto-backup-protection? identityref
 +++rw auto-backup-path-computation? identityref

Figure 4: RSVP-TE MPLS Tree diagram

2.3.2. YANG Module

<CODE BEGINS> file "ietf-rsvp-te-mpls@2018-02-19.yang"
module ietf-rsvp-te-mpls {

prefix "rsvp-te-mpls";

import ietf-rsvp {
 prefix "rsvp";
}

import ietf-routing {
 prefix "rt";
}

import ietf-te-mpls-types {
 prefix "te-mpls-types";
}

import ietf-te-types {
 prefix "te-types";
}

import ietf-te {
 prefix "te";
}

import ietf-te-device {
 prefix "te-dev";
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>
 WG Chair: Lou Berger
 <mailto:lberger@labn.net>
 WG Chair: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>
 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>
 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>
description
"Latest update to MPLS RSVP-TE YANG data model.";

revision "2018-02-19" {
 description "Update to MPLS RSVP-TE YANG initial revision.";
 reference "RFC3209, RFC6511, RFC6790, RFC7260, RFC4859, RFC4090";
}

/* RSVP-TE MPLS LSPs groupings */
grouping lsp-attributes-flags-mpls_config {
 description
 "Configuration parameters relating to RSVP-TE MPLS LSP
 attribute flags";
 leaf non-php-desired {
 type empty;
 description
 "Non-PHP is desired";
 reference "RFC6511";
 }
 leaf entropy-label-cap {
 type empty;
 description "Entropy label capability";
 reference "RFC6790";
 }
 leaf oam-mep-entities-desired {
 type empty;
 description "OAM MEP entities desired";
 reference "RFC7260";
 }
 leaf oam-mip-entities-desired {
type empty;
description "OAM MIP entities desired";
reference "RFC7260";
}
}
grouping lsp-session-attributes-obj-flags-mpls_config {
description "Configuration parameters relating to RSVP-TE MPLS LSP
session attribute flags";
reference "RFC4859: Registry for RSVP-TE Session Flags";
leaf local-protection-desired {
type empty;
description "Fastreroute local protection is desired.";
reference "RFC4859: Registry for RSVP-TE Session Flags";
}
leaf bandwidth-protection-desired {
type empty;
description "Request FRR bandwidth protection on LSRs if
present.";
reference "RFC4090";
}
leaf node-protection-desired {
type empty;
description "Request FRR node protection on LSRs if
present.";
reference "RFC4090";
}
}
grouping tunnel-properties-mpls_config {
description "Top level grouping for LSP properties.";
uses lsp-session-attributes-obj-flags-mpls_config;
uses lsp-attributes-flags-mpls_config;
}
grouping lsp-properties-mpls {
description "Top level grouping for LSP properties.";
container state {
config false;
description "Configuration applied parameters and state";
uses lsp-session-attributes-obj-flags-mpls_config;
uses lsp-attributes-flags-mpls_config;
}
/* End of RSVP-TE MPLS LSPs groupings */

/* MPLS RSVP-TE interface groupings */
grouping rsvp-te-interface_state {
 description
 "The RSVP-TE interface state grouping";
 leaf over-subscribed-bandwidth {
 type uint32;
 description
 "The amount of over-subscribed bandwidth on
 the interface";
 }
}

/* MPLS RSVP-TE interface groupings */
grouping rsvp-te-interface-softpreemption_state {
 description
 "The RSVP-TE interface preemptions state grouping";
 container interface-softpreemption-state {
 description
 "The RSVP-TE interface preemptions state grouping";
 leaf soft-preempted-bandwidth {
 type uint32;
 description
 "The amount of soft-preempted bandwidth on
 this interface";
 }
 }
}

list lsps {
 key
 "source destination tunnel-id lsp-id "+
 "extended-tunnel-id";
 description
 "List of LSPs that are soft-preempted";
 leaf source {
 type leafref {
 path "/te:te/te:lsps-state/te:lsp/"+
 "te:source";
 }
 description
 "Tunnel sender address extracted from
 SENDER_TEMPLATE object";
 reference "RFC3209";
 }
 leaf destination {
 type leafref {
path "/te:te/te:lsps-state/te:lsp/" +
 "te:destination";
}
description
"Tunnel endpoint address extracted from
 SESSION object";
reference "RFC3209";
}
leaf tunnel-id {
 type leafref {
 path "/te:te/te:lsps-state/te:lsp/" +
 "te:tunnel-id";
 }
description
"Tunnel identifier used in the SESSION
 that remains constant over the life
 of the tunnel.";
reference "RFC3209";
}
leaf lsp-id {
 type leafref {
 path "/te:te/te:lsps-state/te:lsp/" +
 "te:lsp-id";
 }
description
"Identifier used in the SENDER_TEMPLATE
 and the FILTER_SPEC that can be changed
 to allow a sender to share resources with
 itself.";
reference "RFC3209";
}
leaf extended-tunnel-id {
 type leafref {
 path "/te:te/te:lsps-state/te:lsp/" +
 "te:extended-tunnel-id";
 }
description
"Extended Tunnel ID of the LSP.";
reference "RFC3209";
}
leaf type {
 type leafref {
 path "/te:te/te:lsps-state/te:lsp/" +
 "te:type";
 }
description "LSP type P2P or P2MP";
}
grouping bandwidth-mpls-constraints {
 description "Bandwidth constraints.";
 container bandwidth-mpls-constraints {
 description "Holds the bandwidth constraints properties";
 leaf maximum-reservable {
 type uint32 {
 range "0..4294967295";
 }
 description "The maximum reservable bandwidth on the interface";
 }
 leaf-list bc-value {
 type uint32 {
 range "0..4294967295";
 }
 max-elements 8;
 description "The bandwidth constraint type";
 }
 }
}

grouping bandwidth-constraint-values {
 description "Packet bandwidth contraints values";
 choice value-type {
 description "Value representation";
 case percentages {
 container perc-values {
 uses bandwidth-mpls-constraints;
 description "Percentage values";
 }
 }
 case absolutes {
 container abs-values {
 uses bandwidth-mpls-constraints;
 description "Absolute values";
 }
 }
 }
}
grouping bandwidth-mpls-reservable_config {
 description "Interface bandwidth reservable configuration grouping";
 choice bandwidth-value {
 description "Reservable bandwidth configuration choice";
 case absolute {
 leaf absolute-value {
 type uint32;
 description "Absolute value of the bandwidth";
 }
 }
 case percentage {
 leaf percent-value {
 type uint32 {
 range "0..4294967295";
 }
 description "Percentage reservable bandwidth";
 }
 description "The maximum reservable bandwidth on the interface";
 }
 }
 choice bc-model-type {
 description "Reservable bandwidth percentage capacity values.";
 case bc-model-rdm {
 container bc-model-rdm {
 description "Russian Doll Model Bandwidth Constraints.";
 uses bandwidth-mpls-constraints;
 }
 }
 case bc-model-mam {
 container bc-model-mam {
 uses bandwidth-mpls-constraints;
 description "Maximum Allocation Model Bandwidth Constraints.";
 }
 }
 case bc-model-mar {
 container bc-model-mar {
 uses bandwidth-mpls-constraints;
 description
 }
 }
 }
}

"Maximum Allocation with Reservation Model
Bandwidth Constraints."

/* End of RSVP-TE interface groupings */

/* RSVP-TE FRR groupings */
grouping rsvp-te-frr-auto-tunnel-backup_config {
 description "Auto-tunnel backup configuration grouping";
 leaf auto-backup-protection {
 type identityref {
 base te-mpls-types:backup-protection-type;
 }
 default te-mpls-types:backup-protection-node-link;
 description "Describes whether the backup should offer
 protection against link, node, or either";
 }
 leaf auto-backup-path-computation {
 type identityref {
 base te-types:path-computation-srlg-type;
 }
 description "FRR backup computation type";
 }
}

grouping rsvp-te-frr-backups_config {
 description "Top level container for RSVP-TE FRR backup parameters";
 choice type {
 description "FRR backup tunnel type";
 }
case static-tunnel {
 container static-backups {
 description "List of static backups";
 list static-backup {
 key "backup-tunnel-name";
 description "List of static backup tunnels that protect the RSVP-TE interface.";
 leaf backup-tunnel-name {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 description "FRR Backup tunnel name";
 }
 }
 }
}

case auto-tunnel {
 container auto-tunnel-backups {
 description "Auto-tunnel choice";
 uses rsvp-te-frr-auto-tunnel-backup_config;
 }
}

grouping rsvp-te-frr-backups {
 description "RSVP-TE facility backup grouping";
 container rsvp-te-frr-backups {
 description "RSVP-TE facility backup properties";
 uses rsvp-te-frr-backups_config;
 }
}

grouping lsp-backup-info_state {
 description "LSP backup information grouping";
 leaf backup-tunnel-name {
 type string;
 description "If an LSP has an FRR backup LSP that can protect it, this field identifies the tunnel name of the backup LSP. Otherwise, this field is empty.";
 }
 leaf backup-frr-on {
 type uint8;
 description "";
 }
}
"Whether currently this backup is carrying traffic";
} }
leaf backup-protected-lsp-num {
 type uint32;
 description
 "Number of LSPs protected by this backup";
}
}

grouping lsp-backup-info {
 description "Backup/bypass LSP related information";
 container backup-info {
 description
 "backup information";
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses lsp-backup-info_state;
 }
 }
}

grouping fast-reroute-local-revertive_config {
 description "RSVP-TE FRR local revertive grouping";
 leaf rsvp-frr-local-revert-delay {
 type uint32;
 description
 "Time to wait after primary link is restored before node attempts local revertive procedures.";
 }
}

/*** End of RSVP-TE FRR backup information ***/

grouping fast-reroute-local-revertive {
 description
 "Top level grouping for globals properties";
 container fast-reroute-local-revertive {
 description "RSVP-TE FRR local revertive container";
 uses fast-reroute-local-revertive_config;
 }
}

/* RSVP-TE global properties */
augment "/rt:routing/rt:control-plane-protocols/
+ "rt:control-plane-protocol/rsvp:rsvp" {
description
 "RSVP-TE augmentation to RSVP globals";
 uses fast-reroute-local-revertive;
}

/* Linkage to the base RSVP all interfaces */
augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:interfaces" {
 description
 "Augmentations for RSVP-TE MPLS all interfaces properties";
 /* To be added */
}

/* Linkage to per RSVP interface */
augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:interfaces" +
 "rsvp:interface" {
 description
 "Augmentations for RSVP-TE MPLS per interface properties";
 /* To be added */
}

/* add augmentation for sessions neighbors */
augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:globals/"
+ "rsvp:sessions/rsvp:session/rsvp:state" {
 description
 "Augmentations for RSVP-TE MPLS sessions";
 /* To be added */
}

augment "/rt:routing/rt:control-plane-protocols/"
+ "rt:control-plane-protocol/rsvp:rsvp/rsvp:neighbors" {
 description
 "Augmentations for RSVP-TE MPLS neighbors properties";
 /* To be added */
}

/**
 * Augmentation to TE generic module
 */
augment "/te:te:te:tunnels/te:tunnel" {
 description
 "Augmentations for RSVP-TE MPLS TE tunnel properties";
 uses tunnel-properties-mpls_config;
}

augment "/te:te:lsps-state/te:lsp" {

when "/te:te/te:lsps-state/te:lsp" +
"/te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
}

description
"RSVP-TE MPLS LSP state properties";
uses lsp-properties-mpls;
uses lsp-backup-info;
}

augment "/te:te/te:tunnels/te:tunnel/te:p2p-primary-paths" +
"/te:p2p-primary-path/te:state/te:lsps/te:lsp" {
when "/te:te/te:tunnels/te:tunnel" +
"/te:p2p-secondary-paths/te:p2p-secondary-path/" +
"te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
}

description
"RSVP-TE MPLS LSP state properties";
uses lsp-properties-mpls;
uses lsp-backup-info;
}

augment "/te:te/te:tunnels/te:tunnel/te:p2p-secondary-paths" +
"/te:p2p-secondary-path/te:state/te:lsps/te:lsp" {
when "/te:te/te:tunnels/te:tunnel" +
"/te:p2p-secondary-paths/te:p2p-secondary-path/" +
"te:path-setup-protocol = 'te-types:path-setup-rsvp'" {
 description
 "When the signaling protocol is RSVP-TE ";
}

description
"RSVP-TE MPLS LSP state properties";
uses lsp-properties-mpls;
uses lsp-backup-info;
}

augment "/te:te/te-dev:interfaces/te-dev:interface" {
 description
 "RSVP reservable bandwidth configuration properties";
 uses bandwidth-mpls-reservable;
}

augment "/te:te/te-dev:interfaces/te-dev:interface" {
 description
 "RSVP reservable bandwidth configuration properties";
uses rsvp-te-frr-backups;
"
<CODE ENDS>

Figure 5: RSVP TE MPLS YANG module

Figure 5 shows the YANG tree representation of the RSVP TE MPLS module that augments RSVP-TE module as well as RSVP and TE YANG modules.

3. IANA Considerations

This document registers the following URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-rsvp-te XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC6020].

4. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC6536] provides means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operations and content.

There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., <edit-config>)
to these data nodes without proper protection can have a negative effect on network operations.

5. Acknowledgement

The authors would like to thank Lou Berger for reviewing and providing valuable feedback on this document.

6. Contributors

Xia Chen
Huawei Technologies
Email: jescia.chenxia@huawei.com

Raqib Jones
Brocade
Email: raqib@Brocade.com

Bin Wen
Comcast
Email: Bin_Wen@cable.comcast.com

7. Normative References

[I-D.ietf-teas-yang-rsvp]

[I-D.ietf-teas-yang-te]

Authors' Addresses

Vishnu Pavan Beeram
Juniper Networks

Email: vbeeram@juniper.net
Internet-Draft RSVP YANG Data Model February 2018

Tarek Saad (editor)
Cisco Systems, Inc.
Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems, Inc.
Email: rgandhi@cisco.com

Xufeng Liu
Jabil
Email: Xufeng_Liu@jabil.com

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Himanshu Shah
Ciena
Email: hshah@ciena.com
A YANG Data Model for Traffic Engineering Tunnels and Interfaces
draft-ietf-teas-yang-te-16

Abstract

This document defines a YANG data model for the configuration and management of Traffic Engineering (TE) interfaces, tunnels and Label Switched Paths (LSPs). The model is divided into YANG modules that classify data into generic, device-specific, technology agnostic, and technology-specific elements. The model also includes module(s) that contain reusable TE data types and data groupings.

This model covers data for configuration, operational state, remote procedural calls, and event notifications.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 2, 2019.
1. Introduction

YANG [RFC6020] is a data definition language that was introduced to define the contents of a conceptual data store that allows networked devices to be managed using NETCONF [RFC6241]. YANG is proving relevant beyond its initial confines, as bindings to other interfaces (e.g. RESTCONF [RFC8040]) and encoding other than XML (e.g. JSON) are being defined. Furthermore, YANG data models can be used as the basis of implementation for other interfaces, such as CLI and programmatic APIs.

This document describes the YANG data models for TE Tunnels, Label Switched Paths (LSPs) and TE interfaces that cover data applicable to generic or device-independent, device-specific, Multiprotocol Label Switching (MPLS) technology specific, and Segment Routing (SR) TE technology. It also describes helper modules that define TE grouping(s) and data types that can be imported by other modules.

The document defines the high-level relationship between the modules defined in this document, as well as other external protocol modules. It is expected other data plane technology model(s) will augment the TE generic model. Also, the TE generic model does not include any data specific to a signaling protocol. It is expected YANG models for TE signaling protocols, such as RSVP-TE ([RFC3209], [RFC3473]), or Segment-Routing TE (SR-TE) will augment the TE generic module.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

1.2. Tree Diagram

A simplified graphical representation of the data model is presented in each section of the model. The following notations are used for the YANG model data tree representation.
<status> <flags> <name> <opts> <type>

<status> is one of:
+ for current
x for deprecated
o for obsolete

<flags> is one of:
 rw for read-write configuration data
 ro for read-only non-configuration data
 -x for execution rpcs
 -n for notifications

=name> is the name of the node

If the node is augmented into the tree from another module, its name is printed as <prefix>::<name>

<opts> is one of:
 ? for an optional leaf or node
 ! for a presence container
 * for a leaf-list or list
 Brackets [<keys>] for a list’s keys
 Curly braces (<condition>) for optional feature that make node conditional
 Colon : for marking case nodes
 Ellipses ("...") subtree contents not shown

Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":")

<type> is the name of the type for leaves and leaf-lists.

1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.
1.4. TE Technology Models

This document describes the generic TE YANG data model that is independent of any dataplane technology. One of the design objectives is to allow specific data plane technologies models to reuse the generic TE data model and possibly augment it with technology specific data model(s). There are multiple options being considered to achieve this:

- The generic TE model, including the lists of TE tunnels, LSPs, and interfaces can be defined and rooted at the top of the YANG tree. Specific leaf(s) under the TE tunnel, LSP, or interface, in this case, can identify the specific technology layer that it belongs to. This approach implies a single list for each of TE tunnel(s), LSP(s), and interface(s) in the model carries elements of different technology layers.

- An instance of the generic TE YANG model can be mounted in the YANG tree once for each TE technology layer(s). This approach provides separation of elements belonging to different technology layers into separate lists per layer in the data model.

- The generic TE data node(s) and TE list(s) for tunnels, LSPs, and interfaces are defined as grouping(s) in a separate module. The specific technology layer imports the generic TE groupings and uses them their respective technology specific module.

This revision of the model leverages the LSP encoding type of a tunnel (and interfaces) to identify the specific technology associated with the a TE interfaces, tunnel(s) and the LSP(s). For example, for an MPLS TE LSP, the LSP encoding type is assumed to be "lsp-encoding-packet".
Finally, the TE generic model does not include any signaling protocol data. It is expected that TE signaling protocol module(s) will be defined in other document(s) that will cover the RSVP-TE ([RFC3209], [RFC3473]), and Segment-Routing TE (SR-TE) model and that augment the TE generic model.

1.5. State Data Organization

Pure state data (for example, ephemeral or protocol derived state objects) can be modeled using one of the options below:

- Contained inside a read-write container, in a "state" sub-container, as shown in Figure 3
- Contained inside a separate read-only container, for example a lsps-state container

The Network Management Datastore Architecture (NMDA) addresses the "OpState" that was discussed in the IETF. As per NMDA guidelines for new models and models that are not concerned with the operational state of configuration information, this revision of the draft adopts the NMDA proposal for configuration and state data of this model.

2. Model Overview

The data model defined in this document covers the core TE features that are commonly supported across different vendor implementations. The support of extended or vendor specific TE feature(s) are expected to be in augmentations to the data models defined in this document.

2.1. Module(s) Relationship

The TE generic model defined in "ietf-te.yang" covers the building blocks that are device independent and agnostic of any specific technology or control plane instances. The TE device model defined in "ietf-te-device.yang" augments the TE generic model and covers data that is specific to a device – for example, attributes of TE interfaces, or TE timers that are local to a TE node.

The TE data relevant to a specific instantiations of data plane technology exists in a separate YANG module(s) that augment the TE generic model. For example, the MPLS-TE module "ietf-te-mpls.yang" is defined in Figure 10 and augments the TE generic model as shown in Figure 1. Similarly, the module "ietf-te-sr-mpls.yang" models the Segment Routing (SR) TE specific data and augments the TE generic and MPLS-TE model(s).
The TE data relevant to a TE specific signaling protocol instantiation is outside the scope and is covered in other documents. For example, the RSVP-TE [RFC3209] YANG model augmentation of the TE model is covered in [I-D.ietf-teas-yang-rsvp], and other signaling protocol model(s) (e.g. for Segment-Routing TE) are expected to also augment the TE generic model.

Figure 1: Relationship of TE module(s) with other signaling protocol modules
2.2. Design Considerations

The following considerations with respect data organization are taken into account:

- reusable data elements are grouped into separate TE types module(s) that can be readily imported by other modules whenever needed
- reusable TE data types that are data plane independent are grouped in the TE generic types module "ietf-te-types.yang"
- reusable TE data elements that are data plane specific (e.g. packet MPLS or switching technologies as defined in [RFC3473]) are expected to be grouped in a technology-specific types module, e.g. "ietf-te-mpls-types.yang". It is expected that technology specific types will augment TE generic types as shown in Figure 2
- The TE generic model contains device independent data and can be used to model data off a device (e.g. on a controller). The TE data that is device-specific are grouped in a separate module as shown in Figure 1.
- In general, little information in the model is designated as "mandatory", to allow freedom to vendors to adapt the data model to their specific product implementation.
2.3. Optional Features

Optional features that are beyond the base TE model are left to the specific vendor to decide support using vendor model augmentation and/or using feature checks.

This model declares a number of TE functions as features (such as P2MP-TE, soft-preemption etc.).

2.4. Configuration Inheritance

The defined data model supports configuration inheritance for tunnels, paths, and interfaces. Data elements defined in the main container (e.g. that encompasses the list of tunnels, interfaces, or paths) are assumed to apply equally to all elements of the list, unless overridden explicitly for a certain element of a list (e.g. a tunnel, interface or path).

3. TE Generic Model Organization

The TE generic model covers configuration, state, RPCs, and notifications data pertaining to TE global parameters, interfaces, tunnels and LSPs parameters that are device independent.

The container "te" is the top level container in this data model. The presence of this container is expected to enable TE function system wide.

The model follows the guidelines in for modeling the intended, applied and derived state.
module: ietf-te
 +--rw te!
 +--rw globals
 .
 .

 +--rw tunnels
 .
 .

 +-- lsps-state

rpcs:
 +---x globals-rpc
 +---x tunnels-rpc

notifications:
 +---n globals-notif
 +---n tunnels-notif

Figure 3: TE generic highlevel model view

3.1. Global Configuration and State Data

This branch of the data model covers configurations that control TE features behavior system-wide, and its respective state. Examples of such configuration data are:

- Table of named SRLG mappings
- Table of named (extended) administrative groups mappings
- Table of named explicit paths to be referenced by TE tunnels
- Table of named path-constraints sets
- Auto-bandwidth global parameters
- TE diff-serve TE-class maps
- System-wide capabilities for LSP reoptimization (included in the TE device model)
 * Reoptimization timers (periodic interval, LSP installation and cleanup)
- System-wide capabilities for TE state flooding (included in the TE device model)
* Periodic flooding interval

- Global capabilities that affect the originating, traversing and terminating LSPs. For example:
 - Path selection parameters (e.g. metric to optimize, etc.)
 - Path or segment protection parameters

The global state data is represented under the global "state" sub-container as shown in Figure 3.

Examples of such states are:

- Global statistics (signaling, admission, preemption, flooding)
- Global counters (number of tunnels/LSPs/interfaces)

3.2. Interfaces Configuration and State Data

This branch of the model covers configuration and state data items corresponding to TE interfaces that are present on a specific device. A new module is introduced that holds the TE device specific properties.

Examples of TE interface properties are:

- Maximum reservable bandwidth, bandwidth constraints (BC)
- Flooding parameters
 - Flooding intervals and threshold values
- Fast reroute backup tunnel properties (such as static, auto-tunnel)
- Interface attributes
 - (Extended) administrative groups
 - SRLG values
 - TE metric value

The state corresponding to the TE interfaces applied configuration, protocol derived state, and stats and counters all fall under the interface "state" sub-container as shown in Figure 4 below:
This covers state data for TE interfaces such as:

- Bandwidth information: maximum bandwidth, available bandwidth at different priorities and for each class-type (CT)
- List of admitted LSPs
 - Name, bandwidth value and pool, time, priority
- Statistics: state counters, flooding counters, admission counters (accepted/rejected), preemption counters
- Adjacency information
 - Neighbor address
 - Metric value

3.3. Tunnels Configuration and State Data

This branch of the model covers intended, and corresponding applied configuration for tunnels. As well, it holds possible derived state pertaining to TE tunnels.

Examples of tunnel configuration data for TE tunnels:
3.3.1. Tunnel Compute-Only Mode

By default, a configured TE tunnel is provisioned so it can carry traffic as soon as a valid path is computed and an LSP instantiated in the network. In other cases, a TE tunnel may be provisioned for computed path reporting purposes without the need to instantiate an LSP or commit resources in the network. In such a case, a tunnel configuration in "compute-only" mode to distinguish it from default tunnel behavior.

A "compute-only" TE tunnel is configured as a usual TE tunnel with associated path constraint(s) and properties on a device or controller. The device or controller is expected to compute the feasible path(s) subject to configured constraints for of "compute-only" tunnel and reflect the computed path(s) in the LSP(s) Record-Route Object (RRO) list. A client may query "on-demand" the "compute-only" TE tunnel computed path(s) properties by querying the state of the tunnel. Alternatively, the client can subscribe on the "compute-only" TE tunnel to be notified of computed path(s) and whenever it changes.

3.3.2. Tunnel Hierarchical Link Endpoint

TE LSPs can be set up in MPLS or Generalized MPLS (GMPLS) networks to be used to form links to carry traffic in in other (client) networks [RFC6107]. In this case, the model introduces the TE tunnel hierarchical link endpoint parameters to identify the specific link in the client layer that the TE tunnel is associated with.

3.4. TE LSPs State Data

TE LSPs are derived state data that is usually instantiated via signaling protocols. TE LSPs exists on routers as ingress (starting point of LSP), transit (mid-point of LSP), or egress (termination point of the LSP). TE LSPs are distinguished by the 5 tuple, and LSP type (P2P or P2MP). In the model, the nodes holding LSPs data exist in the read-only lsps-state list as show in Figure 6.
3.5. Global RPC Data

This branch of the model covers system-wide RPC execution data to trigger actions and optionally expect responses. Examples of such TE commands are to:

- Clear global TE statistics of various features

3.6. Interface RPC Data

This collection of data in the model defines TE interface RPC execution commands. Examples of these are to:

- Clear TE statistics for all or for individual TE interfaces
- Trigger immediate flooding for one or all TE interfaces

3.7. Tunnel RPC Data

This branch of the model covers TE tunnel RPC execution data to trigger actions and optionally expect responses. Examples of such TE commands are:

- Clear statistics for all or for individual tunnels
- Trigger the tear and setup of existing tunnels or LSPs.

3.8. Global Notifications Data

This branch of the model covers system-wide notifications data. The node notifies the registered events to the server using the defined notification messages.

3.9. Interfaces Notifications Data

This branch of the model covers TE interfaces related notifications data. The TE interface configuration is used for specific events registration. Notifications are sent for registered events to the server. Example events for TE interfaces are:

- Interface creation and deletion
- Interface state transitions
- (Soft) preemption triggers
- Fast reroute activation
3.10. Tunnel Notification Data

This branch of the model covers TE tunnels related notifications data. The TE tunnels configuration is used for specific events registration. Notifications are sent for registered events to the server. Example events for TE tunnels are:

- Tunnel creation and deletion events
- Tunnel state up/down changes
- Tunnel state reoptimization changes

Figure 6 below shows the tree diagram of the YANG model defined in modules: ietf-te.yang, ietf-te-device.yang, ietf-te-mpls.yang, and ietf-te-sr.yang.
| ++-rw usage identityref |
| ++-rw (style)? |
| ++-:(value) |
| ++-rw value? te-types:admin-groups |
| ++-:(named) |
| ++-rw affinity-names* [name] |
| ++-rw name string |
| ++-rw path-srlgs |
| ++-rw (style)? |
| ++-:(values) |
| ++-rw usage? identityref |
| ++-rw values* te-types:srlg |
| ++-:(named) |
| ++-rw constraints |
| ++-rw constraint* [usage] |
| ++-rw usage identityref |
| ++-rw constraint |
| ++-rw srlg-names* [name] |
| ++-rw name string |
| ++-rw explicit-route-objects |
| ++-rw route-object-exclude-always* [index] |
| ++-rw index uint32 |
| ++-rw (type)? |
| ++-:(num-unnum-hop) |
| ++-rw num-unnum-hop |
| ++-rw node-id? te-types:te-node-id |
| ++-rw link-tp-id? te-types:te-tp-id |
| ++-rw hop-type? te-hop-type |
| ++-rw direction? te-link-direction |
| ++-:(as-number) |
| ++-rw as-number-hop |
| ++-rw as-number? binary |
| ++-rw hop-type? te-hop-type |
| ++-:(label) |
| ++-rw label-hop |
| ++-rw te-label |
| ++-rw (technology)? |
| ++-:(generic) |
| ++-rw generic? |
| rt-types:generalized-label |
| | | ++-rw direction? |
| te-label-direction |
| ++-rw route-object-include-exclude* [index] |
| ++-rw explicit-route-usage? identityref |
| ++-rw index uint32 |
| ++-rw (type)? |
| ++-:(num-unnum-hop) |
| ++-rw num-unnum-hop |
---rw node-id? te-types:te-node-id
---rw link-tp-id? te-types:te-tp-id
---rw hop-type? te-hop-type
---rw direction? te-link-direction
++-:(as-number)
 ---rw as-number-hop
 ---rw as-number? binary
 ---rw hop-type? te-hop-type
++-:(label)
 ---rw label-hop
 ---rw te-label
 -----(technology)?
 ++-:(generic)
 ---rw generic?
rt-types:generalized-label
 +++-rw direction?
te-label-direction
 ++-:(srlg)
 +++-rw srlg
 +++-rw srlg? uint32
---rw shared-resources-tunnels
 +++-rw lsp-shared-resources-tunnel* te:tunnel-ref
---rw path-in-segment!
 +++-rw forward
 +++-rw label-restrictions
 +++-rw label-restriction* [index]
 +++-rw restriction? enumeration
 +++-rw index uint32
 +++-rw label-start
 +++-rw te-label
 -----(technology)?
 ++-:(generic)
 ---rw generic?
rt-types:generalized-label
 +++-rw direction?
te-label-direction
 +++-rw label-end
 +++-rw te-label
 -----(technology)?
 ++-:(generic)
 ---rw generic?
rt-types:generalized-label
 +++-rw direction?
te-label-direction
 +++-rw range-bitmap? binary
 +++-rw reverse
 +++-rw label-restrictions
 +++-rw label-restriction* [index]
++-rw te-label
 ++-- (technology)?
 +++:(generic)
 ++-rw generic?
rt-types:generalized-label
 ++-rw direction?
te-label-direction
 ++-rw label-end
 ++-rw te-label
 ++-- (technology)?
 +++:(generic)
 ++-rw generic?
rt-types:generalized-label
 ++-rw direction?
te-label-direction
 ++-rw range-bitmap? binary
 ++-ro state
 ++-ro bandwidth-generic_state? te-types:te-bandwidth
 ++-ro disjointness_state?
te-types:te-path-disjointness
 ++-rw te-mpls:bandwidth
 ++-rw te-mpls:specification-type?
te-mpls-types:te-bandwidth-type
 ++-rw te-mpls:set-bandwidth?
te-mpls-types:bandwidth-kbps
 ++-rw te-mpls:class-type?
te-types:te-ds-class
 ++-ro te-mpls:state
 ++-ro te-mpls:signaled-bandwidth?
te-mpls-types:bandwidth-kbps
 ++-rw te-sr-mpls:sid-selection-mode?
te-sid-selection-mode
 ++-rw te-sr-mpls:sid-protection? identityref
 ++-rw te-dev:lsp-install-interval? uint32
 ++-rw te-dev:lsp-cleanup-interval? uint32
 ++-rw te-dev:lsp-invalidation-interval? uint32
++-rw tunnels* [name]
 ++-rw name? string
 ++-rw identifier? uint16
 ++-rw description? string
 ++-rw encoding? identityref
 ++-rw switching-type? identityref
 ++-rw provisioning-state? identityref
 ++-rw preference? uint8
 ++-rw reoptimize-timer? uint16
 ++-rw source? inet:ip-address
 ++-rw destination? inet:ip-address
++rw src-tp-id? binary
++rw dst-tp-id? binary
++rw bidirectional? boolean
++rw association-objects
 ++rw association-object* [type ID source global-source]
 | ++rw type identityref
 | ++rw ID uint16
 | ++rw source inet:ip-address
 | ++rw global-source inet:ip-address
 ++rw association-object-extended* [type ID source global-source extended-ID]
 | ++rw type identityref
 | ++rw ID uint16
 | ++rw source inet:ip-address
 | ++rw global-source inet:ip-address
 | ++rw extended-ID binary
++rw protection
 ++rw enable? boolean
 ++rw protection-type? identityref
 ++rw protection-reversion-disable? boolean
 ++rw hold-off-time? uint32
 ++rw wait-to-revert? uint16
 ++rw aps-signal-id? uint8
++rw restoration
 ++rw enable? boolean
 ++rw restoration-type? identityref
 ++rw restoration-scheme? identityref
 ++rw restoration-reversion-disable? boolean
 ++rw hold-off-time? uint32
 ++rw wait-to-restore? uint16
 ++rw wait-to-revert? uint16
++rw te-topology-identifier
 ++rw provider-id? te-types:te-global-id
 ++rw client-id? te-types:te-global-id
 ++rw topology-id? te-types:te-topology-id
++rw te-bandwidth
 ++rw (technology)?
 | +--:(generic)
 | | ++rw generic? te-bandwidth
 ++rw setup-priority? uint8
 ++rw hold-priority? uint8
 ++rw signaling-type? identityref
++rw dependency-tunnels
 ++rw dependency-tunnel* [name]
 | ++rw name ->
 | | ++rw encoding? identityref
 | | ++rw switching-type? identityref
Internet-Draft TE YANG Data Model July 2018

++-rw hierarchical-link
 ++-rw local-te-node-id? te-types:te-node-id
 ++-rw local-te-link-tp-id? te-types:te-tp-id
 ++-rw remote-te-node-id? te-types:te-node-id
 ++-rw te-topology-identifier
 ++-rw provider-id? te-types:te-global-id
 ++-rw client-id? te-types:te-global-id
 ++-rw topology-id? te-types:te-topology-id

++-ro state
 ++-ro operational-state? identityref
 ++-ro te-dev:lsp-install-interval? uint32
 ++-ro te-dev:lsp-cleanup-interval? uint32
 ++-ro te-dev:lsp-invalidation-interval? uint32

++-rw p2p-primary-paths
 ++-rw p2p-primary-path* [name]
 ++-rw name string
 ++-rw path-setup-protocol? identityref
 ++-rw path-computation-method? identityref
 ++-rw path-computation-server? inet:ip-address
 ++-rw compute-only? empty
 ++-rw use-path-computation? boolean
 ++-rw lockdown? empty
 ++-rw path-scope? identityref
 ++-rw optimizations
 ++-rw (algorithm)?
 ++-rw optimization-metric* [metric-type]
 ++-rw metric-type
 ++-rw weight?
 uint8
 ++-rw explicit-route-exclude-objects
 ++-rw route-object-exclude-object*

++-rw index uint32
++-rw (type)?
 ++-:(num-unnum-hop)
 ++-rw num-unnum-hop
 ++-rw node-id?
 ++-:(as-number)
 ++-rw as-number-hop

te-hop-type

--rw label-hop
--rw te-label
 --rw (technology)?
 | --rw generic?

rt-types:generalized-label

--rw direction?

[te-label-direction]

--:(srlg)
 --rw srlg
 --rw srlg? uint32
 --rw explicit-route-include-objects
 --rw route-object-include-object*

[index]

--rw index uint32
--rw (type)?
 --:(num-unnum-hop)
 --rw num-unnum-hop
 --rw node-id?

[te-types:te-node-id]

--rw link-tp-id?
[te-types:te-tp-id]

--rw hop-type?
[te-hop-type]

--rw direction?
[te-link-direction]

--:(as-number)
 --rw as-number-hop
 --rw as-number? binary
 --rw hop-type?
[te-hop-type]

--rw tiebreakers
 --rw tiebreaker* [tiebreaker-type]
 --rw tiebreaker-type identityref
--rw (objective-function)
Internet-Draft TE YANG Data Model July 2018

{path-optimization-objective-function}?
 | | | | +--rw objective-function
 | | | +--rw objective-function-type?
 | identityref
 | +--rw preference? uint8
 | +--rw named-path-constraint? ->
 ../ ../../../globals/named-path-constraints/
 named-path-constraint/name
{te-types:named-path-constraints}?
 +--rw te-bandwidth
 | | +--rw (technology)?
 | +--:(generic)
 | +--rw generic? te-bandwidth
 | +--rw setup-priority? uint8
 | +--rw hold-priority? uint8
 +--rw signaling-type? identityref
 +--rw path-metric-bounds
 | +--rw path-metric-bound* [metric-type]
 | +--rw metric-type identityref
 | +--rw upper-bound? uint64
 +--rw path-conditions
 | +--rw constraints* [usage]
 | +--rw usage identityref
 | | +--rw (style)?
 | | +--:(value)
 | | +--rw value?
 | +--rw path-srlgs
 | | +--rw (style)?
 | | +--:(values)
 | | | +--rw values* te-types:srlg
 | | +--:(named)
 | | +--rw constraints
 | | +--rw constraint* [usage]
 | | +--rw usage identityref
 | | +--rw constraint
 | | +--rw srlg-names* [name]
 | | +--rw name string
 +--rw explicit-route-objects
 | +--rw route-object-exclude-always* [index]
 | +--rw index uint32
 | +--rw (type)?
 | | +--:(num-unnum-hop)
 | | +--rw num-unnum-hop

++-rw node-id? te-types:te-node-id
++-rw link-tp-id? te-types:te-tp-id
++-rw hop-type? te-hop-type
++-rw direction? te-link-direction
++-:(as-number)
 ++-rw as-number-hop
 ++-rw as-number? binary
 ++-rw hop-type? te-hop-type
++-:(label)
 ++-rw label-hop
 ++-rw te-label
 ++-rw (technology)?
 ++-:(generic)
 ++-rw generic?
rt-types:generalized-label
 ++-rw direction?
 ++-:(srlg)
 ++-rw srlg
 ++-rw srlg? uint32
++-rw shared-resources-tunnels
 ++-rw lsp-shared-resources-tunnel* te:tunnel-ref
++-rw path-in-segment!
 ++-rw forward
 ++-rw label-restrictions
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
---ro usage identityref
 ---ro (style)?
 ++--:(value)
 ++--ro value?

t-e-types:admin-groups
 ++--:(named)
 ++--ro affinity-names* [name]
 ++--ro name string

---ro path-srlgs
 ---ro (style)?
 ++--:(values)
 ++--ro usage? identityref
 ++--ro values* te-types:srlg
 ++--:(named)
 ++--ro constraints
 ++--ro constraint* [usage]
 ++--ro usage identityref
 ++--ro constraint
 ++--ro srlg-names* [name]
 ++--ro name string

---ro path-route-objects
 ++--ro path-computed-route-object* [index]
 ++--ro index -> ../state/index
 ++--ro state
 ++--ro index? uint32
 ++--ro (type)?
 ++--:(num-unnum-hop)
 ++--ro num-unnum-hop
 ++--ro node-id?

t-e-types:te-node-id
 ++--ro link-tp-id?

t-e-types:te-tp-id
 ++--ro hop-type? te-hop-type
 ++--ro direction?

t-e-link-direction
 ++--:(as-number)
 ++--ro as-number-hop
 ++--ro as-number? binary
 ++--ro hop-type? te-hop-type
 ++--:(label)
 ++--ro label-hop
 ++--ro te-label
 ++--ro (technology)?
 ++--:(generic)

rt-types:generalized-label
 ++--ro direction?

te-label-direction
te-types:te-node-id
 | | | | | | | +--ro link-tp-id?
| | | | | | +--:(label)
| | | | | | +--ro label-hop
| | | | | | +--ro te-label
| | | | | | | +--ro (technology)?
| | | | | | | | +--:(generic)
| | | | | | | | +--ro generic?
rt-types:generalized-label
 | | | | | | | +--ro direction?
| | | | | | +--ro path-properties
| | | | | | +--ro path-metric* [metric-type]
| | | | | | | +--ro metric-type ->
../state/metric-type
 | | | | | | | +--ro state
| | | | | | +--ro metric-type?
identityref
 | | | | | | | +--ro accumulative-value? uint64
identityref
 | | | | | | | +--ro path-affinities
| | | | | | +--ro constraints* [usage]
| | | | | | +--ro usage
identityref
 | | | | | | | +--ro (style)?
| | | | | | +--:(value)
| | | | | | | +--ro value?
te-types:admin-groups
 | | | | | | | +--:(named)
| | | | | | | +--ro affinity-names* [name]
| | | | | | | +--ro name string
| | | | | | +--ro path-srlgs
| | | | | | | +--ro (style)?
| | | | | | | | +--ro usage?
| | | | | | | | identityref
| | | | | | | | | +--ro values* te-types:srlg
| | | | | | | | | +--:(named)
| | | | | | | | | +--ro constraints
| | | | | | | | | | +--ro constraint* [usage]
| | | | | | | | | | +--ro usage
| | | | | | | | | +--ro constraint
| | | | | | | | | | +--ro srlg-names* [name]
| | | | | | | | | | +--ro name string
| | | | | | | +--ro path-route-objects
| | | | | | | | +--ro path-computed-route-object*
```yang
text
++-ro index    -> ../state/index
++-ro state
   ++-ro index?
uint32
   ++-ro (type)?
      ++-:(num-unnum-hop)
         ++-ro num-unnum-hop
            ++-ro node-id?
types:te-node-id
   ++-ro link-tp-id?
types:te-tp-id
   ++-ro hop-type?
e-hop-type
   ++-ro direction?
e-link-direction
      ++-:(as-number)
         ++-ro as-number-hop
            ++-ro as-number?   binary
               ++-ro hop-type?
e-hop-type
      ++-:(label)
         ++-ro label-hop
            ++-ro te-label
               ++-ro (technology)?
                  ++-:(generic)
                     ++-ro generic?
rt-types:generalized-label
t-label-direction
   ++-ro shared-resources-tunnels
      ++-ro lsp-shared-resources-tunnel*
tunnel-ref
   ++-ro te-dev:lsp-timers
      ++-ro te-dev:life-time?   uint32
      ++-ro te-dev:time-to-install?   uint32
      ++-ro te-dev:time-to-destroy?   uint32
            ++-ro te-dev:downstream-info
               ++-ro te-dev:nhop?
in:ip-address
   ++-ro te-dev:outgoing-interface?
if:interface-ref
   ++-ro te-dev:neighbor?
in:ip-address
   ++-ro te-dev:label?
rt-types:generalized-label
   ++-ro te-dev:upstream-info
      ++-ro te-dev:phop?   ip-address
      ++-ro te-dev:neighbor?   ip-address
```
rt-types:generalized-label
 | | | | | | | +--rw direction?
 te-label-direction
 | | | | | | | +--:(srlg)
 +--rw srlg
 +--rw srlg? uint32
 +--rw explicit-route-includes-objects
 +--rw route-object-includes-object*
 | index
 +--rw index
 uint32
 +--rw (type)?
 +--:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id?
 te-types:te-node-id
 | | | | | | | +--rw link-tp-id?
 te-types:te-tp-id
 | | | | | | | +--rw hop-type?
 te-hop-type
 | | | | | | | +--rw direction?
 te-link-direction
 +--:(as-number)
 +--rw as-number-hop
 +--rw as-number? binary
 +--rw hop-type?
 te-hop-type
 +--:(label)
 +--rw label-hop
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label
 | | | | | | | +--rw direction?
 te-label-direction
 +--rw tiebreakers
 +--rw tiebreaker* [tiebreaker-type]
 +--rw tiebreaker-type identityref
 +--rw tiebreaker-type
 +--:(objective-function)
 [path-optimization-objective-function]?
 +--rw objective-function
 +--rw objective-function-type?
 identityref
 +--rw named-path-constraint? ->
 ../../../../../../globals/named-path-constraints/
 named-path-constraint/name
 {te-types:named-path-constraints}?
++--rw te-bandwidth
 ++--rw (technology)?
 ++--:(generic)
 ++--rw generic? te-bandwidth
 ++--rw setup-priority? uint8
 ++--rw hold-priority? uint8
 ++--rw signaling-type? identityref
 ++--rw path-metric-bounds
 ++--rw path-metric-bound* [metric-type]
 ++--rw metric-type identityref
 ++--rw upper-bound? uint64
 ++--rw path-affinities
 ++--rw constraints* [usage]
 ++--rw usage identityref
 ++--rw (style)?
 ++--:(value)
 ++--rw value?

te-types:admin-groups
 ++--:(named)
 ++--rw affinity-names* [name]
 ++--rw name string
 ++--rw path-srlgs
 ++--rw (style)?
 ++--:(values)
 ++--rw usage? identityref
 ++--rw values* te-types:srlg
 ++--:(named)
 ++--rw constraints
 ++--rw constraint* [usage]
 ++--rw usage identityref
 ++--rw constraint
 ++--rw srlg-names* [name]
 ++--rw name string
 ++--rw explicit-route-objects
 ++--rw route-object-exclude-always* [index]
 ++--rw index uint32
 ++--rw (type)?
 ++--:(num-unnum-hop)
 ++--rw num-unnum-hop
 ++--rw node-id?

te-types:te-node-id
 ++--rw link-tp-id? te-types:te-tp-id
 ++--rw hop-type? te-hop-type
 ++--rw direction? te-link-direction
 ++--:(as-number)
 ++--rw as-number-hop
 ++--rw as-number? binary
 ++--rw hop-type? te-hop-type
te-label-direction
 +--rw label-end
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label
 +--rw direction?

telabel-direction
 +--rw range-bitmap? binary
 +--rw reverse
 +--rw label-restrictions
 +--rw label-restriction* [index]
 +--rw restriction? enumeration
 +--rw index uint32
 +--rw label-start
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label
 +--rw direction?

telabel-direction
 +--rw label-end
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label
 +--rw direction?

telabel-direction
 +--rw range-bitmap? binary
 +--ro state
 +--ro path-properties
 +--ro path-metric* [metric-type]
 +--ro metric-type ->

 ./state/metric-type
 +--ro state
 +--ro metric-type? identityref
 +--ro accumulative-value? uint64
 +--ro path-affinities
 +--ro constraints* [usage]
 +--ro usage

 identityref
 +--ro (style)?
 +--:(value)
 +--ro value?
te:tunnel-ref

 +++-ro lsps
 +++-ro lsp* [source destination tunnel-id
lsp-id extended-tunnel-id]

 +++-ro source
inet:ip-address

 +++-ro destination
inet:ip-address

 +++-ro tunnel-id
uint16

 +++-ro lsp-id
uint16

 +++-ro extended-tunnel-id
inet:ip-address

 +++-ro operational-state?
identityref

 +++-ro path-setup-protocol?
identityref

 +++-ro origin-type?
enumeration

 +++-ro lsp-resource-status?
enumeration

 +++-ro lockout-of-normal?
boolean

 +++-ro freeze?
boolean

 +++-ro lsp-protection-role?
enumeration

 +++-ro lsp-protection-state?
identityref

 +++-ro protection-group-ingress-node-id?
te-types:te-node-id

 +++-ro protection-group-egress-node-id?
te-types:te-node-id

 +++-ro lsp-shared-resources-tunnel?
tunnel-ref

 +++-ro lsp-record-route-subobjects
 +++-ro record-route-subobject* [index]
 +++-ro index uint32
 +++-ro (type)?
 ++--:(numbered)
 +++-ro address?
te-types:te-tp-id

 +++-ro (unnumbered)
 +++-ro node-id?
te-types:te-node-id

 +++-ro link-tp-id?
---ro path-computed-route-object*

++-ro index -> ../state/index
++-ro state
 +--ro index?

uint32
 +--ro (type)?
 +--:(num-unnum-hop)
 +--ro num-unnum-hop
 +--ro node-id?

te-types:te-node-id
 +--ro link-tp-id?

te-types:te-tp-id
 +--ro hop-type?

tehop-type
 +--ro direction?

te-link-direction
 +--:(as-number)
 +--ro as-number-hop
 +--ro as-number?

binary
 +--ro hop-type?

te-hop-type
 +--:(label)
 +--ro label-hop
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro
generic? rt-types:generalized-label
 +--ro direction?

telabel-direction
 +--ro shared-resources-tunnels
 +--ro lsp-shared-resources-tunnel*
tetunnel-ref
 +--rw p2p-reverse-secondary-path
 +--rw secondary-path? ->

../../../../../p2p-secondary-paths/p2p-secondary-path/name

++-rw path-setup-protocol? identityref
 +--rw candidate-p2p-secondary-paths
 +--rw candidate-p2p-secondary-path* [secondary-path]

++-rw secondary-path
 +--rw secondary-path
 +--rw candidate-p2p-secondary-paths
 +--rw candidate-p2p-secondary-path

../../../../../p2p-secondary-paths/p2p-secondary-path/name

++-rw path-setup-protocol? identityref
 +--rw state
 +--ro active? boolean

mpls-static:static-lsp-name?
Internet-Draft TE YANG Data Model July 2018

te-types:te-node-id | | | | | | | +--rw srlg
| | | | | | | +--rw srlg? uint32
| | | | | | +--rw explicit-route-include-objects
| | | | | | +--rw route-object-include-object*

[index]

| | | | | | | +--rw index uint32
| | | | | | | +--rw (type)?
| | | | | | | +--:(num-unnum-hop)
| | | | | | | +--rw num-unnum-hop
| | | | | | | +--rw node-id?
| | | | | | +--rw explicit-route-include-objects
| | | | | | | +--rw route-object-include-object*

| | | | | | | +--rw index uint32
| | | | | | | +--rw (type)?
| | | | | | | +--:(num-unnum-hop)
| | | | | | | +--rw num-unnum-hop
| | | | | | | +--rw node-id?

| | | | | | | +--rw (type)?
| | | | | | | +--:(num-unnum-hop)
| | | | | | | +--rw num-unnum-hop
| | | | | | | +--rw node-id?

te-types:te-node-id | | | | | | | +--rw link-tp-id?
| | | | | | | +--rw hop-type?
| | | | | | | +--:(as-number)
| | | | | | | +--rw as-number-hop
| | | | | | | +--rw as-number? binary
| | | | | | | +--rw hop-type?

| | | | | | | +--rw hop-type
| | | | | | | +--:(label)
| | | | | | | +--rw label-hop
| | | | | | | +--rw te-label
| | | | | | | +--rw (technology)?
| | | | | | | | +--:(generic)
| | | | | | | | +--rw generic?

| | | | | | | +--:(as-number)
| | | | | | | +--rw as-number-hop
| | | | | | | +--rw as-number? binary
| | | | | | | +--rw hop-type?

rt-types:generalized-label | | | | | | | +--rw direction?

| | | | | | | +--rw label-hop
| | | | | | | +--rw te-label
| | | | | | | +--rw (technology)?
| | | | | | | +--:(generic)
| | | | | | | +--rw generic?

| | | | | | | +--:(as-number)
| | | | | | | +--rw as-number-hop
| | | | | | | +--rw as-number? binary
| | | | | | | +--rw hop-type?

identityref

| | | | | | | +--rw preference? uint8
| | | | | | | +--rw named-path-constraint? ->

rt-types:generalized-label	---rw generic?
	rt-types:generalized-label
	---rw direction?
te-label-direction	
	---rw route-object-include-exclude* [index]
	---rw explicit-route-usage? identityref
	---rw index uint32
	---rw (type)?
	---:(num-unnum-hop)
	---:(as-number)
	---:(label)
rt-types:generalized-label	
	---rw direction?
te-label-direction	
	---:(srlg)
	---rw shared-resources-tunnels
	---rw path-in-segment!
	---rw forward
rt-types:generalized-label
+--ro direction?

t-e-label-direction
 | | | | | +--ro shared-resources-tunnels
 | | | | | | +--ro lsp-shared-resources-tunnel*

te:tunnel-ref
 | | | | +--ro lsps
 | | | | | +--ro lsp* [source destination tunnel-id lsp-id
 | | | | | | extended-tunnel-id]
 | | | | | | | | +--ro source
inet:ip-address
 | | | | | +--ro destination
inet:ip-address
 | | | | | +--ro tunnel-id
uint16
 | | | | | +--ro lsp-id
uint16
 | | | | | +--ro extended-tunnel-id
inet:ip-address
 | | | | | +--ro operational-state?
identityref
 | | | | | +--ro path-setup-protocol?
identityref
 | | | | | +--ro origin-type?
enumeration
 | | | | | +--ro lsp-resource-status?
enumeration
 | | | | | +--ro lockout-of-normal?
boolean
 | | | | | +--ro freeze?
boolean
 | | | | | +--ro lsp-protection-role?
enumeration
 | | | | | +--ro lsp-protection-state?
identityref
 | | | | | +--ro protection-group-ingress-node-id?
te-types:te-node-id
 | | | | | +--ro protection-group-egress-node-id?
te-types:te-node-id
 | | | | | +--ro lsp-shared-resources-tunnel?
te:tunnel-ref
 | | | | | +--ro lsp-record-route-subobjects
 | | | | | | +--ro record-route-subobject* [index]
 | | | | | | | +--ro index
 | | | | | | | | +--ro (type)?
 | | | | | | | | | +--:(numbered)
 | | | | | | | | | | +--ro address?
te-types:te-tp-id
 | +--ro ip-flags? binary
 | +-:(unnumbered)
 | +--ro node-id?

| +--ro link-tp-id?

| +--(label)
| +--ro label-hop
| +--ro te-label
| +--ro (technology)?
| +--:(generic)
| +--ro generic?

te-types:te-node-id

| +--ro node-id?

| +--:(label)
| +--ro path-properties
| +--ro path-metric* [metric-type] ->
| +--ro metric-type ?
| +--ro state
| +--ro metric-type?

identityref

| +--ro accumulate-value? uint64
| +--ro path-affinities
| +--ro constraints* [usage]
| +--ro usage

identityref

| +--ro (style)?
| +-:(value)
| +--ro value?

types:admin-groups

| +--:(named)
| +--ro affinity-names* [name]
| +--ro name string
| +--ro path-srlgs
| +--ro (style)?
| +-:(values)
| +--ro usage? identityref
| +--ro values* types:srlg
| +--:(named)
| +--ro constraints
| +--ro constraint* [usage]
| +--ro usage

identityref

| +--ro constraint
| +--ro srlg-names* [name]
++-ro name string
++-ro path-route-objects
 +--ro path-computed-route-object*
[index]
 +--ro index -> ../state/index
 +--ro state
 +--ro index? uint32
 +--ro (type)?
 +--:(num-unnum-hop)
 +--ro num-unnum-hop
 +--ro node-id?
 +--:(link-tp-id)
 +--ro link-tp-id?
 +--ro hop-type?
 +--ro hop-type?
 +--ro direction?
 +--:(as-number)
 +--ro as-number-hop
 +--ro as-number? binary
 +--ro hop-type?
 +--:(label)
 +--ro label-hop
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 +--ro shared-resources-tunnels
 +--ro lsp-shared-resources-tunnel*
 +--ro downstream-info
 +--ro te-dev:nhop?
inet:ip-address
if:interface-ref
inet:ip-address
 +--ro te-dev:outgoing-interface?
 +--ro te-dev:neighbor?
inet:ip-address
 +--ro te-dev:label?
++rw te-mpls:min-bw?
te-mpls-types:bandwidth-kbps
++rw te-mpls:max-bw?
te-mpls-types:bandwidth-kbps
++rw te-mpls:adjust-interval? uint32
++rw te-mpls:adjust-threshold? te-types:percentage
++rw te-mpls:overflow
 ++rw te-mpls:enabled? boolean
 ++rw te-mpls:overflow-threshold?
te-types:percentage
++rw te-mpls:trigger-event-count? uint16
++rw te-mpls:underflow
 ++rw te-mpls:enabled? boolean
 ++rw te-mpls:underflow-threshold?
te-types:percentage
++rw te-mpls:trigger-event-count? uint16
++rw tunnel-p2mp* [name]
 ++rw name string
 ++rw identifier? uint16
 ++rw description? string
 ++ro state
 ++ro operational-state? identityref
 ++ro lsp* [source destination tunnel-id lsp-id extended-tunnel-id]
 ++ro source inet:ip-address
 ++ro destination inet:ip-address
 ++ro tunnel-id uint16
 ++ro lsp-id uint16
 ++ro extended-tunnel-id inet:ip-address
 ++ro operational-state? identityref
 ++ro path-setup-protocol? identityref
 ++ro origin-type? enumeration
 ++ro lsp-resource-status? enumeration
 ++ro lockout-of-normal? boolean
 ++ro freeze? boolean
 ++ro lsp-protection-role? enumeration
 ++ro lsp-protection-state? identityref
 ++ro protection-group-ingress-node-id? te-types:te-node-id
 ++ro protection-group-egress-node-id? te-types:te-node-id
 ++ro lsp-record-route-subobjects
 ++ro record-route-subobject* [index]
 ++ro index uint32
 ++ro (type)?
 +=:(numbered)
 ++ro address? te-types:te-tp-id
 +=:(unnumbered)
 ++ro ip-flags? binary
| ++--ro node-id? te-types:te-node-id |
| ++--ro link-tp-id? te-types:te-tp-id |
| ++--:(label) |
| ++--ro label-hop |
| | ++--ro te-label |
| | | | ++--:(technology)?
| | | | | | ++--ro generic?
| | | | rt-types:generalized-label |
| | | | | | | | ++--ro direction? te-label-direction
| | | | | | | | ++--ro label-flags? binary
| | | | | | | | ++--ro te-dev:lsp-timers
| | | | | | | | ++--ro te-dev:life-time? uint32
| | | | | | | | | ++--ro te-dev:time-to-install? uint32
| | | | | | | | | ++--ro te-dev:time-to-destroy? uint32
| | | | | | | | ++--ro te-dev:downstream-info
| | | | | | | | ++--ro te-dev:nhop? inet:ip-address
| | | | | | | | ++--ro te-dev:outgoing-interface? if:interface-ref
| | | | | | | | ++--ro te-dev:neighbor? inet:ip-address
| | | | | | | | ++--ro te-dev:label? |
| rt-types:generalized-label |
| ++--ro te-dev:upstream-info
| | ++--ro te-dev:phop? inet:ip-address
| | ++--ro te-dev:neighbor? inet:ip-address
| | ++--ro te-dev:label? rt-types:generalized-label
| ++--rw te-dev:interfaces |
| ++--rw te-dev:threshold-type? enumeration |
| ++--rw te-dev:delta-percentage? te-types:percentage |
| ++--rw te-dev:threshold-specification? enumeration |
| ++--rw te-dev:up-thresholds* te-types:percentage |
| ++--rw te-dev:down-thresholds* te-types:percentage |
| ++--rw te-dev:up-down-thresholds* te-types:percentage |
| ++--rw te-dev:interface* [interface]
| | ++--rw te-dev:interface
| | if:interface-ref
| | ++--rw te-dev:te-metric?
| | te-types:te-metric
| | ++--rw (te-dev:admin-group-type)?
| | | ++--:(te-dev:value-admin-groups)
| | | | ++--rw (te-dev:value-admin-group-type)?
| | | | | ++--:(te-dev:admin-groups)
| | | | | | ++--rw te-dev:admin-group
| | | | | | | ++--:(te-dev:extended-admin-groups)
| | | | | | | | te-types:admin-group
| | | | | | | | | ++--:(te-dev:extended-admin-groups)
| | | | | | | | | | te-types:extended-admin-group
| | | | | | | | | | ++--:(te-dev:named-admin-groups)
module: ietf-te-device

rpcs:
+---x interfaces-rpc

notifications:
+---n interfaces-notif

Figure 6: TE generic model configuration and state tree

4. TE Generic and Helper YANG Modules

<CODE BEGINS> file "ietf-te-types@2018-07-01.yang"
module ietf-te-types {
 /* Replace with IANA when assigned */
 prefix "te-types";
 import ietf-inet-types {
 prefix inet;
 }
 import ietf-yang-types {
 prefix "yang";
 }
 import ietf-routing-types {
 prefix "rt-types";
 }
 organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/teas/>"
 "WG List: <mailto:teas@ietf.org>"
 "WG Chair: Lou Berger"
description
"This module contains a collection of generally useful TE specific YANG data type definitions."

revision "2018-07-01" {
 description "Latest revision of TE types"
 reference "RFC3209"
}

identity association-type {
 description "Base identity for tunnel association"
 reference "RFC6780, RFC4872, RFC4873"
}

identity association-type-recovery {
 base association-type;
 description
 "Association Type Recovery used to association LSPs of same tunnel for recovery"
 reference "RFC4872"
}

identity association-type-resource-sharing {
 base association-type;
description
"Association Type Resource Sharing used to enable resource sharing during make-before-break."
reference "RFC4873";
}

identity association-type-double-sided-bidir {
base association-type;
description
"Association Type Double Sided bidirectional used to associate two LSPs of two tunnels that are independently configured on either endpoint";
reference "RFC7551";
}

identity association-type-single-sided-bidir {
base association-type;
description
"Association Type Single Sided bidirectional used to associate two LSPs of two tunnels, where a tunnel is configured on one side/endpoint, and the other tunnel is dynamically created on the other endpoint";
reference "RFC7551";
}

identity objective-function-type {
description "Base objective function type";
reference "RFC4657";
}

identity of-minimize-cost-path {
base objective-function-type;
description
"Minimize cost of path objective function";
}

identity of-minimize-load-path {
base objective-function-type;
description
"Minimize the load on path(s) objective function";
}

identity of-maximize-residual-bandwidth {
base objective-function-type;
description
"Maximize the residual bandwidth objective function";
}

identity of-minimize-agg-bandwidth-consumption {
base objective-function-type;
description
"minimize the aggregate bandwidth consumption";
objective function;
}
identity of-minimize-load-most-loaded-link {
 base objective-function-type;
 description
 "Minimize the load on the most loaded link objective function";
}
identity of-minimize-cost-path-set {
 base objective-function-type;
 description
 "Minimize the cost on a path set objective function";
}

identity path-computation-method {
 description
 "base identity for supported path computation mechanisms";
}

identity path-locally-computed {
 base path-computation-method;
 description
 "indicates a constrained-path LSP in which the path is computed by the local LER";
}

identity path-externally-queried {
 base path-computation-method;
 description
 "Constrained-path LSP in which the path is obtained by querying an external source, such as a PCE server. In the case that an LSP is defined to be externally queried, it may also have associated explicit definitions (provided to the external source to aid computation); and the path that is returned by the external source is not required to provide a wholly resolved path back to the originating system - that is to say, some local computation may also be required";
}

identity path-explicitly-defined {
 base path-computation-method;
 description
 "constrained-path LSP in which the path is explicitly specified as a collection of strict or/and loose hops";
}
/**
 * Typedefs
 */

typedef te-bandwidth {
 type string {
 pattern
 '0\[xX\](0((\.0?)?\[pP\](\+)?0?|\.0?)|' + '1(\.(\[da-fA-F\]{0,5}[02468aAcCeE\]?)?\[pP\](\+)?12[0-7]|' + '1[01]\d?d?d?d)?\[0xX\]\[da-fA-F\]{1,8}\d+' + ',(0\[xX\](0((\.0?)?\[pP\](\+)?[0-9]?|\.0?)|' + '1(\.(\[da-fA-F\]{0,5}[02468aAcCeE\]?)?\[pP\](\+)?12[0-7]|' + '1[01]\d?d?d?d)?\[0xX\]\[da-fA-F\]{1,8}\d+)^*';
 }
 description
 "This is the generic bandwidth type that is a string containing
 a list of numbers separated by commas, with each of these
 number can be non-negative decimal, hex integer, or hex float:
 (dec | hex | float)[*(',(dec | hex | float)])
 For packet switching type, a float number is used, such as
 0x1p10.
 For OTN switching type, a list of integers can be used, such as
 '0', indicating 2 odu0’s and 1 odu3.
 For DWDM, a list of pairs of slot number and width can be
 used, such as '0, 2, 3, 3', indicating a frequency slot 0 with
 slot width 2 and a frequency slot 3 with slot width 3.";
} // te-bandwidth

typedef te-ds-class {
 type uint8 {
 range "0..7";
 }
 description
 "The Differentiatied Class-Type of traffic.";
 reference "RFC4124: section-4.3.1";
}

typedef te-link-direction {
 type enumeration {
 enum INCOMING {
 description
 "explicit route represents an incoming link on a node";
 }
 enum OUTGOING {
 description
 "explicit route represents an outgoing link on a node";
 }
 }
}
typedef te-label-direction {
 type enumeration {
 enum FORWARD {
 description
 "Label allocated for the forward LSP direction";
 }
 enum REVERSE {
 description
 "Label allocated for the reverse LSP direction";
 }
 }
 description
 "enumerated type for specifying the forward or reverse label";
}

typedef te-hop-type {
 type enumeration {
 enum LOOSE {
 description
 "loose hop in an explicit path";
 }
 enum STRICT {
 description
 "strict hop in an explicit path";
 }
 }
 description
 "enumerated type for specifying loose or strict paths";
 reference "RFC3209: section-4.3.2";
}

identity LSP_METRIC_TYPE {
 description
 "Base identity for types of LSP metric specification";
}

identity LSP_METRIC_RELATIVE {
 base LSP_METRIC_TYPE;
 description
 "The metric specified for the LSPs to which this identity refers is specified as a relative value to the IGP metric cost to the LSP’s tail-end."
}
identity LSP_METRIC_ABSOLUTE {
 base LSP_METRIC_TYPE;
 description "The metric specified for the LSPs to which this identity refers is specified as an absolute value";
}

identity LSP_METRIC_INHERITED {
 base LSP_METRIC_TYPE;
 description "The metric for the LSPs to which this identity refers is not specified explicitly - but rather inherited from the IGP cost directly";
}

identity tunnel-type {
 description "Base identity from which specific tunnel types are derived.";
}

identity tunnel-p2p {
 base tunnel-type;
 description "TE point-to-point tunnel type.";
}

identity tunnel-p2mp {
 base tunnel-type;
 description "TE point-to-multipoint tunnel type.";
 reference "RFC4875";
}

identity tunnel-action-type {
 description "Base identity from which specific tunnel action types are derived.";
}

identity tunnel-action-resetup {
 base tunnel-action-type;
 description "TE tunnel action resetup. Tears the tunnel’s current LSP (if any) and attempts to re-establish a new LSP";
}
identity tunnel-action-reoptimize {
 base tunnel-action-type;
 description
 "TE tunnel action reoptimize.
 Reoptimizes placement of the tunnel LSP(s)";
}

identity tunnel-action-switchpath {
 base tunnel-action-type;
 description
 "TE tunnel action reoptimize
 Switches the tunnel’s LSP to use the specified path";
}

identity te-action-result {
 description
 "Base identity from which specific TE action results are derived.";
}

identity te-action-success {
 base te-action-result;
 description "TE action successul.";
}

identity te-action-fail {
 base te-action-result;
 description "TE action failed.";
}

identity tunnel-action-inprogress {
 base te-action-result;
 description "TE action inprogress.";
}

identity tunnel-admin-state-type {
 description
 "Base identity for TE tunnel admin states";
}

identity tunnel-admin-state-up {
 base tunnel-admin-state-type;
 description "Tunnel administratively state up";
}

identity tunnel-admin-state-down {
base tunnel-admin-state-type;
 description "Tunnel administratively state down";
}

identity tunnel-state-type {
 description
 "Base identity for TE tunnel states";
}

identity tunnel-state-up {
 base tunnel-state-type;
 description "Tunnel state up";
}

identity tunnel-state-down {
 base tunnel-state-type;
 description "Tunnel state down";
}

identity lsp-state-type {
 description
 "Base identity for TE LSP states";
}

identity lsp-path-computing {
 base lsp-state-type;
 description
 "State path compute in progress";
}

identity lsp-path-computation-ok {
 base lsp-state-type;
 description
 "State path compute successful";
}

identity lsp-path-computation-failed {
 base lsp-state-type;
 description
 "State path compute failed";
}

identity lsp-state-setting-up {
 base lsp-state-type;
 description
 "State setting up";
}
identity lsp-state-setup-ok {
 base lsp-state-type;
 description
 "State setup successful";
}

identity lsp-state-setup-failed {
 base lsp-state-type;
 description
 "State setup failed";
}

identity lsp-state-up {
 base lsp-state-type;
 description "State up";
}

identity lsp-state-tearing-down {
 base lsp-state-type;
 description
 "State tearing down";
}

identity lsp-state-down {
 base lsp-state-type;
 description "State down";
}

identity path-invalidation-action-type {
 description
 "Base identity for TE path invalidation action types";
}

identity path-invalidation-action-drop-type {
 base path-invalidation-action-type;
 description
 "TE path invalidation action drop";
}

identity path-invalidation-action-drop-tear {
 base path-invalidation-action-type;
 description
 "TE path invalidation action tear";
}

identity lsp-restoration-type {
 description
 "Base identity from which LSP restoration types are
identity lsp-restoration-restore-any {
 base lsp-restoration-type;
 description "Restores when any of the LSPs is affected by a failure";
}

identity lsp-restoration-restore-all {
 base lsp-restoration-type;
 description "Restores when all the tunnel LSPs are affected by failure";
}

identity restoration-scheme-type {
 description "Base identity for LSP restoration schemes";
 reference "RFC4872";
}

identity restoration-scheme-preconfigured {
 base restoration-scheme-type;
 description "Restoration LSP is preconfigured prior to the failure";
}

identity restoration-scheme-precomputed {
 base restoration-scheme-type;
 description "Restoration LSP is precomputed prior to the failure";
}

identity restoration-scheme-presignaled {
 base restoration-scheme-type;
 description "Restoration LSP is presignaled prior to the failure";
}

identity lsp-protection-type {
 description "Base identity from which LSP protection types are derived.";
}

identity lsp-protection-unprotected {
 base lsp-protection-type;
 description
"LSP protection 'Unprotected’";
reference "RFC4872";
}

identity lsp-protection-reroute-extra {
 base lsp-protection-type;
 description
 "LSP protection '(Full) Rerouting’";
 reference "RFC4872";
}

identity lsp-protection-reroute {
 base lsp-protection-type;
 description
 "LSP protection 'Rerouting without Extra-Traffic’";
 reference "RFC4872";
}

identity lsp-protection-1-for-n {
 base lsp-protection-type;
 description
 "LSP protection '1:N Protection with Extra-Traffic’";
 reference "RFC4872";
}

identity lsp-protection-unidir-1-to-1 {
 base lsp-protection-type;
 description
 "LSP protection '1+1 Unidirectional Protection’";
 reference "RFC4872";
}

identity lsp-protection-bidir-1-to-1 {
 base lsp-protection-type;
 description
 "LSP protection '1+1 Bidirectional Protection’";
 reference "RFC4872";
}

identity lsp-protection-extra-traffic {
 base lsp-protection-type;
 description
 "LSP protection 'Extra-Traffic’";
 reference
 "ITU-T G.808, RFC 4427.";
}

identity lsp-protection-state {

description
 "Base identity of protection states for reporting purposes.";
}

identity normal {
 base lsp-protection-state;
 description "Normal state.";
}

identity signal-fail-of-protection {
 base lsp-protection-state;
 description
 "There is a SF condition on the protection transport entity which has higher priority than the FS command.";
 reference
 "ITU-T G.873.1, G.8031, G.8131";
}

identity lockout-of-protection {
 base lsp-protection-state;
 description
 "A Loss of Protection (LoP) command is active.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity forced-switch {
 base lsp-protection-state;
 description
 "A forced switch (FS) command is active.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity signal-fail {
 base lsp-protection-state;
 description
 "There is a SF condition on either the working or the protection path.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity signal-degrade {
 base lsp-protection-state;
 description
 "There is an SD condition on either the working or the
protection path."
reference
"ITU-T G.808, RFC 4427"
}

identity manual-switch {
 base lsp-protection-state;
 description
 "A manual switch (MS) command is active.";
 reference
 "ITU-T G.808, RFC 4427"
}

identity wait-to-restore {
 base lsp-protection-state;
 description
 "A wait time to restore (WTR) is running.";
 reference
 "ITU-T G.808, RFC 4427"
}

identity do-not-revert {
 base lsp-protection-state;
 description
 "A DNR condition is active because of a non-revertive behavior.";
 reference
 "ITU-T G.808, RFC 4427"
}

identity failure-of-protocol {
 base lsp-protection-state;
 description
 "The protection is not working because of a failure of protocol condition.";
 reference
 "ITU-T G.873.1, G.8031, G.8131"
}

identity protection-external-commands {
 description
 "Protection external commands for trouble shooting purposes.";
}

identity action-freeze {
 base protection-external-commands;
 description
"A temporary configuration action initiated by an operator command to prevent any switch action to be taken and as such freezes the current state.";
reference
"ITU-T G.808, RFC 4427";
}

identity clear-freeze {
base protection-external-commands;
description
"An action that clears the active freeze state.";
reference
"ITU-T G.808, RFC 4427";
}

identity action-lockout-of-normal {
base protection-external-commands;
description
"A temporary configuration action initiated by an operator command to ensure that the normal traffic is not allowed to use the protection transport entity.";
reference
"ITU-T G.808, RFC 4427";
}

identity clear-lockout-of-normal {
base protection-external-commands;
description
"An action that clears the active lockout of normal state.";
reference
"ITU-T G.808, RFC 4427";
}

identity action-lockout-of-protection {
base protection-external-commands;
description
"A temporary configuration action initiated by an operator command to ensure that the protection transport entity is temporarily not available to transport a traffic signal (either normal or extra traffic).";
reference
"ITU-T G.808, RFC 4427";
}

identity action-forced-switch {
base protection-external-commands;
description
"A switch action initiated by an operator command to switch

the extra traffic signal, the normal traffic signal, or the
null signal to the protection transport entity, unless an
equal or higher priority switch command is in effect.";
reference
"ITU-T G.808, RFC 4427";
}

identity action-manual-switch {
 base protection-external-commands;
 description
 "A switch action initiated by an operator command to switch
the extra traffic signal, the normal traffic signal #i, or
the null signal to the protection transport entity, unless
a fault condition exists on other transport entities or an
equal or higher priority switch command is in effect.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity action-exercise {
 base protection-external-commands;
 description
 "An action to start testing if the APS communication is
operating correctly. It is lower priority than any other
state or command.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity clear {
 base protection-external-commands;
 description
 "An action that clears the active near-end lockout of
protection, forced switch, manual switch, WTR state,
or exercise command.";
 reference
 "ITU-T G.808, RFC 4427";
}

identity switching-capabilities {
 description
 "Base identity for interface switching capabilities";
 reference "RFC3471";
}

identity switching-pscl {

base switching-capabilities;
description
"Packet-Switch Capable-1 (PSC-1)";
reference "RFC3471";
}

identity switching-evpl {
base switching-capabilities;
description
"Ethernet Virtual Private Line (EVPL)";
}

identity switching-l2sc {
base switching-capabilities;
description
"Layer-2 Switch Capable (L2SC)";
reference "RFC3471";
}

identity switching-tdm {
base switching-capabilities;
description
"Time-Division-Multiplex Capable (TDM)";
reference "RFC3471";
}

identity switching-otn {
base switching-capabilities;
description
"OTN-TDM capable";
}

identity switching-dcsc {
base switching-capabilities;
description
"Data Channel Switching Capable (DCSC)";
}

identity switching-lsc {
base switching-capabilities;
description
"Lambda-Switch Capable (LSC)";
reference "RFC3471";
}

identity switching-fsc {
base switching-capabilities;
description
"Packet-Switch Capable-2 (PSC-2)";
reference "RFC3471";
}
"Fiber-Switch Capable (FSC)"
 reference "RFC3471";
}

identity lsp-encoding-types {
 description
 "Base identity for encoding types"
 reference "RFC3471";
}

identity lsp-encoding-packet {
 base lsp-encoding-types;
 description
 "Packet LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-ethernet {
 base lsp-encoding-types;
 description
 "Ethernet LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-pdh {
 base lsp-encoding-types;
 description
 "ANSI/ETSI LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-sdh {
 base lsp-encoding-types;
 description
 "SDH ITU-T G.707 / SONET ANSI T1.105 LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-digital-wrapper {
 base lsp-encoding-types;
 description
 "Digital Wrapper LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-lambda {
 base lsp-encoding-types;
 description

"Lambda (photonic) LSP encoding"
reference "RFC3471";
}

identity lsp-encoding-fiber {
 base lsp-encoding-types;
 description
 "Fiber LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-fiber-channel {
 base lsp-encoding-types;
 description
 "FiberChannel LSP encoding"
 reference "RFC3471";
}

identity lsp-encoding-oduk {
 base lsp-encoding-types;
 description
 "G.709 ODUk (Digital Path)LSP encoding"
}

identity lsp-encoding-optical-channel {
 base lsp-encoding-types;
 description
 "Line (e.g., 8B/10B) LSP encoding"
}

identity lsp-encoding-line {
 base lsp-encoding-types;
 description
 "Line (e.g., 8B/10B) LSP encoding"
}

identity path-signaling-type {
 description
 "base identity from which specific LSPs path setup types are derived"
}

identity path-setup-static {
 base path-signaling-type;
 description
 "Static LSP provisioning path setup";
identity path-setup-rsvp {
 base path-signaling-type;
 description
 "RSVP-TE signaling path setup";
 reference "RFC3209";
}

identity path-setup-sr {
 base path-signaling-type;
 description
 "Segment-routing path setup";
}

identity path-scope-type {
 description
 "base identity from which specific path
 scope types are derived";
}

identity path-scope-segment {
 base path-scope-type;
 description
 "Path scope segment";
}

identity path-scope-end-to-end {
 base path-scope-type;
 description
 "Path scope end to end";
}

/* TE basic features */
feature p2mp-te {
 description
 "Indicates support for P2MP-TE";
 reference "RFC4875";
}

feature frr-te {
 description
 "Indicates support for TE FastReroute (FRR)";
 reference "RFC4090";
}

feature extended-admin-groups {
 description
 "Indicates support for TE link extended admin
groups.";
}
reference "RFC7308";
}

feature named-path-affinities {
 description
 "Indicates support for named path affinities";
}

feature named-extended-admin-groups {
 description
 "Indicates support for named extended admin groups";
}

feature named-srlg-groups {
 description
 "Indicates support for named SRLG groups";
}

feature named-path-constraints {
 description
 "Indicates support for named path constraints";
}

feature path-optimization-metric {
 description
 "Indicates support for path optimization metric";
}

feature path-optimization-objective-function {
 description
 "Indicates support for path optimization objective function";
}

identity route-usage-type {
 description
 "Base identity for route usage";
}

identity route-include-ero {
 base route-usage-type;
 description
 "Include ERO from route";
}

identity route-exclude-ero {
 base route-usage-type;
 description
 "Exclude ERO from route";
}
identity route-exclude-srlg {
 base route-usage-type;
 description
 "Exclude SRLG from route";
}

identity path-metric-type {
 description
 "Base identity for path metric type";
}

identity path-metric-te {
 base path-metric-type;
 description
 "TE path metric";
 reference "RFC3785";
}

identity path-metric-igp {
 base path-metric-type;
 description
 "IGP path metric";
 reference "RFC3785";
}

identity path-metric-hop {
 base path-metric-type;
 description
 "Hop path metric";
}

identity path-metric-delay-average {
 base path-metric-type;
 description
 "Unidirectional average link delay";
 reference "RFC7471";
}

identity path-metric-residual-bandwidth {
 base path-metric-type;
 description
 "Unidirectional Residual Bandwidth, which is defined to be Maximum Bandwidth [RFC3630] minus the bandwidth currently allocated to LSPs.";
 reference "RFC7471";
}
identity path-metric-optimize-includes {
 base path-metric-type;
 description
 "A metric that optimizes the number of included resources specified in a set";
}

identity path-metric-optimize-excludes {
 base path-metric-type;
 description
 "A metric that optimizes the number of excluded resources specified in a set";
}

identity path-tiebreaker-type {
 description
 "Base identity for path tie-breaker type";
}

identity path-tiebreaker-minfill {
 base path-tiebreaker-type;
 description
 "Min-Fill LSP path placement";
}

identity path-tiebreaker-maxfill {
 base path-tiebreaker-type;
 description
 "Max-Fill LSP path placement";
}

identity path-tiebreaker-random {
 base path-tiebreaker-type;
 description
 "Random LSP path placement";
}

identity bidir-provisioning-mode {
 description
 "Base identity for bidirectional provisioning mode.";
 reference "RFC7551";
}

identity bidir-provisioning-single-sided {
 base bidir-provisioning-mode;
 description
 "Single-sided bidirectional provisioning mode";
identity bidir-provisioning-double-sided {
 base bidir-provisioning-mode;
 description
 "Double-sided bidirectional provisioning mode";
 reference "RFC7551";
}

identity bidir-association-type {
 description
 "Base identity for bidirectional association type";
 reference "RFC7551";
}

identity bidir-assoc-corouted {
 base bidir-association-type;
 description
 "Co-routed bidirectional association type";
 reference "RFC7551";
}

identity bidir-assoc-non-corouted {
 base bidir-association-type;
 description
 "Non co-routed bidirectional association type";
 reference "RFC7551";
}

identity resource-affinities-type {
 description
 "Base identity for resource affinities";
 reference "RFC2702";
}

identity resource-aff-include-all {
 base resource-affinities-type;
 description
 "The set of attribute filters associated with a tunnel all of which must be present for a link to be acceptable";
 reference "RFC2702 and RFC3209";
}

identity resource-aff-include-any {
 base resource-affinities-type;
 description
"The set of attribute filters associated with a tunnel any of which must be present for a link to be acceptable";
reference "RFC2702 and RFC3209";
}

identity resource-aff-exclude-any {
 base resource-affinities-type;
 description
 "The set of attribute filters associated with a tunnel any of which renders a link unacceptable";
 reference "RFC2702 and RFC3209";
}

typedef optimization-goal {
 type enumeration {
 enum minimize {
 description "Pick lowest path metric goal";
 }
 enum maximize {
 description "Pick highest path metric goal";
 }
 enum randomize {
 description
 "Pick a path at random from list of equally favorable ones";
 }
 }
 description "TE optimization goal";
}

identity te-optimization-criterion {
 description
 "Base identity for TE optimization criterion.";
 reference
 "RFC3272: Overview and Principles of Internet Traffic Engineering.";
}

identity not-optimized {
 base te-optimization-criterion;
 description "Optimization is not applied.";
}

identity cost {
 base te-optimization-criterion;
 description "Optimized on cost.";
}
identity delay {
 base te-optimization-criterion;
 description "Optimized on delay.";
}

/ *
 * Typedefs
 */

typedef percentage {
 type uint8 {
 range "0..100";
 }
 description "Integer indicating a percentage value";
}

typedef performance-metric-normality {
 type enumeration {
 enum "unknown" {
 value 0;
 description "Unknown.";
 }
 enum "normal" {
 value 1;
 description "Normal.";
 }
 enum "abnormal" {
 value 2;
 description "Abnormal. The anomalous bit is set.";
 }
 }
 description "Indicates whether a performance metric is normal, abnormal, or unknown.";
}

typedef te-admin-status {
 type enumeration {

enum up {
 description
 "Enabled.";
}
enum down {
 description
 "Disabled.";
}
enum testing {
 description
 "In some test mode.";
}
enum preparing-maintenance {
 description
 "Resource is disabled in the control plane to prepare for graceful shutdown for maintenance purposes.";
 reference
 "RFC5817: Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks";
}
enum maintenance {
 description
 "Resource is disabled in the data plane for maintenance purposes.";
}

description
 "Defines a type representing the administrative status of a TE resource.";
}
typedef te-global-id {
 type uint32;
 description
 "An identifier to uniquely identify an operator, which can be either a provider or a client. The definition of this type is taken from RFC6370 and RFC5003. This attribute type is used solely to provide a globally unique context for TE topologies.";
}
typedef te-link-access-type {
 type enumeration {
 enum point-to-point {
 description
 "The link is point-to-point.";
 }
 enum multi-access {

typedef te-node-id {
 type yang:dotted-quad;
 description
 "An identifier for a node in a topology. The identifier is represented as 32-bit unsigned integer in the dotted-quad notation. This attribute is mapped to Router ID in RFC3630, RFC5329, RFC5305, and RFC6119."
}

typedef te-oper-status {
 type enumeration {
 enum up {
 description
 "Operational up.";
 }
 enum down {
 description
 "Operational down.";
 }
 enum testing {
 description
 "In some test mode.";
 }
 enum unknown {
 description
 "Status cannot be determined for some reason.";
 }
 enum preparing-maintenance {
 description
 "Resource is disabled in the control plane to prepare for graceful shutdown for maintenance purposes.";
 reference
 "RFC5817: Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks";
 }
 enum maintenance {
 description
 "Maintenance operation is ongoing.
 This could be due to a variety of reasons, such as troubleshooting, maintenance, or other activities that require the link to be operationally down.

 Reference:
 RFC5948: Maintenance Actions in MPLS Traffic Engineering Networks"
 }
 }
}

description
"The link is multi-access, including broadcast and NBMA."
}

description
"Defines a type representing the access type of a TE link."

reference
"RFC3630: Traffic Engineering (TE) Extensions to OSPF Version 2.";

description
 "Resource is disabled in the data plane for maintenance purposes.";
}
)
description
 "Defines a type representing the operational status of a TE resource.";
}
typedef te-path-disjointness {
 type bits {
 bit node {
 position 0;
 description "Node disjoint.";
 }
 bit link {
 position 1;
 description "Link disjoint.";
 }
 bit srlg {
 position 2;
 description "SRLG (Shared Risk Link Group) disjoint.";
 }
 }
 description
 "Type of the resource disjointness for a TE tunnel path.";
 reference
 "RFC4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery";
}
// te-path-disjointness
typedef te-recovery-status {
 type enumeration {
 enum normal {
 description
 "Both the recovery and working spans are fully allocated and active, data traffic is being transported over (or selected from) the working span, and no trigger events are reported.";
 }
 enum recovery-started {
 description
 "The recovery action has been started, but not completed.";
 }
 enum recovery-succeeded {
 description
 "The recovery action has finished successfully."
 }
 }
 description
 "Defines the recovery status of a TE resource.";
 reference
 "RFC4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery";
}
// te-recovery-status
"The recovery action has succeeded. The working span has reported a failure/degrade condition and the user traffic is being transported (or selected) on the recovery span.";
}

enum recovery-failed {
 description
 "The recovery action has failed.";
}

enum reversion-started {
 description
 "The reversion has started.";
}

enum reversion-failed {
 description
 "The reversion has failed.";
}

enum recovery-unavailable {
 description
 "The recovery is unavailable -- either as a result of an operator Lockout command or a failure condition detected on the recovery span.";
}

enum recovery-admin {
 description
 "The operator has issued a command switching the user traffic to the recovery span.";
}

enum wait-to-restore {
 description
 "The recovery domain is recovering from a failure/degrade condition on the working span that is being controlled by the Wait-to-Restore (WTR) timer.";
}

description
 "Defines the status of a recovery action.";
reference
 RFC6378: MPLS Transport Profile (MPLS-TP) Linear Protection";
}

typedef te-template-name {
 type string {
 pattern '/?([a-zA-Z0-9\-_.]+)(/[a-zA-Z0-9\-_.]+)*/';
 }
 description
 "A type for the name of a TE node template or TE link";
template.
}

typedef te-topology-event-type {
 type enumeration {
 enum "add" {
 value 0;
 description
 "A TE node or te-link has been added.";
 } enum "remove" {
 value 1;
 description
 "A TE node or te-link has been removed.";
 } enum "update" {
 value 2;
 description
 "A TE node or te-link has been updated.";
 }
 }
 description "TE Event type for notifications";
} // te-topology-event-type

typedef te-topology-id {
 type string {
 pattern
 '([{a-zA-Z0-9\-_}+:]*)' + '/?([{a-zA-Z0-9\-_}]+(/[a-zA-Z0-9\-_]+)*)';
 }
 description
 "An identifier for a topology.
 It is optional to have one or more prefixes at the begining,
 separated by colons. The prefixes can be the network-types,
 defined in ietf-network.yang, to help user to understand the
 topology better before further inquiry.";
}

typedef te-tp-id {
 type union {
 type uint32; // Unnumbered
 type inet:ip-address; // IPv4 or IPv6 address
 }
 description
 "An identifier for a TE link endpoint on a node.
 This attribute is mapped to local or remote link identifier in
 RFC3630 and RFC5305.";
}
typedef admin-group {
 type binary {
 length 4;
 }
 description "Administrative group/Resource class/Color.";
 reference "RFC3630 and RFC5305";
}

typedef extended-admin-group {
 type binary;
 description "Extended administrative group/Resource class/Color.";
 reference "RFC7308";
}

typedef admin-groups {
 type union {
 type admin-group;
 type extended-admin-group;
 }
 description "TE administrative group derived type";
}

typedef srlg {
 type uint32;
 description "SRLG type";
 reference "RFC4203 and RFC5307";
}

identity path-computation-srlg-type {
 description "Base identity for SRLG path computation";
}

identity srlg-ignore {
 base path-computation-srlg-type;
 description "Ignores SRLGs in path computation";
}

identity srlg-strict {
 base path-computation-srlg-type;
 description "Include strict SRLG check in path computation";
}

identity srlg-preferred {
base path-computation-srlg-type;
 description
 "Include preferred SRLG check in path computation";
}

identity srlg-weighted {
 base path-computation-srlg-type;
 description
 "Include weighted SRLG check in path computation";
}

typedef te-metric {
 type uint32;
 description
 "TE link metric";
 reference "RFC3785";
}

/**
 * TE bandwidth groupings
 **/
identity otn-rate-type {
 description
 "Base type to identify OTN bit rates of various information
 structures.";
 reference "RFC7139";
}

identity odu0 {
 base otn-rate-type;
 description
 "ODU0 bit rate.";
}

identity odu1 {
 base otn-rate-type;
 description
 "ODU1 bit rate.";
}

identity odu2 {
 base otn-rate-type;
 description
 "ODU2 bit rate.";
}

identity odu3 {
 base otn-rate-type;
 description
 "ODU3 bit rate.";
}

identity odu4 {

identity odu2e {
 base otn-rate-type;
 description
 "ODU2e bit rate.";
}

identity oduc {
 base otn-rate-type;
 description
 "ODUCn bit rate.";
}

identity oduflex {
 base otn-rate-type;
 description
 "ODUflex bit rate.";
}

identity wdm-spectrum-type {
 description
 "Base type to identify WDM spectrum type.";
}

identity cwdm {
 base wdm-spectrum-type;
 description "CWDM.";
 reference "RFC6205";
}

identity dwdm {
 base wdm-spectrum-type;
 description "DWDM.";
 reference "RFC6205";
}

identity flexible-grid {
 base wdm-spectrum-type;
 description "Flexible grid.";
 reference "RFC6205";
}

grouping te-bandwidth {
 description
 "This grouping defines the generic TE bandwidth.
 For some known data plane technologies, specific modeling
 structures are specified. The string encoded te-bandwidth
 type is used for un-specified technologies.
 The modeling structure can be augmented later for other
 technologies.";
}
container te-bandwidth {
 description
 "Container that specifies TE bandwidth.";
 choice technology {
 default generic;
 description
 "Data plane technology type.";
 case generic {
 leaf generic {
 type te-bandwidth;
 description
 "Bandwidth specified in a generic format.";
 }
 }
 }
}

/**
 * TE label groupings
 **/

grouping te-label {
 description
 "This grouping defines the generic TE label. The modeling structure can be augmented for each technology. For un-specified technologies, rt-types:generalized-label is used.";
 container te-label {
 description
 "Container that specifies TE label.";
 choice technology {
 default generic;
 description
 "Data plane technology type.";
 case generic {
 leaf generic {
 type rt-types:generalized-label;
 description
 "TE label specified in a generic format.";
 }
 }
 }
 }
 leaf direction {
 type te-label-direction;
 description "Label direction";
 }
}
grouping performance-metric-container {
 description
 "A container containing performance metric attributes.";
 container performance-metric {
 description
 "Link performance information in real time.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
 RFC7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions";
 container measurement {
 description
 "Measured performance metric values. Static configuration and manual overrides of these measurements are also allowed.";
 uses performance-metric-attributes;
 }
 container normality {
 description
 "Performance metric normality values.";
 uses performance-metric-normality-attributes;
 }
 uses performance-metric-throttle-container;
 }
} // performance-metric-container

grouping te-topology-identifier {
 description
 "Augmentation for TE topology.";
 container te-topology-identifier {
 description "TE topology identifier container";
 leaf provider-id {
 type te-types:te-global-id;
 description
 "An identifier to uniquely identify a provider.";
 }
 leaf client-id {
 type te-types:te-global-id;
 description
 "An identifier to uniquely identify a client.";
 }
 leaf topology-id {
type te-types:te-topology-id;
description
"It is presumed that a datastore will contain many
topologies. To distinguish between topologies it is
vital to have UNIQUE topology identifiers."
}
}

grouping performance-metric-attributes {
 description
 "Link performance information in real time.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
RFC7823: Performance-Based Path Selection for Explicitly
Routed Label Switched Paths (LSPs) Using TE Metric
Extensions";
leaf unidirectional-delay {
 type uint32 {
 range 0..16777215;
 }
 description "Delay or latency in micro seconds.";
}
leaf unidirectional-min-delay {
 type uint32 {
 range 0..16777215;
 }
 description "Minimum delay or latency in micro seconds.";
}
leaf unidirectional-max-delay {
 type uint32 {
 range 0..16777215;
 }
 description "Maximum delay or latency in micro seconds.";
}
leaf unidirectional-delay-variation {
 type uint32 {
 range 0..16777215;
 }
 description "Delay variation in micro seconds.";
}
leaf unidirectional-packet-loss {
 type decimal64 {
 fraction-digits 6;
 range "0 .. 50.331642";
Packet loss as a percentage of the total traffic sent over a configurable interval. The finest precision is 0.000003.

Residual bandwidth that subtracts tunnel reservations from Maximum Bandwidth (or link capacity) [RFC3630] and provides an aggregated remainder across QoS classes.

Available bandwidth that is defined to be residual bandwidth minus the measured bandwidth used for the actual forwarding of non-RSVP-TE LSP packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths.

Bandwidth utilization that represents the actual utilization of the link (i.e. as measured in the router). For a bundled link, bandwidth utilization is defined to be the sum of the component link bandwidth utilizations.

Link performance metric normality attributes.

Delay normality.

Delay normality.
type te-types:performance-metric-normality;
description "Minimum delay or latency normality.";
}
leaf unidirectional-max-delay {
 type te-types:performance-metric-normality;
 description "Maximum delay or latency normality.";
}
leaf unidirectional-delay-variation {
 type te-types:performance-metric-normality;
 description "Delay variation normality.";
}
leaf unidirectional-packet-loss {
 type te-types:performance-metric-normality;
 description "Packet loss normality.";
}
leaf unidirectional-residual-bandwidth {
 type te-types:performance-metric-normality;
 description "Residual bandwidth normality.";
}
leaf unidirectional-available-bandwidth {
 type te-types:performance-metric-normality;
 description "Available bandwidth normality.";
}
leaf unidirectional-utilized-bandwidth {
 type te-types:performance-metric-normality;
 description "Bandwidth utilization normality.";
}
}

// performance-metric-normality-attributes

grouping performance-metric-throttle-container {
 description
 "A container controlling performance metric throttle.";
 container throttle {
 must "suppression-interval >= measure-interval" {
 error-message
 "suppression-interval cannot be less then
measure-interval.";
 description
 "Constraint on suppression-interval and
measure-interval.";
 }
 description
 "Link performance information in real time.";
 reference
 "RFC7471: OSPF Traffic Engineering (TE) Metric Extensions.
RFC7823: Performance-Based Path Selection for Explicitly
Routed Label Switched Paths (LSPs) Using TE Metric"
leaf unidirectional-delay-offset {
 type uint32 {
 range 0..16777215;
 }
 description
 "Offset value to be added to the measured delay value.";
}
leaf measure-interval {
 type uint32;
 default 30;
 description
 "Interval in seconds to measure the extended metric values.";
}
leaf advertisement-interval {
 type uint32;
 description
 "Interval in seconds to advertise the extended metric values.";
}
leaf suppression-interval {
 type uint32 {
 range "1 .. max";
 }
 default 120;
 description
 "Interval in seconds to suppress advertising the extended metric values.";
}
container threshold-out {
 uses performance-metric-attributes;
 description
 "If the measured parameter falls outside an upper bound for all but the min delay metric (or lower bound for min-delay metric only) and the advertised value is not already outside that bound, anomalous announcement will be triggered.";
}
container threshold-in {
 uses performance-metric-attributes;
 description
 "If the measured parameter falls inside an upper bound for all but the min delay metric (or lower bound for min-delay metric only) and the advertised value is not already inside that bound, normal (anomalous-flag cleared) announcement will be triggered.";
}
container threshold-accelerated-advertisement {
 description
 "When the difference between the last advertised value and
 current measured value exceed this threshold, anomalous
 announcement will be triggered.";
 uses performance-metric-attributes;
}
} // performance-metric-throttle-container

/**
 * TE tunnel generic groupings
 **/

/* Tunnel path selection parameters */
grouping explicit-route-hop {
 description
 "The explicit route subobject grouping";
 leaf index {
 type uint32;
 description "ERO subobject index";
 }
 choice type {
 description
 "The explicit route subobject type";
 case num-unnum-hop {
 container num-unnum-hop {
 leaf node-id {
 type te-types:te-node-id;
 description
 "The identifier of a node in the TE topology.";
 }
 leaf link-tp-id {
 type te-types:te-tp-id;
 description
 "TE link termination point identifier. The combination
 of TE link ID and the TE node ID is used to identify an
 unnumbered TE link.";
 }
 leaf hop-type {
 type te-hop-type;
 description "strict or loose hop";
 }
 leaf direction {
 type te-link-direction;
 description "Unnumbered Link ERO direction";
 }
 }
 }
 }
 description
 "The explicit route subobject type";
"Numbered and Unnumbered link/node explicit route subobject";
reference
"RFC3209: section 4.3 for EXPLICIT_ROUTE in RSVP-TE
RFC3477: Signalling Unnumbered Links in RSVP-TE";
}
}
case as-number {
 container as-number-hop {
 leaf as-number {
 type binary {
 length 16;
 }
 description "AS number";
 }
 leaf hop-type {
 type te-hop-type;
 description "strict or loose hop";
 }
 description "Autonomous System explicit route subobject";
 }
}
case label {
 container label-hop {
 description "Label hop type";
 uses te-label;
 description "The Label ERO subobject";
 }
}
}
grouping record-route-subobject_state {
 description "The record route subobject grouping";
 leaf index {
 type uint32;
 description "RRO subobject index";
 }
 choice type {
 description "The record route subobject type";
 case numbered {
 leaf address {
 type te-types:te-tp-id;
 }
 }
 case label {
 leaf label {
 type te-types:te-label;
 description "The Label ERO label";
 }
 }
 case as-number {
 leaf as-number {
 type binary {
 length 16;
 }
 description "AS number";
 }
 leaf hop-type {
 type te-hop-type;
 description "strict or loose hop";
 }
 description "Autonomous System explicit route subobject";
 }
 }
}

leaf ip-flags {
 type binary {
 length 8;
 }
 description
 "RRO IP address sub-object flags";
 reference "RFC3209";
}
}
case unnumbered {
 leaf node-id {
 type te-types:te-node-id;
 description
 "The identifier of a node in the TE topology.";
 }
 leaf link-tp-id {
 type te-types:te-tp-id;
 description
 "TE link termination point identifier, used
 together with te-node-id to identify the
 link termination point";
 }
 description
 "Unnumbered link record route subobject";
 reference
 "RFC3477: Signalling Unnumbered Links in
 RSVP-TE";
}
case label {
 container label-hop {
 description "Label hop type";
 uses te-label;
 leaf label-flags {
 type binary {
 length 8;
 }
 description
 "Label sub-object flags";
 reference "RFC3209";
 }
 description
 "The Label RRO subobject";
 }
}
grouping label-restriction-info {
 description "Label set item info";
 leaf restriction {
 type enumeration {
 enum inclusive {
 description "The label or label range is inclusive.";
 }
 enum exclusive {
 description "The label or label range is exclusive.";
 }
 }
 description "Whether the list item is inclusive or exclusive.";
 }
 leaf index {
 type uint32;
 description "Then index of the label restriction list entry.";
 }
 container label-start {
 description "This is the starting label if a label range is specified. This is the label value if a single label is specified, in which case, attribute 'label-end' is not set.";
 uses te-label;
 }
 container label-end {
 description "The ending label if a label range is specified; This attribute is not set, If a single label is specified.";
 uses te-label;
 }
 leaf range-bitmap {
 type binary;
 description "When there are gaps between label-start and label-end, this attribute is used to specified the possessions of the used labels.";
 }
}

grouping label-set-info {
 description "Grouping for List of label restrictions specifying what labels may or may not be used on a link connectivity.";
}

container label-restrictions {
 description "The label restrictions container";
 list label-restriction {
 key "index";
 description "The absence of label-set implies that all labels are acceptable; otherwise only restricted labels are available.";
 reference "RFC7579: General Network Element Constraint Encoding for GMPLS-Controlled Networks";
 uses label-restriction-info;
 }
}

/*** End of TE tunnel groupings ***/

grouping optimizations_config {
 description "Optimization metrics configuration grouping";
 leaf metric-type {
 type identityref {
 base te-types:path-metric-type;
 }
 description "TE path metric type";
 }
 leaf weight {
 type uint8;
 description "TE path metric normalization weight";
 }
 container explicit-route-exclude-objects {
 when "../metric-type = "+"te-types:path-metric-optimize-excludes";
 description "Container for the exclude route object list";
 uses path-route-exclude-objects;
 }
 container explicit-route-include-objects {
 when "../metric-type = "+"te-types:path-metric-optimize-includes";
 description "Container for the include route object list";
 uses path-route-include-objects;
 }
}

grouping common-constraints_config {
 description
"Common constraints grouping that can be set on
a constraint set or directly on the tunnel";

uses te-types:te-bandwidth {
 description
 "A requested bandwidth to use for path computation";
}

leaf setup-priority {
 type uint8 {
 range "0..7";
 }
 description
 "TE LSP requested setup priority";
 reference "RFC3209";
}

leaf hold-priority {
 type uint8 {
 range "0..7";
 }
 description
 "TE LSP requested hold priority";
 reference "RFC3209";
}

leaf signaling-type {
 type identityref {
 base te-types:path-signaling-type;
 }
 description "TE tunnel path signaling type";
}

}

grouping tunnel-constraints_config {
 description
 "Tunnel constraints grouping that can be set on
a constraint set or directly on the tunnel";
 uses te-types:te-topology-identifier;
 uses te-types:common-constraints_config;
}

grouping path-metrics-bounds_config {
 description "TE path metric bounds grouping";
 leaf metric-type {
 type identityref {
 base te-types:path-metric-type;
 }
 description "TE path metric type";
 }
}
leaf upper-bound {
 type uint64;
 description "Upper bound on end-to-end TE path metric";
}

grouping path-objective-function_config {
 description "Optimization metrics configuration grouping";
 leaf objective-function-type {
 type identityref {
 base te-types:objective-function-type;
 }
 description "Objective function entry";
 }
}

/** *
 * TE interface generic groupings *
 **/
grouping path-route-objects {
 description "List of EROs to be included or excluded when performing
 the path computation.";
 container explicit-route-objects {
 description "Container for the exclude route object list";
 list route-object-exclude-always {
 key index;
 description "List of explicit route objects to always exclude
 from path computation";
 uses te-types:explicit-route-hop;
 }
 list route-object-include-exclude {
 key index;
 description "List of explicit route objects to include or
 exclude in path computation";
 leaf explicit-route-usage {
 type identityref {
 base te-types:route-usage-type;
 }
 description "Explicit-route usage.";
 }
 uses te-types:explicit-route-hop {
 augment "type" {
 case srlg {
 }
 }
 }
 }
 }
}
container srlg {
 description "SRLG container";
 leaf srlg {
 type uint32;
 description "SRLG value";
 }
 description "An SRLG value to be included or excluded";
}

description "Augmentation to generic explicit route for SRLG exclusion";

grouping path-route-include-objects {
 description "List of EROs to be included when performing the path computation.";
 list route-object-include-object {
 key index;
 description "List of explicit route objects to be included in path computation";
 uses te-types:explicit-route-hop;
 }
}

grouping path-route-exclude-objects {
 description "List of EROs to be included when performing the path computation.";
 list route-object-exclude-object {
 key index;
 description "List of explicit route objects to be excluded in path computation";
 uses te-types:explicit-route-hop {
 augment "type" {
 case srlg {
 container srlg {
 description "SRLG container";
 leaf srlg {
 type uint32;
 description "SRLG value";
 }
 }
 description "An SRLG value to be included or excluded";
 }
 }
 }
 }
}
grouping generic-path-metric-bounds {
 description "TE path metric bounds grouping";
 container path-metric-bounds {
 description "TE path metric bounds container";
 list path-metric-bound {
 key metric-type;
 description "List of TE path metric bounds";
 uses path-metrics-bounds_config;
 }
 }
}

grouping generic-path-optimization {
 description "TE generic path optimization grouping";
 container optimizations {
 description "The objective function container that includes attributes to impose when computing a TE path";
 choice algorithm {
 description "Optimizations algorithm.";
 case metric {
 if-feature path-optimization-metric;
 /* Optimize by metric */
 list optimization-metric {
 key "metric-type";
 description "TE path metric type";
 uses optimizations_config;
 }
 /* Tiebreakers */
 container tiebreakers {
 description "The list of tiebreaker criterion to apply on an equally favored set of paths to pick best";
 list tiebreaker {
 key "tiebreaker-type";
 }
 }
 }
 }
 }
}
description
 "The list of tiebreaker criterion to apply
 on an equally favored set of paths to pick best";
leaf tiebreaker-type {
 type identityref {
 base te-types:path-metric-type;
 }
 description "The objective function";
}
}
}
case objective-function {
 if-feature path-optimization-objective-function;
 /* Objective functions */
container objective-function {
 description
 "The objective function container that includes
 attributes to impose when computing a TE path";
 uses path-objective-function_config;
}
}
}
}
grouping generic-path-affinities {
 description
 "Path affinities grouping";
container path-affinities {
 description
 "Path affinities container";
list constraint {
 key "usage";
 description
 "List of named affinity constraints";
leaf usage {
 type identityref {
 base resource-affinities-type;
 }
 description "Affinities usage";
}
leaf value {
 type admin-groups;
 description "Affinity value";
}
}
}
grouping generic-path-srlgs {
 description "Path SRLG grouping";
 container path-srlgs {
 description "Path SRLG properties container";
 leaf usage {
 type identityref {
 base te-types:route-exclude-srlg;
 }
 description "SRLG usage";
 }
 leaf-list values {
 type srlg;
 description "SRLG value";
 }
 }
}

grouping generic-path-disjointness {
 description "Path disjointness grouping";
 leaf disjointness {
 type te-types:te-path-disjointness;
 description "The type of resource disjointness. Under primary path, disjointness level applies to all secondary LSPs. Under secondary, disjointness level overrides the one under primary";
 }
}

grouping common-path-constraints-attributes {
 description "Common path constraints configuration grouping";
 uses common-constraints_config;
 uses generic-path-metric-bounds;
 uses generic-path-affinities;
 uses generic-path-srlgs;
}

grouping generic-path-constraints {
 description "Global named path constraints configuration grouping";
 container path-constraints {
 description "TE named path constraints container";
 }
}
uses common-path-constraints-attributes;
uses generic-path-disjointness;
}

grouping generic-path-properties {
 description "TE generic path properties grouping";
 container path-properties {
 config false;
 description "The TE path properties";
 list path-metric {
 key metric-type;
 description "TE path metric type";
 leaf metric-type {
 type identityref {
 base te-types:path-metric-type;
 }
 description "TE path metric type";
 }
 leaf accumulative-value {
 type uint64;
 description "TE path metric accumulative value";
 }
 }
 }
 uses generic-path-affinities;
 uses generic-path-srlgs;
 container path-route-objects {
 description "Container for the list of route objects either returned by the computation engine or actually used by an LSP";
 list path-route-object {
 key index;
 description "List of route objects either returned by the computation engine or actually used by an LSP";
 uses explicit-route-hop;
 }
 }
}

Figure 7: TE basic types YANG module

<CODE BEGINS> file "ietf-te@2018-07-01.yang"
module ietf-te {
 yang-version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf-te";

/* Replace with IANA when assigned */
prefix "te";

/* Import TE generic types */
import ietf-te-types {
 prefix te-types;
}

import ietf-inet-types {
 prefix inet;
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>"
 "WG List: <mailto:teas@ietf.org>"
 "WG Chair: Lou Berger <mailto:lberger@labn.net>"
 "WG Chair: Vishnu Pavan Beeram <mailto:vbeeram@juniper.net>"
 "Editor: Tarek Saad <mailto:tsaad@cisco.com>"
 "Editor: Rakesh Gandhi <mailto:rgandhi@cisco.com>"
 "Editor: Vishnu Pavan Beeram <mailto:vbeeram@juniper.net>"
 "Editor: Himanshu Shah <mailto:hshah@ciena.com>"
 "Editor: Xufeng Liu <mailto:Xufeng_Liu@jabil.com>"
 "Editor: Igor Bryskin <mailto:Igor.Bryskin@huawei.com>";

description
 "YANG data module for TE configuration,

state, RPC and notifications.

revision "2018-07-01" {
 description "Latest update to TE generic YANG module.";
 reference "TBA";
}

typedef tunnel-ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 description "This type is used by data models that need to reference configured TE tunnel.";
}

typedef path-ref {
 type union {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-primary-paths/te:p2p-primary-path/te:name";
 }
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-secondary-paths/te:p2p-secondary-path/te:name";
 }
 }
 description "This type is used by data models that need to reference configured primary or secondary path of a TE tunnel.";
}

typedef tunnel-p2mp-ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel-p2mp/te:name";
 }
 description "This type is used by data models that need to reference configured P2MP TE tunnel.";
 reference "RFC4875";
}

/**
 * TE tunnel generic groupings
 */
grouping path-affinities-contents_config {
 description "Path affinities constraints grouping";
reference "RFC3630 and RFC5305";
leaf usage {
 type identityref {
 base te-types:resource-affinities-type;
 }
 description "Affinities usage";
}
choice style {
 description
 "Path affinities representation style";
 case value {
 leaf value {
 type te-types:admin-groups;
 description
 "Bitmap indicating what bits are of significance";
 }
 }
 case named {
 list affinity-names {
 key "name";
 leaf name {
 type string;
 description "Affinity name";
 }
 description "List of named affinities";
 }
 }
}

grouping path-affinities {
 description "Path affinities grouping";
 reference "RFC 3209";
 container path-affinities {
 description "Path affinities container";
 list constraints {
 key "usage";
 description "List of named affinity constraints";
 uses path-affinities-contents_config;
 }
 }
}

grouping path-srlgs-values_config {
 description "Path SRLG values properties grouping";
 reference "RFC4203 and RFC5307";
 leaf usage {
 type identityref {

base te-types:route-exclude-srlg;
}
description "SRLG usage";
} leaf-list values {
type te-types:srlg;
description "SRLG value";
reference "RFC4203 and RFC5307";
}
}
grouping path-srlgs {
description "Path SRLG properties grouping";
container path-srlgs {
description "Path SRLG properties container";
choice style {
description "Type of SRLG representation";
case values {
uses path-srlgs-values_config;
}
case named {
container constraints {
description "SRLG named constraints";
list constraint {
key "usage";
leaf usage {
type identityref {
base te-types:route-exclude-srlg;
}
description "SRLG usage";
}
container constraint {
description "Container for named SRLG list";
list srlg-names {
key "name";
leaf name {
type string;
description "The SRLG name";
}
description "List named SRLGs";
}
description "List of named SRLG constraints";
}
}
}
}
grouping p2p-reverse-primary-path-properties {
 description "tunnel path properties.";
 reference "RFC7551";
 container p2p-reverse-primary-path {
 description "Tunnel reverse primary path properties";
 uses p2p-path-reverse-properties_config;
 uses path-constraints-common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p-path-properties_state;
 }
 }
 container p2p-reverse-secondary-path {
 description "Tunnel reverse secondary path properties";
 uses p2p-reverse-path-candidate-secondary-path-config;
 }
}

grouping p2p-secondary-path-properties {
 description "tunnel path properties.";
 uses p2p-path-properties_config;
 uses path-constraints-common_config;
 uses protection-restoration-params_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p-path-properties_state;
 }
}

grouping p2p-primary-path-properties {
 description
 "TE tunnel primary path properties grouping";
 uses p2p-path-properties_config;
 uses path-constraints-common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p-path-properties_state;
 }
}
grouping path-properties_state {
 description "Computed path properties grouping";
 leaf metric-type {
 type identityref {
 base te-types:path-metric-type;
 }
 description "TE path metric type";
 }
 leaf accumulative-value {
 type uint64;
 description "TE path metric accumulative value";
 }
}

grouping path-properties {
 description "TE computed path properties grouping";
 container path-properties {
 description "The TE path computed properties";
 list path-metric {
 key metric-type;
 description "TE path metric type";
 leaf metric-type {
 type leafref {
 path ".../state/metric-type";
 }
 description "TE path metric type";
 }
 container state {
 config false;
 description "Configuration applied parameters and state";
 uses path-properties_state;
 }
 }
 }
 uses path-affinities;
 uses path-srlgs;
 container path-route-objects {
 description "Container for the list of computed route objects as returned by the computation engine";
 list path-computed-route-object {
 key index;
 description "List of computed route objects returned by the computation engine";
 leaf index {
 type leafref {
 path ".../state/index";
 }
 }
 }
 }
}
description "Index of computed route object";
}
container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses te-types:explicit-route-hop;
}
}
uses shared-resources-tunnels;
}

grouping p2p-path-properties_state {
 description "TE per path state parameters";
 uses path-properties {
 description "The TE path computed properties";
 }
 container lsps {
 description "TE LSPs container";
 list lsp {
 key
 "source destination tunnel-id lsp-id " +
 "extended-tunnel-id";
 description "List of LSPs associated with the tunnel.";
 uses lsp-properties_state;
 uses shared-resources-tunnels_state;
 uses lsp-record-route-information_state;
 uses path-properties {
 description "The TE path actual properties";
 }
 }
 }
}

grouping p2p-path-properties-common_config {
 description "TE tunnel common path properties configuration grouping";
 leaf name {
 type string;
 description "TE path name";
 }
 leaf path-setup-protocol {
 type identityref {
 base te-types:path-signaling-type;
 }
}
description
"Signaling protocol used to set up this tunnel";

leaf path-computation-method {
 type identityref {
 base te-types:path-computation-method;
 }
 default te-types:path-locally-computed;
 description
 "The method used for computing the path, either
 locally computed, queried from a server or not
 computed at all (explicitly configured).";
}

leaf path-computation-server {
 when ".../path-computation-method = "+
 "te-types:path-externally-queried"" {
 description
 "The path-computation server when the path is
 externally queried";
 }
 type inet:ip-address;
 description
 "Address of the external path computation
 server";
}

leaf compute-only {
 type empty;
 description
 "When set, the path is computed and updated whenever
 the topology is updated. No resources are committed
 or reserved in the network.";
}

leaf use-path-computation {
 when ".../path-computation-method =" +
 "te-types:path-locally-computed";
 type boolean;
 description "A CSPF dynamically computed path";
}

leaf lockdown {
 type empty;
 description
 "Indicates no reoptimization to be attempted for
 this path.";
}

leaf path-scope {
 type identityref {
 base te-types:path-scope-type;
 }
}
default te-types:path-scope-end-to-end;
description "Path scope if segment or an end-to-end path";
}
}

grouping p2p-path-reverse-properties_config {
description
 "TE tunnel reverse path properties configuration grouping";
uses p2p-path-properties-common_config;
uses te-types:generic-path-optimization;
leaf named-path-constraint {
 if-feature te-types:named-path-constraints;
type leafref {
 path "../../../../globals/named-path-constraints/named-path-constraint/name";
}
description
 "Reference to a globally defined named path constraint set";
}
}

grouping p2p-path-properties_config {
description
 "TE tunnel path properties configuration grouping";
uses p2p-path-properties-common_config;
uses te-types:generic-path-optimization;
leaf preference {
 type uint8 {
 range "1..255";
}
description
 "Specifies a preference for this path. The lower the number higher the preference";
}
leaf named-path-constraint {
 if-feature te-types:named-path-constraints;
type leafref {
 path "../../../../globals/named-path-constraints/named-path-constraint/name";
}
description
 "Reference to a globally defined named path constraint set";
}
/* TE tunnel configuration data */
grouping tunnel-p2mp-params_config {
 description
 "Configuration parameters relating to TE tunnel";
 leaf name {
 type string;
 description "TE tunnel name.";
 }
 leaf identifier {
 type uint16;
 description
 "TE tunnel Identifier.";
 reference "RFC 3209";
 }
 leaf description {
 type string;
 description
 "Textual description for this TE tunnel";
 }
}

grouping hierarchical-link_config {
 description
 "Hierarchical link configuration grouping";
 reference "RFC4206";
 leaf local-te-node-id {
 type te-types:te-node-id;
 description
 "Local TE node identifier";
 }
 leaf local-te-link-tp-id {
 type te-types:te-tp-id;
 description
 "Local TE link termination point identifier";
 }
 leaf remote-te-node-id {
 type te-types:te-node-id;
 description
 "Remote TE node identifier";
 }
 uses te-types:te-topology-identifier;
}

grouping hierarchical-link {
 description
 "Hierarchical link grouping";
}
container hierarchical-link {
 description "Identifies a hierarchical link (in client layer) that this tunnel is associated with.";
 uses hierarchical-link_config;
}

grouping protection-restoration-params_state {
 description "Protection parameters grouping";
 leaf lockout-of-normal {
 type boolean;
 description "When set to 'True', it represents a lockout of normal traffic external command. When set to 'False', it represents a clear lockout of normal traffic external command. The lockout of normal traffic command applies to this Tunnel."
 reference "ITU-T G.808, RFC 4427";
 }
 leaf freeze {
 type boolean;
 description "When set to 'True', it represents a freeze external command. When set to 'False', it represents a clear freeze external command. The freeze command command applies to all the Tunnels which are sharing the protection resources with this Tunnel."
 reference "ITU-T G.808, RFC 4427";
 }
 leaf lsp-protection-role {
 type enumeration {
 enum working {
 description "A working LSP must be a primary LSP whilst a protecting LSP can be either a primary or a secondary LSP. Also, known as protected LSPs when working LSPs are associated with protecting LSPs."
 }
 enum protecting {
 }
description
"A secondary LSP is an LSP that has been provisioned in the control plane only; e.g. resource allocation has not been committed at the data plane";

leaf lsp-protection-state {
 type identityref {
 base te-types:lsp-protection-state;
 }
 description
 "The state of the APS state machine controlling which tunnels is using the resources of the protecting LSP.";
}

leaf protection-group-ingress-node-id {
 type te-types:te-node-id;
 description
 "Indicates the te-node-id of the protection group ingress node when the APS state represents an external command (LoP, SF, MS) applied to it or a WTR timer running on it. If the external command is not applied to the ingress node or the WTR timer is not running on it, this attribute is not specified. If value 0.0.0.0 is used when the te-node-id of the protection group ingress node is unknown (e.g., because the ingress node is outside the scope of control of the server)";
}

leaf protection-group-egress-node-id {
 type te-types:te-node-id;
 description
 "Indicates the te-node-id of the protection group egress node when the APS state represents an external command (LoP, SF, MS) applied to it or a WTR timer running on it. If the external command is not applied to the ingress node or the WTR timer is not running on it, this attribute is not specified. If value 0.0.0.0 is used when the te-node-id of the protection group ingress node is unknown (e.g., because the ingress node is outside the scope of control of the server)";
}

grouping protection-restoration-params_config {
 description "Protection and restoration parameters";
}
container protection {
 description "Protection parameters";
 leaf enable {
 type boolean;
 default 'false';
 description "A flag to specify if LSP protection is enabled";
 reference "rfc4427";
 }
 leaf protection-type {
 type identityref {
 base te-types:lsp-protection-type;
 }
 description "LSP protection type.";
 }
 leaf protection-reversion-disable {
 type boolean;
 description "Disable protection reversion to working path";
 }
 leaf hold-off-time {
 type uint32;
 units "milli-seconds";
 default 0;
 description "The time between the declaration of an SF or SD condition and the initialization of the protection switching algorithm.";
 reference "rfc4427";
 }
 leaf wait-to-revert {
 type uint16;
 units seconds;
 description "Time to wait before attempting LSP reversion";
 reference "rfc4427";
 }
 leaf aps-signal-id {
 type uint8 {
 range "1..255";
 }
 description "The APS signal number used to reference the traffic of this tunnel. The default value for normal traffic is 1. The default value for extra-traffic is 255. If not specified, non-default values can be assigned by the server, if and only if, the server controls both endpoints.";
 reference "ITU-T G.808.1";
 }
}
container restoration {
 description "Restoration parameters";
 leaf enable {
 type boolean;
 default 'false';
 description "A flag to specify if LSP restoration is enabled";
 reference "rfc4427";
 }
 leaf restoration-type {
 type identityref {
 base te-types:lsp-restoration-type;
 }
 description "LSP restoration type.";
 }
 leaf restoration-scheme {
 type identityref {
 base te-types:restoration-scheme-type;
 }
 description "LSP restoration scheme.";
 }
 leaf restoration-reversion-disable {
 type boolean;
 description "Disable restoration reversion to working path";
 }
 leaf hold-off-time {
 type uint32;
 units "milli-seconds";
 description "The time between the declaration of an SF or SD condition and the initialization of the protection switching algorithm.";
 reference "rfc4427";
 }
 leaf wait-to-restore {
 type uint16;
 units seconds;
 description "Time to wait before attempting LSP restoration";
 reference "rfc4427";
 }
 leaf wait-to-revert {
 type uint16;
 units seconds;
 description "Time to wait before attempting LSP reversion";
 }
}
grouping p2p-dependency-tunnels_config {
 description "Grouping for tunnel dependency list of tunnels";
 container dependency-tunnels {
 description "Dependency tunnels list";
 list dependency-tunnel {
 key "name";
 description "Dependency tunnel entry";
 leaf name {
 type leafref {
 path "../../../tunnels/tunnel/name";
 require-instance false;
 }
 description "Dependency tunnel name";
 }
 leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description "LSP encoding type";
 reference "RFC3945";
 }
 leaf switching-type {
 type identityref {
 base te-types:switching-capabilities;
 }
 description "LSP switching type";
 reference "RFC3945";
 }
 }
 }
}

grouping tunnel-p2p-params_config {
 description "Configuration parameters relating to TE tunnel";
 leaf name {
 type string;
 description "TE tunnel name.";
 }
 leaf identifier {
 type uint16;
 description
 reference "rfc4427";
 }
}
leaf description {
 type string;
 description
 "Textual description for this TE tunnel";
}
leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description "LSP encoding type";
 reference "RFC3945";
}
leaf switching-type {
 type identityref {
 base te-types:switching-capabilities;
 }
 description "LSP switching type";
 reference "RFC3945";
}
leaf provisioning-state {
 type identityref {
 base te-types:tunnel-state-type;
 }
 default te-types:tunnel-state-up;
 description "TE tunnel administrative state.";
}
leaf preference {
 type uint8 {
 range "1..255";
 }
 description
 "Specifies a preference for this tunnel.
 A lower number signifies a better preference";
}
leaf reoptimize-timer {
 type uint16;
 units seconds;
 description
 "frequency of reoptimization of
 a traffic engineered LSP";
}
leaf source {
 type te-types:te-node-id;
 description
 "TE tunnel source node ID.";
}
leaf destination {
 type te-types:te-node-id;
 description
 "TE tunnel destination node ID";
}
leaf src-tp-id {
 type binary;
 description
 "TE tunnel source termination point identifier.";
}
leaf dst-tp-id {
 type binary;
 description
 "TE tunnel destination termination point identifier.";
}
leaf bidirectional {
 type boolean;
 default 'false';
 description
 "TE tunnel bidirectional";
}
uses tunnel-p2p-associations_config;
uses protection-restoration-params_config;
uses te-types:tunnel-constraints_config;
uses p2p-dependency-tunnels_config;
uses hierarchical-link;
}

grouping tunnel-p2p-associations_config {
 description "TE tunnel association grouping";
 container association-objects {
 description "TE tunnel associations";
 list association-object {
 key "type ID source global-source";
 description "List of association base objects";
 reference "RFC4872";
 leaf type {
 type identityref {
 base te-types:association-type;
 }
 description "Association type";
 reference "RFC4872";
 }
 leaf ID {
 type uint16;
 description "Association ID";
 reference "RFC4872";
 }
 }
 }
}

leaf source {
 type inet:ip-address;
 description "Association source";
 reference "RFC4872";
}
leaf global-source {
 type inet:ip-address;
 description "Association global source";
 reference "RFC4872";
}

list association-object-extended {
 key "type ID source global-source extended-ID";
 description "List of extended association objects";
 reference "RFC6780";
 leaf type {
 type identityref {
 base te-types:association-type;
 }
 description "Association type";
 }
 leaf ID {
 type uint16;
 description "Association ID";
 reference "RFC4872";
 }
 leaf source {
 type inet:ip-address;
 description "Association source";
 }
 leaf global-source {
 type inet:ip-address;
 description "Association global source";
 reference "RFC4872";
 }
 leaf extended-ID {
 type binary;
 description "Association extended ID";
 reference "RFC4872";
 }
}

grouping tunnel-p2p-params_state {
 description
 "State parameters relating to TE tunnel";
 leaf operational-state {

}
type identityref {
 base te-types:tunnel-state-type;
} default te-types:tunnel-state-up;

description "TE tunnel administrative state."

grouping access-segment-info {
 description "info related to a segment";
 container forward {
 description "for the forward direction of this tunnel";
 uses te-types:label-set-info;
 }
 container reverse {
 description "for the reverse direction of this tunnel";
 uses te-types:label-set-info;
 }
}

grouping path-access-segment-info {
 description "If an end-to-end tunnel crosses multiple domains using
the same technology, some additional constraints have to be
taken in consideration in each domain";
 container path-in-segment {
 presence "The end-to-end tunnel starts in a previous domain;
this tunnel is a segment in the current domain."
 description "This tunnel is a segment that needs to be coordinated
with previous segment stitched on head-end side."
 uses access-segment-info;
 }
 container path-out-segment {
 presence "The end-to-end tunnel is not terminated in this domain;
this tunnel is a segment in the current domain."
 description "This tunnel is a segment that needs to be coordinated
with previous segment stitched on head-end side."
 uses access-segment-info;
 }
}

/* TE tunnel configuration/state grouping */
grouping tunnel-p2mp-properties {
 description "Top level grouping for P2MP tunnel properties.";
 uses tunnel-p2mp-params_config;
 container state {
 config false;
 description "Configuration applied parameters and state";
 leaf operational-state {
 type identityref {
 base te-types:tunnel-state-type;
 }
 default te-types:tunnel-state-up;
 description "TE tunnel administrative state.";
 }
 }
}

grouping p2p-path-candidate-secondary-path-config {
 description "Configuration parameters relating to a secondary path which is a candidate for a particular primary path";
 leaf secondary-path {
 type leafref {
 path "./././././p2p-secondary-paths/" + "p2p-secondary-path/name";
 }
 description "A reference to the secondary path that should be utilised when the containing primary path option is in use";
 }
 leaf path-setup-protocol {
 type identityref {
 base te-types:path-signaling-type;
 }
 description "Signaling protocol used to set up this tunnel";
 }
}

grouping p2p-reverse-path-candidate-secondary-path-config {
 description "Configuration parameters relating to a secondary path which is a candidate for a particular primary path";
}
leaf secondary-path {
 type leafref {
 path "../../../../../p2p-secondary-paths/" + "p2p-secondary-path/name";
 }
 description
 "A reference to the secondary path that should be utilised when the containing primary path option is in use";
}

leaf path-setup-protocol {
 type identityref {
 base te-types:path-signaling-type;
 }
 description
 "Signaling protocol used to set up this tunnel";
}

grouping p2p-path-candidate-secondary-path-state {
 description
 "Operational state parameters relating to a secondary path which is a candidate for a particular primary path";
 leaf active {
 type boolean;
 description
 "Indicates the current active path option that has been selected of the candidate secondary paths";
 }
}

grouping tunnel-p2p-properties {
 description
 "Top level grouping for tunnel properties.";
 uses tunnel-p2p-params_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses tunnel-p2p-params_state;
 }
 container p2p-primary-paths {
 description "Set of P2P primary aths container";
 list p2p-primary-path {
 key "name";
 description
 "List of primary paths for this tunnel.";
 }
 }
}
uses p2p-primary-path-properties;
uses p2p-reverse-primary-path-properties;
container candidate-p2p-secondary-paths {
 description
 "The set of candidate secondary paths which may be used
 for this primary path. When secondary paths are specified
 in the list the path of the secondary LSP in use must be
 restricted to those path options referenced. The
 priority of the secondary paths is specified within the
 list. Higher priority values are less preferred - that is
 to say that a path with priority 0 is the most preferred
 path. In the case that the list is empty, any secondary
 path option may be utilised when the current primary path
 is in use.";
 list candidate-p2p-secondary-path {
 key "secondary-path";
 description
 "List of secondary paths for this tunnel.";
 uses p2p-path-candidate-secondary-path-config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses p2p-path-candidate-secondary-path-state;
 }
 }
}
}
}
container p2p-secondary-paths {
 description "Set of P2P secondary paths container";
 list p2p-secondary-path {
 key "name";
 description
 "List of secondary paths for this tunnel.";
 uses p2p-secondary-path-properties;
 }
}
}
grouping shared-resources-tunnels_state {
 description
 "The specific tunnel that is using the shared secondary path
 resources";
 leaf lsp-shared-resources-tunnel {
 type te:tunnel-ref;
 description

"Reference to the tunnel that sharing secondary path resources with this tunnel";
}
}
grouping shared-resources-tunnels {
 description "Set of tunnels that share secondary path resources with this tunnel";
 container shared-resources-tunnels {
 description "Set of tunnels that share secondary path resources with this tunnel";
 leaf-list lsp-shared-resources-tunnel {
 type te:tunnel-ref;
 description "Reference to the tunnel that sharing secondary path resources with this tunnel";
 }
 }
}
}
grouping tunnel-actions {
 description "Tunnel actions";
 action tunnel-action {
 description "Tunnel action";
 input {
 leaf action-type {
 type identityref {
 base te-types:tunnel-action-type;
 }
 description "Tunnel action type";
 }
 }
 output {
 leaf action-result {
 type identityref {
 base te-types:te-action-result;
 }
 description "The result of the RPC operation";
 }
 }
 }
}
}
grouping tunnel-protection-actions {
 description "Protection external command actions";
 action protection-external-commands {
 input {
 }
leaf protection-external-command {
 type identityref {
 base te-types:protection-external-commands;
 }
 description
 "Protection external command";
}
leaf protection-group-ingress-node-id {
 type te-types:te-node-id;
 description
 "When specified, indicates whether the action is
 applied on ingress node.
 By default, if neither ingress nor egress node-id
 is set, the the action applies to ingress node only.";
}
leaf protection-group-egress-node-id {
 type te-types:te-node-id;
 description
 "When specified, indicates whether the action is
 applied on egress node.
 By default, if neither ingress nor egress node-id
 is set, the the action applies to ingress node only.";
}
leaf path-ref {
 type path-ref;
 description
 "Indicates to which path the external command applies to.";
}
leaf traffic-type {
 type enumeration {
 enum normal-traffic {
 description
 "The manual-switch or forced-switch command applies to
 the normal traffic (this Tunnel).";
 }
 enum null-traffic {
 description
 "The manual-switch or forced-switch command applies to
 the null traffic.";
 }
 enum extra-traffic {
 description
 "The manual-switch or forced-switch command applies to
 the extra traffic (the extra-traffic Tunnel sharing
 protection bandwidth with this Tunnel).";
 }
 }
 description

"Indicates whether the manual-switch or forced-switch commands applies to the normal traffic, the null traffic or the extra-traffic."
reference
"ITU-T G.808, RFC 4427"
}

leaf extra-traffic-tunnel-ref {
 type te:tunnel-ref;
 description
 "In case there are multiple extra-traffic tunnels sharing protection bandwidth with this Tunnel (m:n protection), represents which extra-traffic Tunnel the manual-switch or forced-switch to extra-traffic command applies to."
}
}
}

/*** End of TE tunnel groupings ***/
/**
* LSP related generic groupings
*/
grouping lsp-record-route-information_state {
 description "recorded route information grouping";
 container lsp-record-route-subobjects {
 description "RSVP recorded route object information";
 list record-route-subobject {
 when "..//.//origin-type = 'ingress'" {
 description "Applicable on non-ingress LSPs only";
 } key "index";
 description "Record route sub-object list";
 uses te-types:record-route-subobject_state;
 }
 }
}

grouping lsps-state-grouping {
 description
 "LSPs state operational data grouping";
 container lsps-state {
 config false;
 description "TE LSPs state container";
 list lsp {
 key
 "source destination tunnel-id lsp-id "+
 "extended-tunnel-id";
 }
 }
}
description "List of LSPs associated with the tunnel."
uses lsp-properties_state;
uses lsp-record-route-information_state;
}

/*** End of TE LSP groupings ***/

/**
 * TE global generic groupings
*/

/* Global named admin-groups configuration data */
grouping named-admin-groups_config {
 description "Global named administrative groups configuration grouping";
 leaf name {
 type string;
 description "A string name that uniquely identifies a TE interface named admin-group";
 }
 leaf bit-position {
 type uint32;
 description "Bit position representing the administrative group";
 reference "RFC3209 and RFC7308";
 }
}

grouping named-admin-groups {
 description "Global named administrative groups configuration grouping";
 container named-admin-groups {
 description "TE named admin groups container";
 list named-admin-group {
 if-feature te-types:extended-admin-groups;
 if-feature te-types:named-extended-admin-groups;
 key "name";
 description "List of named TE admin-groups";
 uses named-admin-groups_config;
 }
 }
}

/* Global named admin-srlgs configuration data */
grouping named-srlgs_config {
 description "Global named SRLGs configuration grouping";
 leaf name {
 type string;
 description "A string name that uniquely identifies a TE interface named srlg";
 }
 leaf group {
 type te-types:srlg;
 description "An SRLG value";
 }
 leaf cost {
 type uint32;
 description "SRLG associated cost. Used during path to append the path cost when traversing a link with this SRLG";
 }
}

grouping named-srlgs {
 description "Global named SRLGs configuration grouping";
 container named-srlgs {
 description "TE named SRLGs container";
 list named-srlg {
 if-feature te-types:named-srlg-groups;
 key "name";
 description "A list of named SRLG groups";
 uses named-srlgs_config;
 }
 }
}

/* Global named paths constraints configuration data */
grouping path-constraints_state {
 description "TE path constraints state";
 leaf bandwidth-generic_state {
 type te-types:te-bandwidth;
 description "A technology agnostic requested bandwidth to use for path computation";
 }
 leaf disjointness_state {

type te-types:te-path-disjointness;
 description
 "The type of resource disjointness.";
}

grouping path-constraints-common_config {
 description
 "Global named path constraints configuration
 grouping";
 uses te-types:common-path-constraints-attributes;
 uses te-types:generic-path-disjointness;
 uses te-types:path-route-objects;
 uses shared-resources-tunnels {
 description
 "Set of tunnels that are allowed to share secondary path
 resources of this tunnel";
 }
 uses path-access-segment-info {
 description
 "Tunnel constraints induced by other segments.";
 }
}

grouping path-constraints {
 description "Per path constraints";
 uses path-constraints-common_config;
 container state {
 config false;
 description
 "Configuration applied parameters and state";
 uses path-constraints_state;
 }
}

grouping named-path-constraints {
 description
 "Global named path constraints configuration
 grouping";
 container named-path-constraints {
 description "TE named path constraints container";
 list named-path-constraint {
 if-feature te-types:named-path-constraints;
 key "name";
 leaf name {
 type string;
 description
 "A string name that uniquely identifies a
path constraint set;
}
uses path-constraints;
description
 "A list of named path constraints";
}

/* TE globals container data */
grouping globals-grouping {
 description
 "Globals TE system-wide configuration data grouping";
 container globals {
 description
 "Globals TE system-wide configuration data container";
 uses named-admin-groups;
 uses named-srlgs;
 uses named-path-constraints;
 }
}

/* TE tunnels container data */
grouping tunnels-grouping {
 description
 "Tunnels TE configuration data grouping";
 container tunnels {
 description
 "Tunnels TE configuration data container";

 list tunnel {
 key "name";
 description "P2P TE tunnels list.";
 uses tunnel-p2p-properties;
 uses tunnel-actions;
 uses tunnel-protection-actions;
 }
 list tunnel-p2mp {
 key "name";
 unique "identifier";
 description "P2MP TE tunnels list.";
 uses tunnel-p2mp-properties;
 }
 }
}

/* TE LSPs ephemeral state container data */
grouping lsp-properties_state {

description
 "LSPs state operational data grouping";
leaf source {
 type inet:ip-address;
 description
 "Tunnel sender address extracted from
 SENDER_TEMPLATE object";
 reference "RFC3209";
}
leaf destination {
 type inet:ip-address;
 description
 "Tunnel endpoint address extracted from
 SESSION object";
 reference "RFC3209";
}
leaf tunnel-id {
 type uint16;
 description
 "Tunnel identifier used in the SESSION
 that remains constant over the life
 of the tunnel.";
 reference "RFC3209";
}
leaf lsp-id {
 type uint16;
 description
 "Identifier used in the SENDER_TEMPLATE
 and the FILTER_SPEC that can be changed
 to allow a sender to share resources with
 itself.";
 reference "RFC3209";
}
leaf extended-tunnel-id {
 type inet:ip-address;
 description
 "Extended Tunnel ID of the LSP.";
 reference "RFC3209";
}
leaf operational-state {
 type identityref {
 base te-types:lsp-state-type;
 }
 description "LSP operational state.";
}
leaf path-setup-protocol {
 type identityref {
 base te-types:path-signaling-type;
 }
 description "Path setup protocol.";
}
description "Signaling protocol used to set up this tunnel";

leaf origin-type {
 type enumeration {
 enum ingress {
 description "Origin ingress";
 }
 enum egress {
 description "Origin egress";
 }
 enum transit {
 description "transit";
 }
 }
 description "Origin type of LSP relative to the location of the local switch in the path.";
}

leaf lsp-resource-status {
 type enumeration {
 enum primary {
 description "A primary LSP is a fully established LSP for which the resource allocation has been committed at the data plane";
 }
 enum secondary {
 description "A secondary LSP is an LSP that has been provisioned in the control plane only; e.g. resource allocation has not been committed at the data plane";
 }
 }
 description "LSP resource allocation type";
 reference "rfc4872, section 4.2.1";
}

uses protection-restoration-params_state;
/** End of TE global groupings **/
container te {
 presence "Enable TE feature.";
 description
 "TE global container.";

 /* TE Global Configuration Data */
 uses globals-grouping;

 /* TE Tunnel Configuration Data */
 uses tunnels-grouping;

 /* TE LSPs State Data */
 uses lsps-state-grouping;
}

/* TE Global RPCs/execution Data */
rpc globals-rpc {
 description
 "Execution data for TE global.";
}

/* TE interfaces RPCs/execution Data */
rpc interfaces-rpc {
 description
 "Execution data for TE interfaces.";
}

/* TE Tunnel RPCs/execution Data */
rpc tunnels-rpc {
 description "TE tunnels RPC nodes";
 input {
 container tunnel-info {
 description "Tunnel Identification";
 choice type {
 description "Tunnel information type";
 case tunnel-p2p {
 leaf p2p-id {
 type te:tunnel-ref;
 description "P2P TE tunnel";
 }
 }
 case tunnel-p2mp {
 leaf p2mp-id {
 type te:tunnel-p2mp-ref;
 description "P2MP TE tunnel";
 }
 }
 }
 }
 }
}
Internet-Draft TE YANG Data Model July 2018

Figure 8: TE generic YANG module

<CODE BEGINS> file "ietf-te-device@2018-02-15.yang"
module ietf-te-device {

/* Replace with IANA when assigned */
prefix "te-dev";

/* Import TE generic types */
import ietf-te {
 prefix te;
}

/* Import TE generic types */
import ietf-te-types {
 prefix te-types;
}

import ietf-interfaces {
 prefix if;
}

import ietf-inet-types {
 prefix inet;
}

import ietf-routing-types {
 prefix "rt-types";
}

organization
"IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/teas/>
WG List: <mailto:teas@ietf.org>

WG Chair: Lou Berger
<mailto:lberger@labn.net>

WG Chair: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>

Editor: Tarek Saad
<mailto:tsaad@cisco.com>

Editor: Rakesh Gandhi
<mailto:rgandhi@cisco.com>

Editor: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>
/**
 * TE LSP device state grouping
 */
grouping lsps-device_state {
 description "TE LSP device state grouping";
 container lsp-timers {
 when ".//te:origin-type = 'ingress'" {
 description "Applicable to ingress LSPs only";
 }
 }
 description "Ingress LSP timers";
 leaf life-time {
 type uint32;
 units seconds;
 description "lsp life time";
 }

 leaf time-to-install {
 type uint32;
 units seconds;
 description "lsp installation delay time";
 }
}
leaf time-to-destroy {
 type uint32;
 units seconds;
 description
 "lsp expiration delay time";
}

container downstream-info {
 when "./te:origin-type != 'egress'" {
 description "Applicable to ingress LSPs only";
 }
 description
 "downstream information";
 leaf nhop {
 type inet:ip-address;
 description
 "downstream nexthop.";
 }
 leaf outgoing-interface {
 type if:interface-ref;
 description
 "downstream interface.";
 }
 leaf neighbor {
 type inet:ip-address;
 description
 "downstream neighbor.";
 }
 leaf label {
 type rt-types:generalized-label;
 description
 "downstream label.";
 }
}

container upstream-info {
 when "./te:origin-type != 'ingress'" {
 description "Applicable to non-ingress LSPs only";
 }
 description
 "upstream information";
 leaf phop {

type inet:ip-address;
description
 "upstream nexthop or previous-hop."
}
leaf neighbor {
 type inet:ip-address;
 description
 "upstream neighbor."
}
leaf label {
 type rt-types:generalized-label;
 description
 "upstream label."
}
/**
 * Device general groupings.
 */
grouping tunnel-device_config {
 description "Device TE tunnel configs";
 leaf path-invalidation-action {
 type identityref {
 base te-types:path-invalidation-action-type;
 }
 description "Tunnel path invalidation action";
 }
}

grouping lsp-device-timers_config {
 description "Device TE LSP timers configs";
 leaf lsp-install-interval {
 type uint32;
 units seconds;
 description
 "LSP installation delay time";
 }
 leaf lsp-cleanup-interval {
 type uint32;
 units seconds;
 description
 "LSP cleanup delay time";
 }
 leaf lsp-invalidation-interval {
 type uint32;
 }
units seconds;
 description
 "lsp path invalidation before taking action delay time";
}
}
grouping lsp-device-timers {
 description "TE LSP timers configuration";
 uses lsp-device-timers_config;
}

/**
 * TE global device generic groupings
 */
/* TE interface container data */
grouping interfaces-grouping {
 description
 "Interface TE configuration data grouping";
 container interfaces {
 description
 "Configuration data model for TE interfaces.";
 uses te-all-attributes;
 list interface {
 key "interface";
 description "TE interfaces.";
 leaf interface {
 type if:interface-ref;
 description
 "TE interface name.";
 }
 /* TE interface parameters */
 uses te-attributes;
 }
}

/**
 * TE interface device generic groupings
 */
grouping te-admin-groups_config {
 description
 "TE interface affinities grouping";
 choice admin-group-type {
 description
 "TE interface administrative groups representation type";
 case value-admin-groups {
 choice value-admin-group-type {

description "choice of admin-groups";
case admin-groups {
 description "Administrative group/Resource class/Color.";
 leaf admin-group {
 type te-types:admin-group;
 description "TE interface administrative group";
 }
}
case extended-admin-groups {
 if-feature te-types:extended-admin-groups;
 description "Extended administrative group/Resource class/Color.";
 leaf extended-admin-group {
 type te-types:extended-admin-group;
 description "TE interface extended administrative group";
 }
}
}
}
case named-admin-groups {
 list named-admin-groups {
 if-feature te-types:extended-admin-groups;
 if-feature te-types:named-extended-admin-groups;
 key named-admin-group;
 description "A list of named admin-group entries";
 leaf named-admin-group {
 type leafref {
 path "../../../../te:globals/" + "te:named-admin-groups/te:named-admin-group/" + "te:name";
 }
 description "A named admin-group entry";
 }
 }
}

/* TE interface SRLGs */
grouping te-srlgs_config {
 description "TE interface SRLG grouping";

choice srlg-type {
 description "Choice of SRLG configuration";
 case value-srlgs {
 list values {
 key "value";
 description "List of SRLG values that this link is part of.";
 leaf value {
 type uint32 {
 range "0..4294967295";
 }
 description "Value of the SRLG";
 }
 }
 }
 case named-srlgs {
 list named-srlgs {
 if-feature te-types:named-srlg-groups;
 key named-srlg;
 description "A list of named SRLG entries";
 leaf named-srlg {
 type leafref {
 path ".../..//../te:globals/" + "te:named-srlgs/te:named-srlg/te:name";
 }
 description "A named SRLG entry";
 }
 }
 }
}

grouping te-igp-flooding-bandwidth-config {
 description "Configurable items for igp flooding bandwidth threshold configuration.";
 leaf threshold-type {
 type enumeration {
 enum DELTA {
 description "DELTA indicates that the local system should flood IGP updates when a change in reserved bandwidth >= the specified delta occurs on the interface.";
 }
 }
 }
}
enum THRESHOLD_CROSSED {
 description
 "THRESHOLD-CROSSED indicates that
 the local system should trigger an update (and
 hence flood) the reserved bandwidth when the
 reserved bandwidth changes such that it crosses,
 or becomes equal to one of the threshold values.";
}

leaf delta-percentage {
 when "./threshold-type = 'DELTA'" {
 description
 "The percentage delta can only be specified when the
 threshold type is specified to be a percentage delta of
 the reserved bandwidth";
 }
 type te-types:percentage;
 description
 "The percentage of the maximum-reservable-bandwidth
 considered as the delta that results in an IGP update
 being flooded";
}

leaf threshold-specification {
 when "./threshold-type = 'THRESHOLD_CROSSED'" {
 description
 "The selection of whether mirrored or separate threshold
 values are to be used requires user specified thresholds to
 be set";
 }
 type enumeration {
 enum MIRRORED_UP_DOWN {
 description
 "MIRRORED_UP_DOWN indicates that a single set of
 threshold values should be used for both increasing
 and decreasing bandwidth when determining whether
 to trigger updated bandwidth values to be flooded
in the IGP TE extensions.

} enum SEPARATE_UP_DOWN {
 description
 "SEPARATE_UP_DOWN indicates that a separate threshold values should be used for the increasing and decreasing bandwidth when determining whether to trigger updated bandwidth values to be flooded in the IGP TE extensions.";

} description
"This value specifies whether a single set of threshold values should be used for both increasing and decreasing bandwidth when determining whether to trigger updated bandwidth values to be flooded in the IGP TE extensions. MIRRORED-UP-DOWN indicates that a single value (or set of values) should be used for both increasing and decreasing values, where SEPARATE-UP-DOWN specifies that the increasing and decreasing values will be separately specified";

} leaf-list up-thresholds {
 when "/threshold-type = 'THRESHOLD_CROSSED'" +
 "and ../.threshold-specification = 'SEPARATE_UP_DOWN'" {
 description
 "A list of up-thresholds can only be specified when the bandwidth update is triggered based on crossing a threshold and separate up and down thresholds are required";
 }
 type te-types:percentage;
 description
 "The thresholds (expressed as a percentage of the maximum reservable bandwidth) at which bandwidth updates are to be triggered when the bandwidth is increasing.";
}

} leaf-list down-thresholds {
 when "/threshold-type = 'THRESHOLD_CROSSED'" +
 "and ../.threshold-specification = 'SEPARATE_UP_DOWN'" {
 description
 "A list of down-thresholds can only be specified when the bandwidth update is triggered based on crossing a threshold and separate up and down thresholds are required";
 }
 type te-types:percentage;
description
"The thresholds (expressed as a percentage of the maximum reservable bandwidth) at which bandwidth updates are to be triggered when the bandwidth is decreasing.";
)
leaf-list up-down-thresholds {
when "../threshold-type = 'THRESHOLD_CROSSED'" +
"and ../threshold-specification = 'MIRRORED_UP_DOWN'" {
 description
 "A list of thresholds corresponding to both increasing and decreasing bandwidths can be specified only when an update is triggered based on crossing a threshold, and the same up and down thresholds are required.";
 }
type te-types:percentage;
description
"The thresholds (expressed as a percentage of the maximum reservable bandwidth of the interface) at which bandwidth updates are flooded - used both when the bandwidth is increasing and decreasing";
)
}
/* TE interface metric */
grouping te-metric_config {
 description "Interface TE metric grouping";
 leaf te-metric {
 type te-types:te-metric;
 description "Interface TE metric.";
 }
}
/* TE interface switching capabilities */
grouping te-switching-cap_config {
 description
 "TE interface switching capabilities";
 list switching-capabilities {
 key "switching-capability";
 description
 "List of interface capabilities for this interface";
 leaf switching-capability {
 type identityref {
 base te-types:switching-capabilities;
 }
 description
 "Switching Capability for this interface";
 }
 }
}
leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description
 "Encoding supported by this interface";
}
}

grouping te-advertisements_state {
 description
 "TE interface advertisements state grouping";
 container te-advertisements_state {
 description
 "TE interface advertisements state container";
 leaf flood-interval {
 type uint32;
 description
 "The periodic flooding interval";
 }
 leaf last-flooded-time {
 type uint32;
 units seconds;
 description
 "Time elapsed since last flooding in seconds";
 }
 leaf next-flooded-time {
 type uint32;
 units seconds;
 description
 "Time remained for next flooding in seconds";
 }
 leaf last-flooded-trigger {
 type enumeration {
 enum link-up {
 description "Link-up flooding trigger";
 }
 enum link-down {
 description "Link-up flooding trigger";
 }
 enum threshold-up {
 description
 "Bandwidth reservation up threshold";
 }
 enum threshold-down {
 description
 "Bandwidth reservation down threshold";
 }
 }
 }
 }
}

enum bandwidth-change {
 description "Bandwidth capacity change";
}
enum user-initiated {
 description "Initiated by user";
}
enum srlg-change {
 description "SRLG property change";
}
enum periodic-timer {
 description "Periodic timer expired";
}

description "Trigger for the last flood";

list advertised-level-areas {
 key level-area;
 description "List of areas the TE interface is advertised in";
 leaf level-area {
 type uint32;
 description "The IGP area or level where the TE interface state is advertised in";
 }
}

/* TE interface attributes grouping */
grouping te-attributes {
 description "TE attributes configuration grouping";
 uses te-metric_config;
 uses te-admin-groups_config;
 uses te-srlgs_config;
 uses te-igp-flooding-bandwidth_config;
 uses te-switching-cap_config;
 container state {
 config false;
 description "State parameters for interface TE metric";
 uses te-advertisements_state;
 }
}

grouping te-all-attributes {
description
"TE attributes configuration grouping for all interfaces";
uses te-igp-flooding-bandwidth_config;
}
/*** End of TE interfaces device groupings ***/

/**
 * TE device augmentations
 */
augment "/te:te" {

description "TE global container.";

/* TE Interface Configuration Data */
uses interfaces-grouping;
}

/* TE globals device augmentation */
augment "/te:te/te:globals" {

description
"Global TE device specific configuration parameters";
uses lsp-device-timers;
}

/* TE tunnels device configuration augmentation */
augment "/te:te/te:tunnels/te:tunnel" {

description
"Tunnel device dependent augmentation";
uses lsp-device-timers_config;
}
augment "/te:te/te:tunnels/te:tunnel/te:state" {

description
"Tunnel device dependent augmentation";
uses lsp-device-timers_config;
}

/* TE LSPs device state augmentation */
augment "/te:te/te:lsps-state/te:lsp" {

description
"LSP device dependent augmentation";
uses lsps-device_state;
}
augment "/te:te/te:tunnels/te:tunnel/te:p2p-secondary-paths" +
"/te:p2p-secondary-path/te:state/te:lsps/te:lsp" {

description
"LSP device dependent augmentation";
uses lsps-device_state;
 description |
 "LSP device dependent augmentation"; |
 uses lsps-device_state;

/* TE interfaces RPCs/execution Data */
rpc interfaces-rpc {
 description |
 "Execution data for TE interfaces.";
}

/* TE Interfaces Notification Data */
notification interfaces-notif {
 description |
 "Notification messages for TE interfaces.";
}

Figure 9: TE MPLS specific types YANG module

<CODE BEGINS> file "ietf-te-mpls@2018-02-15.yang"
module ietf-te-mpls {

 /* Replace with IANA when assigned */
 prefix "te-mpls";

 /* Import TE base model */
 import ietf-te {
 prefix te;
 }

 /* Import TE MPLS types */
 import ietf-te-mpls-types {
 prefix "te-mpls-types";
 }

 /* Import TE generic types */
 import ietf-te-types {
 prefix te-types;
 }

import ietf-routing-types {
 prefix "rt-types";
}

import ietf-mpls-static {
 prefix mpls-static;
}

import ietf-inet-types {
 prefix inet;
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger
 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>

 Editor: Rakesh Gandhi
 <mailto:rgandhi@cisco.com>

 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu@ericsson.com>

 Editor: Xia Chen
 <mailto:jescia.chenxia@huawei.com>

 Editor: Raqib Jones
 <mailto:raqib@Brocade.com>
Editor: Bin Wen
<mailto:Bin_Wen@cable.comcast.com>"

description
"YANG data module for MPLS TE configurations, state, RPC and notifications."

revision "2018-02-15" {
 description "Latest update to MPLS TE YANG module.";
 reference "TBD";
}

/* MPLS TE tunnel properties*/
grouping tunnel-igp-shortcut_config {
 description "TE tunnel IGP shortcut configs";
 leaf shortcut-eligible {
 type boolean;
 default "true";
 description
 "Whether this LSP is considered to be eligible for us as a shortcut in the IGP. In the case that this leaf is set to true, the IGP SPF calculation uses the metric specified to determine whether traffic should be carried over this LSP";
 }
 leaf metric-type {
 type identityref {
 base te-types:LSP_METRIC_TYPE;
 }
 default te-types:LSP_METRIC_INHERITED;
 description
 "The type of metric specification that should be used to set the LSP(s) metric";
 }
 leaf metric {
 type int32;
 description
 "The value of the metric that should be specified. The value supplied in this leaf is used in conjunction with the metric type to determine the value of the metric used by the system. Where the metric-type is set to LSP_METRIC_ABSOLUTE - the value of this leaf is used directly; where it is set to LSP_METRIC_RELATIVE, the relevant (positive or negative) offset is used to formulate the metric; where metric-type is LSP_METRIC_INHERITED, the value of this leaf is not utilised";
 }
 leaf-list routing-afs {

type inet:ip-version;
description
 "Address families";
}
}

grouping tunnel-igp-shortcuts {
description
 "TE tunnel IGP shortcut grouping";
container tunnel-igp-shortcut {
description
 "Tunnel IGP shortcut properties";
 uses tunnel-igp-shortcut_config;
}
}

grouping tunnel-forwarding-adjacency_configs {
description "Tunnel forwarding adjacency grouping";
leaf binding-label {
type rt-types:mpls-label;
description "MPLS tunnel binding label";
}
leaf load-share {
type uint32 {
 range "1..4294967295";
}
description "ECMP tunnel forwarding load-share factor.";
}
leaf policy-class {
type uint8 {
 range "1..7";
}
description
 "The class associated with this tunnel";
}
}

grouping tunnel-forwarding-adjacency {
description "Properties for using tunnel in forwarding.";
container forwarding {
description
 "Tunnel forwarding properties container";
 uses tunnel-forwarding-adjacency_configs;
}
}

/*** End of MPLS TE tunnel configuration/state ***/

grouping te-lsp-auto-bandwidth_config {
 description
 "Configuration parameters related to autobandwidth";

 leaf enabled {
 type boolean;
 default false;
 description
 "enables mpls auto-bandwidth on the lsp";
 }

 leaf min-bw {
 type te-mpls-types:bandwidth-kbps;
 description
 "set the minimum bandwidth in Kbps for an auto-bandwidth LSP";
 }

 leaf max-bw {
 type te-mpls-types:bandwidth-kbps;
 description
 "set the maximum bandwidth in Kbps for an auto-bandwidth LSP";
 }

 leaf adjust-interval {
 type uint32;
 description
 "time in seconds between adjustments to LSP bandwidth";
 }

 leaf adjust-threshold {
 type te-types:percentage;
 description
 "percentage difference between the LSP’s specified bandwidth and its current bandwidth allocation -- if the difference is greater than the specified percentage, auto-bandwidth adjustment is triggered";
 }
}

grouping te-lsp-overflow_config {
 description
 "configuration for mpls lsp bandwidth overflow adjustment";
}
leaf enabled {
 type boolean;
 default false;
 description
 "enables mpls lsp bandwidth overflow
 adjustment on the lsp";
}

leaf overflow-threshold {
 type te-types:percentage;
 description
 "bandwidth percentage change to trigger
 an overflow event";
}

leaf trigger-event-count {
 type uint16;
 description
 "number of consecutive overflow sample
 events needed to trigger an overflow adjustment";
}

}

grouping te-lsp-underflow_config {
 description
 "configuration for mpls lsp bandwidth
 underflow adjustment";

leaf enabled {
 type boolean;
 default false;
 description
 "enables bandwidth underflow
 adjustment on the lsp";
}

leaf underflow-threshold {
 type te-types:percentage;
 description
 "bandwidth percentage change to trigger
 and underflow event";
}

leaf trigger-event-count {
 type uint16;
 description
 "number of consecutive underflow sample
 events needed to trigger an underflow adjustment";
}
events needed to trigger an underflow adjustment;
}
}

grouping te-tunnel-bandwidth_config {
 description
 "Configuration parameters related to bandwidth for a tunnel";

 leaf specification-type {
 type te-mpls-types:te-bandwidth-type;
 default SPECIFIED;
 description
 "The method used for setting the bandwidth, either explicitly
 specified or configured";
 }

 leaf set-bandwidth {
 when ".//specification-type = 'SPECIFIED'" {
 description
 "The bandwidth value when bandwidth is explicitly
 specified";
 }
 type te-mpls-types:bandwidth-kbps;
 description
 "set bandwidth explicitly, e.g., using
 offline calculation";
 }

 leaf class-type {
 type te-types:te-ds-class;
 description
 "The Class-Type of traffic transported by the LSP.";
 reference "RFC4124: section-4.3.1";
 }
}

grouping te-tunnel-bandwidth_state {
 description
 "Operational state parameters relating to bandwidth for a tunnel";

 leaf signaled-bandwidth {
 type te-mpls-types:bandwidth-kbps;
 description
 "The currently signaled bandwidth of the LSP. In the case where
 the bandwidth is specified explicitly, then this will match the
 value of the set-bandwidth leaf; in cases where the bandwidth is
 dynamically computed by the system, the current value of the
 bandwidth should be reflected.";
 }
}
grouping tunnel-bandwidth_top {
 description "Top level grouping for specifying bandwidth for a tunnel";

 container bandwidth-mpls {
 description "Bandwidth configuration for TE LSPs";

 uses te-tunnel-bandwidth_config;
 }

 container state {
 config false;
 description "State parameters related to bandwidth configuration of TE tunnels";

 uses te-tunnel-bandwidth_state;
 }

 container auto-bandwidth {
 when ".../specification-type = 'AUTO'" {
 description "Include this container for auto bandwidth specific configuration";

 description "Parameters related to auto-bandwidth";

 uses te-lsp-auto-bandwidth_config;
 }

 container overflow {
 description "configuration of MPLS overflow bandwidth adjustment for the LSP";

 uses te-lsp-overflow_config;
 }

 container underflow {
 description "configuration of MPLS underflow bandwidth adjustment for the LSP";

 uses te-lsp-underflow_config;
 }
 }
}
grouping te-path-bandwidth_top {
 description
 "Top level grouping for specifying bandwidth for a TE path";

 container bandwidth {
 description
 "Bandwidth configuration for TE LSPs";
 uses te-tunnel-bandwidth_config;
 container state {
 config false;
 description
 "State parameters related to bandwidth
 configuration of TE tunnels";
 uses te-tunnel-bandwidth_state;
 }
 }
}

/**
 * MPLS TE augmentations
 */

/* MPLS TE tunnel augmentations */
augment "/te:te/te:tunnels/te:tunnel" {
 description "MPLS TE tunnel config augmentations";
 uses tunnel-igp-shortcuts;
 uses tunnel-forwarding-adjacency;
 uses tunnel-bandwidth_top;
}

/* MPLS TE LSPs augmentations */
augment "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-primary-paths/te:p2p-primary-path" {
 when "/te:te/te:tunnels/te:tunnel/" +
 "/te:p2p-primary-paths/te:p2p-primary-path" +
 "/te:path-setup-protocol = 'te-types:path-setup-static'" {
 description
 "When the path is statically provisioned";
 }
 description "MPLS TE LSP augmentation";
 leaf static-lsp-name {
 type mpls-static:static-lsp-ref;
 description "Static LSP name";
 }
}

augment "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-primary-paths/te:p2p-primary-path/" +
 "te:state" {
 description "MPLS TE LSP augmentation";
 leaf static-lsp-name {
 type mpls-static:static-lsp-ref;
 description "Static LSP name";
 }
}

augment "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-secondary-paths/te:p2p-secondary-path" {
 when "/te:te/te:tunnels/te:tunnel/" +
 "/te:p2p-secondary-paths/te:p2p-secondary-path/" +
 "te:path-setup-protocol = 'te-types:path-setup-static'" {
 description
 "When the path is statically provisioned";
 }
 description "MPLS TE LSP augmentation";
 leaf static-lsp-name {
 type mpls-static:static-lsp-ref;
 description "Static LSP name";
 }
}

augment "/te:te/te:tunnels/te:tunnel/" +
 "te:p2p-secondary-paths/te:p2p-secondary-path/" +
 "te:state" {
 description "MPLS TE LSP augmentation";
 leaf static-lsp-name {
 type mpls-static:static-lsp-ref;
 description "Static LSP name";
 }
}

augment "/te:te/te:globals/te:named-path-constraints/" +
 "te:named-path-constraint" {
 description "foo";
 uses te-path-bandwidth_top;
}

<CODE ENDS>
organization "IETF TEAS Working Group";

contact "Fill me";

description "This module contains a collection of generally useful TE specific YANG data type definitions.";

revision "2018-02-15" {
 description "Latest revision of TE MPLS types";
 reference "RFC3209";
}

identity backup-protection-type {
 description "Base identity for backup protection type";
}

identity backup-protection-link {
 base backup-protection-type;
 description "backup provides link protection only";
}

identity backup-protection-node-link {
 base backup-protection-type;
 description "backup offers node (preferred) or link protection";
}

identity bc-model-type {
 description "Base identity for Diffserv-TE bandwidth constraint model type";
}

identity bc-model-rdm {
 base bc-model-type;
 description "Russian Doll bandwidth constraint model type.";
}

identity bc-model-mam {
 base bc-model-type;
}
typedef bandwidth-kbps {
 type uint64;
 units "Kbps";
 description "Bandwidth values expressed in kilobits per second";
}

typedef bandwidth-mbps {
 type uint64;
 units "Mbps";
 description "Bandwidth values expressed in megabits per second";
}

typedef bandwidth-gbps {
 type uint64;
 units "Gbps";
 description "Bandwidth values expressed in gigabits per second";
}

typedef te-bandwidth-type {
 type enumeration {
 enum SPECIFIED {
 description "Bandwidth is explicitly specified";
 }
 enum AUTO {
 description "Bandwidth is automatically computed";
 }
 }
 description "enumerated type for specifying whether bandwidth is explicitly specified or automatically computed";
}
typedef bfd-type {
 type enumeration {
 enum classical {
 description "BFD classical session type.";
 }
 enum seamless {
 description "BFD seamless session type.";
 }
 }
 default "classical";
 description "Type of BFD session";
}

typedef bfd-encap-mode-type {
 type enumeration {
 enum gal {
 description "BFD with GAL mode";
 }
 enum ip {
 description "BFD with IP mode";
 }
 }
 default ip;
 description "Possible BFD transport modes when running over TE LSPs.";
}
}

Figure 11: TE MPLS types YANG module

<CODE BEGINS> file "ietf-te-sr-mpls@2018-02-15.yang"
module ietf-te-sr-mpls {
/* Replace with IANA when assigned */
 prefix "te-sr-mpls";
/* Import TE generic types */
 import ietf-te {
 prefix te;
 }
}
/ * Import TE generic types */
import ietf-te-types {
 prefix te-types;
}

organization
"IETF Traffic Engineering Architecture and Signaling (TEAS)
Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/teas/>
WG List: <mailto:teas@ietf.org>

WG Chair: Lou Berger
<mailto:lberger@labn.net>

WG Chair: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>

Editor: Tarek Saad
<mailto:tsaad@cisco.com>

Editor: Rakesh Gandhi
<mailto:rgandhi@cisco.com>

Editor: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>

Editor: Himanshu Shah
<mailto:hshah@ciena.com>

Editor: Xufeng Liu
<mailto:xufeng.liu@ericsson.com>

Editor: Xia Chen
<mailto:jescia.chenxia@huawei.com>

Editor: Raqib Jones
<mailto:raqib@Brocade.com>

Editor: Bin Wen
<mailto:Bin_Wen@cable.comcast.com>";

description
"YANG data module for MPLS TE configurations,
state, RPC and notifications.";

revision "2018-02-15" {
identity sr-protection-type {
 description "The Adj-SID base protection types";
}

identity sr-protection-type-protected {
 base sr-protection-type;
 description "The Adj-SID is eligible if protected";
}

identity sr-protection-type-unprotected {
 base sr-protection-type;
 description "The Adj-SID is eligible if unprotected";
}

identity sr-protection-type-any {
 base sr-protection-type;
 description "The Adj-SID is eligible if protected or unprotected";
}

typedef te-sid-selection-mode {
 type enumeration {
 enum ADJ_SID_ONLY {
 description "The SR-TE tunnel should only use adjacency SIDs to build the SID stack to be pushed for the LSP";
 }
 enum MIXED_MODE {
 description "The SR-TE tunnel can use a mix of adjacency and prefix SIDs to build the SID stack to be pushed to the LSP";
 }
 }
 description "SID selection mode type";
}

/* MPLS SR-TE tunnel properties*/
grouping tunnel-sr-mpls-properties_config {
 description "MPLS TE SR tunnel properties";
 leaf path-signaling-type {
type identityref {
 base te-types:path-signaling-type;
}
description "TE tunnel path signaling type";
}

grouping te-sr-named-path-constraints_config {
 description "Configuration parameters relating to SR-TE LSPs";

 leaf sid-selection-mode {
 type te-sid-selection-mode;
 default MIXED_MODE;
 description "The restrictions placed on the SIDs to be selected by the calculation method for the explicit path when it is instantiated for a SR-TE LSP";
 }

 leaf sid-protection {
 type identityref {
 base sr-protection-type;
 }
 default sr-protection-type-any;
 description "When set to protected only SIDs that are protected are to be selected by the calculating method when the explicit path is instantiated by a SR-TE LSP.";
 }
}

grouping te-sr-named-path-constraints {
 description "Named TE SR path constraints grouping";
 uses te-sr-named-path-constraints_config;
}

/*** End of MPLS SR-TE tunnel configuration/state */

/**
 * MPLS TE augmentations
 *
 */
augment "/te:te/te:globals/te:named-path-constraints" + "/te:named-path-constraint" {
 description "Augmentations for MPLS SR-TE config named constraints";
 uses te-sr-named-path-constraints;
}
/* MPLS TE tunnel augmentations */
/* MPLS TE LSPs augmentations */
</CODE ENDS>

Figure 12: SR TE MPLS YANG module

5. IANA Considerations

This document registers the following URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-te XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-te-types XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC6020].

6. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC8341] provides means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operations and content.

There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data nodes without proper protection can have a negative effect on network operations. Following are the subtrees and data nodes and their sensitivity/vulnerability:

"/te/globals": This module specifies the global TE configurations on a device. Unauthorized access to this container could cause the device to ignore packets it should receive and process.

"/te/tunnels": This list specifies the configured TE tunnels on a device. Unauthorized access to this list could cause the device to ignore packets it should receive and process.

"/te/lsps-state": This list specifies the state derived LSPs. Unauthorized access to this list could cause the device to ignore packets it should receive and process.

"/te/interfaces": This list specifies the configured TE interfaces on a device. Unauthorized access to this list could cause the device to ignore packets it should receive and process.

7. Acknowledgement

The authors would like to thank the members of the multi-vendor YANG design team who are involved in the definition of this model.

The authors would also like to thank Loa Andersson, Lou Berger, Sergio Belotti, Italo Busi, Carlo Perocchio, Francesco Lazzeri, Aihua Saad, et al.
Guo, Dhruv Dhody, Anurag Sharma, and Xian Zhang for their comments and providing valuable feedback on this document.

8. Contributors

Xia Chen
Huawei Technologies
Email: jescia.chenxia@huawei.com

Raqib Jones
Brocade
Email: raqib@Brocade.com

Bin Wen
Comcast
Email: Bin_Wen@cable.comcast.com

9. Normative References

[I-D.ietf-teas-yang-rsvp]

Authors' Addresses

Tarek Saad (editor)
Cisco Systems Inc

Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems Inc

Email: rgandhi@cisco.com

Saad, et al. Expires January 2, 2019
Xufeng Liu
Jabil
Email: Xufeng_Liu@jabil.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Himanshu Shah
Ciena
Email: hshah@ciena.com

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com
YANG Data Model for Traffic Engineering (TE) Topologies
draft-ietf-teas-yang-te-topo-18

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on December 23, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document defines a YANG data model for representing, retrieving and manipulating Traffic Engineering (TE) Topologies. The model serves as a base model that other technology specific TE Topology models can augment.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Table of Contents

1. Introduction...3
 1.1. Terminology...4
 1.2. Tree Structure..4
 1.3. Prefixes in Data Node Names...............................5
2. Characterizing TE Topologies..................................5
3. Modeling Abstractions and Transformations......................7
 3.1. TE Topology...7
 3.2. TE Node...7
 3.3. TE Link...8
 3.4. Transitional TE Link for Multi-Layer Topologies.........8
 3.5. TE Link Termination Point (LTP)..........................10
 3.6. TE Tunnel Termination Point (TTP)........................10
 3.7. TE Node Connectivity Matrix..............................11
 3.8. TTP Local Link Connectivity List (LLCL)..................11
 3.9. TE Path..11
 3.10. TE Inter-Layer Lock.....................................12
 3.11. Underlay TE topology....................................13
 3.12. Overlay TE topology.....................................13
 3.13. Abstract TE topology....................................13

Liu, et al Expires December 27, 2018 [Page 2]
Internet-Draft YANG - TE Topology June 2018

4. Model Applicability...14
4.1. Native TE Topologies.....................................14
4.2. Customized TE Topologies................................16
4.3. Merging TE Topologies Provided by Multiple Providers...19
4.4. Dealing with Multiple Abstract TE Topologies Provided by the
 Same Provider...22
5. Modeling Considerations.......................................25
5.1. Network topology building blocks........................25
5.2. Technology agnostic TE Topology model....................25
5.3. Model Structure..26
5.4. Topology Identifiers.....................................27
5.5. Generic TE Link Attributes...............................27
5.6. Generic TE Node Attributes...............................28
5.7. TED Information Sources..................................29
5.8. Overlay/Underlay Relationship............................30
5.9. Templates..31
5.10. Scheduling Parameters..................................32
5.11. Notifications...32
6. Guidance for Writing Technology Specific TE Topology Augmentations
...33
7. TE Topology YANG Module.......................................45
8. Security Considerations.......................................92
9. IANA Considerations...94
10. References...95
 10.1. Normative References.................................95
 10.2. Informative References...............................96
11. Acknowledgments...100

Appendix A. Complete Model Tree Structure.......................101
Appendix B. Companion YANG Model for Non-NMVA Compliant
 Implementations...150
Appendix C. Example: YANG Model for Technology Specific Augmentations
...158
Contributors..196
Authors’ Addresses...196

1. Introduction

The Traffic Engineering Database (TED) is an essential component of
Traffic Engineered (TE) systems that are based on MPLS-TE [RFC2702]
and GMPLS [RFC3945]. The TED is a collection of all TE information
about all TE nodes and TE links in the network. The TE Topology is a
schematic arrangement of TE nodes and TE links present in a given
TED. There could be one or more TE Topologies present in a given
Traffic Engineered system. A TE Topology is the topology on which
path computational algorithms are run to compute Traffic Engineered
Paths (TE Paths).
This document defines a YANG [RFC7950] data model for representing and manipulating TE Topologies. This model contains technology agnostic TE Topology building blocks that can be augmented and used by other technology-specific TE Topology models.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The reader is assumed to be familiar with general body of work captured in currently available TE related RFCs. [RFC7926] serves as a good starting point for those who may be less familiar with Traffic Engineering related RFCs.

Some of the key terms used in this document are:

TED: The Traffic Engineering Database is a collection of all TE information about all TE nodes and TE links in a given network.

TE-Topology: The TE Topology is a schematic arrangement of TE nodes and TE links in a given TED. It forms the basis for a graph suitable for TE path computations.

Native TE Topology: Native TE Topology is a topology that is native to a given provider network. Native TE topology could be discovered via various routing protocols and/or subscribe/publish techniques. This is the topology on which path computational algorithms are run to compute TE Paths.

Customized TE Topology: Customized TE Topology is a custom topology that is produced by a provider for a given client. This topology typically makes abstractions on the provider’s Native TE Topology, and is provided to the client. The client receives the Customized TE Topology, and merges it into the client’s Native TE Topology. The client’s path computational algorithms aren’t typically run on the Customized TE Topology; they are run on the client’s Native TE Topology after the merge.

1.2. Tree Structure

A simplified graphical representation of the data model is presented in Appendix A. of this document. The tree format defined in [RFC8340] is used for the YANG data model tree representation.
1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>yang</td>
<td>ietf-yang-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>inet</td>
<td>ietf-inet-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>nw</td>
<td>ietf-network</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>nt</td>
<td>ietf-network-topology</td>
<td>[RFC8345]</td>
</tr>
<tr>
<td>te-types</td>
<td>ietf-te-types</td>
<td>[I-D.ietf-teas-yang-te]</td>
</tr>
</tbody>
</table>

Table 1: Prefixes and corresponding YANG modules

2. Characterizing TE Topologies

The data model proposed by this document takes the following characteristics of TE Topologies into account:

- TE Topology is an abstract control-plane representation of the data-plane topology. Hence attributes specific to the data-plane must make their way into the corresponding TE Topology modeling. The TE Topology comprises of dynamic auto-discovered data as well as fairly static data associated with data-plane nodes and links. The dynamic data may change frequently, such as unreserved bandwidth available on data-plane links. The static data rarely changes, such as layer network identification, switching and adaptation capabilities and limitations, fate sharing, and administrative colors. It is possible for a single TE Topology to encompass TE information at multiple switching layers.

- TE Topologies are protocol independent. Information about topological elements may be learnt via link-state protocols, but the topology can exist without being dependent on any particular protocol.

- TE Topology may not be congruent to the routing topology in a given TE System. The routing topology is constructed based on routing adjacencies. There isn’t always a one-to-one association between a TE-link and a routing adjacency. For example, the presence of a TE link between a pair of nodes doesn’t necessarily imply the existence of a routing-adjacency between these nodes. To
learn more, see [I-D.ietf-teas-te-topo-and-tunnel-modeling] and [I-D.ietf-teas-yang-l3-te-topo].

- Each TE Topological element has at least one information source associated with it. In some scenarios, there could be more than one information source associated with any given topological element.

- TE Topologies can be hierarchical. Each node and link of a given TE Topology can be associated with respective underlay topology. This means that each node and link of a given TE Topology can be associated with an independent stack of supporting TE Topologies.

- TE Topologies can be customized. TE topologies of a given network presented by the network provider to its client could be customized on per-client request basis. This customization could be performed by provider, by client or by provider/client negotiation. The relationship between a customized topology and provider’s native topology could be captured as hierarchical (overlay-underlay), but otherwise the two topologies are decoupled from each other. A customized topology is presented to the client, while provider’s native topology is known in its entirety to the provider itself.
3. Modeling Abstractions and Transformations

Figure 1: TE Topology Modeling Abstractions

3.1. TE Topology

TE topology is a traffic engineering representation of one or more layers of network topologies. TE topology is comprised of TE nodes (TE graph vertices) interconnected via TE links (TE graph edges). A TE topology is mapped to a TE graph.

3.2. TE Node

TE node is an element of a TE topology, presented as a vertex on TE graph. TE node represents one or several nodes, or a fraction of a node, which can be a switch or router that is physical or virtual. TE node belongs to and is fully defined in exactly one TE topology. TE node is assigned a unique ID within the TE topology scope. TE node attributes include information related to the data plane aspects of
the associated node(s) (e.g. connectivity matrix), as well as configuration data (such as TE node name). A given TE node can be reached on the TE graph over one of TE links terminated by the TE node.

Multi-layer TE nodes providing switching functions at multiple network layers are an example where a physical node can be decomposed into multiple logical TE nodes, which are fractions of the physical node. Some of these (logical) TE nodes may reside in the client layer TE topology while the remaining TE nodes belong to the server layer TE topology.

In Figure 1, Node-1, Node-2, and Node-3 are TE nodes.

3.3. TE Link

TE link is an element of a TE topology, presented as an edge on TE graph. The arrows on an edge indicate one or both directions of the TE link. When there are a pair of parallel links of opposite directions, an edge without arrows is also used. TE link represents one or several (physical) links or a fraction of a link. TE link belongs to and is fully defined in exactly one TE topology. TE link is assigned a unique ID within the TE topology scope. TE link attributes include parameters related to the data plane aspects of the associated link(s) (e.g. unreserved bandwidth, resource maps/pools, etc.), as well as the configuration data (such as remote node/link IDs, SRLGs, administrative colors, etc.). TE link is connected to TE node, terminating the TE link via exactly one TE link termination point (LTP).

In Figure 1, Link-12 and Link-23 are TE links.

3.4. Transitional TE Link for Multi-Layer Topologies

Networks are typically composed of multiple network layers where one or multiple signals in the client layer network can be multiplexed and encapsulated into a server layer signal [RFC5212] [G.805]. The server layer signal can be carried in the server layer network across multiple nodes until the server layer signal is terminated and the client layer signals reappear in the node that terminates the server layer signal. Examples of multi-layer networks are: IP over MPLS over Ethernet, low order Optical Data Unit-k (ODUk) signals multiplexed into a high order ODUl (l>k) carried over an Optical Channel (OCh) signal in an optical transport network as defined in [G.872] and [G.709].
TE links as defined in 3.3. can be used to represent links within a network layer. In case of a multi-layer network, TE nodes and TE links only allow representation of each network layer as a separate TE topology. Each of these single layer TE topologies would be isolated from their client and their server layer TE topology, if present. The highest and the lowest network layer in the hierarchy only have a single adjacent layer below or above, respectively. Multiplexing of client layer signals and encapsulating them into a server layer signal requires a function that is provided inside a node (typically realized in hardware). This function is also called layer transition.

One of the key requirements for path computation is to be able to calculate a path between two endpoints across a multi-layer network based on the TE topology representing this multi-layer network. This means that an additional TE construct is needed that represents potential layer transitions in the multi-layer TE-topology that connects the TE-topologies representing each separate network layer. The so-called transitional TE link is such a construct and it represents the layer transition function residing inside a node that is decomposed into multiple logical nodes that are represented as TE nodes (see also the transitional link definition in [G.8080] for the optical transport network). Hence, a transitional TE link connects a client layer node with a server layer node. A TE link as defined in 3.3. has LTPs of exactly the same kind on each link end whereas the transitional TE link has client layer LTPs on the client side of the transitional link and in most cases a single server layer LTP on the server side. It should be noted that transitional links are a helper construct in the multi-layer TE topology and they only exist as long as they are not in use, as they represent potential connectivity. When the server layer trail has been established between the server layer LTP of two transitional links in the server layer network, the resulting client layer link in the data plane will be represented as a normal TE link in the client layer topology. The transitional TE links will re-appear when the server layer trail has been torn down.
3.5. TE Link Termination Point (LTP)

TE link termination point (LTP) is a conceptual point of connection of a TE node to one of the TE links, terminated by the TE node. Cardinality between an LTP and the associated TE link is 1:0..1.

In Figure 1, Node-2 has six LTPs: LTP-1 to LTP-6.

3.6. TE Tunnel Termination Point (TTP)

TE tunnel termination point (TTP) is an element of TE topology representing one or several of potential transport service termination points (i.e. service client adaptation points such as
WDM/OCh transponder). TTP is associated with (hosted by) exactly one TE node. TTP is assigned a unique ID within the TE node scope. Depending on the TE node’s internal constraints, a given TTP hosted by the TE node could be accessed via one, several or all TE links terminated by the TE node.

In Figure 1, Node-1 has two TTPs: TTP-1 and TTP-2.

3.7. TE Node Connectivity Matrix

TE node connectivity matrix is a TE node’s attribute describing the TE node’s switching limitations in a form of valid switching combinations of the TE node’s LTPs (see below). From the point of view of a potential TE path arriving at the TE node at a given inbound LTP, the node’s connectivity matrix describes valid (permissible) outbound LTPs for the TE path to leave the TE node from.

In Figure 1, the connectivity matrix on Node-2 is:
{<LTP-6, LTP-1>, <LTP-5, LTP-2>, <LTP-5, LTP-4>, <LTP-4, LTP-1>, <LTP-3, LTP-2>}

3.8. TTP Local Link Connectivity List (LLCL)

TTP Local Link Connectivity List (LLCL) is a List of TE links terminated by the TTP hosting TE node (i.e. list of the TE link LTPs), which the TTP could be connected to. From the point of view of a potential TE path, LLCL provides a list of valid TE links the TE path needs to start/stop on for the connection, taking the TE path, to be successfully terminated on the TTP in question.

In Figure 1, the LLCL on Node-1 is:
{<TTP-1, LTP-5>, <TTP-1, LTP-2>, <TTP-2, LTP-3>, <TTP-2, LTP4>}

3.9. TE Path

TE path is an ordered list of TE links and/or TE nodes on the TE topology graph, inter-connecting a pair of TTPs to be taken by a potential connection. TE paths, for example, could be a product of successful path computation performed for a given transport service.

In Figure 1, the TE Path for TE-Tunnel-1 is:
(Node-1:TTP-1, Link-12, Node-2, Link-23, Node-3:TTP1)
3.10. TE Inter-Layer Lock

TE inter-layer lock is a modeling concept describing client-server layer adaptation relationships and hence important for the multi-layer traffic engineering. It is an association of M client layer LTPs and N server layer TTPs, within which data arriving at any of the client layer LTPs could be adopted onto any of the server layer TTPs. TE inter-layer lock is identified by inter-layer lock ID, which is unique across all TE topologies provided by the same provider. The client layer LTPs and the server layer TTPs associated within a given TE inter-layer lock are annotated with the same inter-layer lock ID attribute.

```
+---+          __
|   | TE Node  / TTP  o LTP
+---+

----- TE Link
***** TTP Local Link Connectivity

(IL-1) C-LTP-1 +------------+   C-LTP-2 (IL-1)
       --------O   (IL-1)   O--------
       (IL-1) C-LTP-3 | S-TTP-1 | C-LTP-4 (IL-1)
       --------O       0--------
       (IL-1) C-LTP-5 | *\/* | C-LTP-5 (IL-1)
       --------O       0--------
       S-LTP-3 | * S-TTP-2* |   S-LTP-4
               --------O       0--------
               *\/*           *\/*
               *   *           *
               +--o------o--+
               S-LTP-1    | S-LTP-2
```

Figure 3: TE Inter-Layer Lock ID Associations

On the picture above a TE inter-layer lock with IL_1 ID associates 6 client layer LTPs (C-LTP-1 - C-LTP-6) with two server layer TTPs (S-TTP-1 and S-TTP-2). They all have the same attribute - TE inter-layer lock ID: IL-1, which is the only thing that indicates the association. A given LTP may have 0, 1 or more inter-layer lock IDs. In the latter case this means that the data arriving at the LTP may be adopted onto any of TTPs associated with all specified inter-layer locks. For example, C-LTP-1 could have two inter-layer lock IDs - IL-1 and IL-2. This would mean that C-LTP-1 for adaptation purposes could use not just TTPs associated with inter-layer lock IL-1 (i.e.
S-TTP-1 and S-TTP-2 on the picture), but any of TTPs associated with inter-layer lock IL-2 as well. Likewise, a given TTP may have one or more inter-layer lock IDs, meaning that it can offer the adaptation service to any of client layer LTPs with inter-layer lock ID matching one of its own. Additionally, each TTP has an attribute - Unreserved Adaptation Bandwidth, which announces its remaining adaptation resources sharable between all potential client LTPs.

LTPs and TTPs associated within the same TE inter-layer lock may be hosted by the same (hybrid, multi-layer) TE node or multiple TE nodes located in the same or separate TE topologies. The latter is especially important since TE topologies of different layer networks could be modeled by separate augmentations of the basic (common to all layers) TE topology model.

3.11. Underlay TE topology

Underlay TE topology is a TE topology that serves as a base for constructing of overlay TE topologies.

3.12. Overlay TE topology

Overlay TE topology is a TE topology constructed based on one or more underlay TE topologies. Each TE node of the overlay TE topology represents an arbitrary segment of an underlay TE topology; each TE link of the overlay TE topology represents an arbitrary TE path in one of the underlay TE topologies. The overlay TE topology and the supporting underlay TE topologies may represent distinct layer networks (e.g. OTN/ODUk and WDM/OCh respectively) or the same layer network.

3.13. Abstract TE topology

Abstract TE topology is a topology that contains abstract topological elements (nodes, links, tunnel termination points). Abstract TE topology is an overlay TE topology created by a topology provider and customized for a topology provider’s client based on one or more of the provider’s native TE topologies (underlay TE topologies), the provider’s policies and the client’s preferences. For example, a first level topology provider (such as Domain Controller) can create an abstract TE topology for its client (e.g. Multi-Domain Service Coordinator) based on the provider’s one or more native TE topologies, local policies/profiles and the client’s TE topology configuration requests.

Figure 4 shows an example of abstract TE topology.
4. Model Applicability

4.1. Native TE Topologies

The model discussed in this draft can be used to represent and retrieve native TE topologies on a given TE system.
Consider the network topology depicted in Figure 5a. R1 .. R9 are nodes representing routers. An implementation MAY choose to construct a native TE Topology using all nodes and links present in the given TED as depicted in Figure 5b. The data model proposed in this document can be used to retrieve/represent this TE topology.

\[\text{Figure 5a: Example Network Topology} \]

Consider the case of the topology being split in a way that some nodes participate in OSPF-TE while others participate in ISIS-TE (Figure 6a). An implementation MAY choose to construct separate TE Topologies based on the information source. The native TE Topologies constructed using only nodes and links that were learnt via a specific information source are depicted in Figure 6b. The data model proposed in this document can be used to retrieve/represent these TE topologies.

\[\text{Figure 5b: Native TE Topology as seen on Node R3} \]
Similarly, the data model can be used to represent/retrieve a TE Topology that is constructed using only nodes and links that belong to a particular technology layer. The data model is flexible enough to retrieve and represent many such native TE Topologies.

Figure 6a: Example Network Topology

4.2. Customized TE Topologies

Customized TE topology is a topology that was modified by the provider to honor a particular client’s requirements or preferences. The model discussed in this draft can be used to represent, retrieve and manipulate customized TE Topologies. The model allows the provider to present the network in abstract TE Terms on a per client...
basis. These customized topologies contain sufficient information for the path computing client to select paths according to its policies.

| +---+ /-\ WDM |
| | | | Router () |
| +---+ Node \-/ node |

Figure 7: Example packet optical topology

Consider the network topology depicted in Figure 7. This is a typical packet optical transport deployment scenario where the WDM layer network domain serves as a Server Network Domain providing transport connectivity to the packet layer network Domain (Client Network Domain). Nodes R1, R2, R3 and R4 are IP routers that are connected to an Optical WDM transport network. A, B, C, D, E and F are WDM nodes that constitute the Server Network Domain.

| ***** B-F WDM Path |
| @@@@@ B-E WDM Path |
| $$$$$ A-E WDM Path |

Liu, et al Expires December 27, 2018 [Page 17]
The goal here is to augment the Client TE Topology with a customized TE Topology provided by the WDM network. Given the availability of the paths A-E, B-F and B-E (Figure 8a), a customized TE Topology as depicted in Figure 8b is provided to the Client. This customized TE Topology is merged with the Client’s Native TE Topology and the resulting topology is depicted in Figure 8c.

A customized TE topology is not necessarily an abstract TE topology. The provider may produce, for example, an abstract TE topology of certain type (e.g. single-abstract-node-with-connectivit-matrix topology, a border_nodes_connected_via_mesh_of_abstract_links topology, etc.) and expose it to all/some clients in expectation that the clients will use it without customization. On the other hand, a client may request a customized version of the provider’s native TE topology (e.g. by requesting removal of TE links...
which belong to certain layers, are too slow, not protected and/or have a certain affinity). Note that the resulting TE topology will not be abstract (because it will not contain abstract elements), but customized (modified upon client’s instructions).

The client ID field in the TE topology identifier (Section 5.4.) indicates which client the TE topology is customized for. Although a authorized client MAY receive a TE topology with the client ID field matching some other client, the client can customize only TE topologies with the client ID field either 0 or matching the ID of the client in question. If the client starts reconfiguration of a topology its client ID will be automatically set in the topology ID field for all future configurations and updates wrt. the topology in question.

The provider MAY tell the client that a given TE topology cannot be re-negotiated, by setting its own (provider’s) ID in the client ID field of the topology ID.

4.3. Merging TE Topologies Provided by Multiple Providers

A client may receive TE topologies provided by multiple providers, each of which managing a separate domain of multi-domain network. In order to make use of said topologies, the client is expected to merge the provided TE topologies into one or more client’s native TE topologies, each of which homogeneously representing the multi-domain network. This makes it possible for the client to select end-to-end TE paths for its services traversing multiple domains.

In particular, the process of merging TE topologies includes:

- Identifying neighboring domains and locking their topologies horizontally by connecting their inter-domain open-ended TE links;
- Renaming TE node, link, and SRLG IDs to ones allocated from a separate name space; this is necessary because all TE topologies are considered to be, generally speaking, independent with a possibility of clashes among TE node, link or SRLG IDs;
- Locking, vertically, TE topologies associated with different layer networks, according to provided topology inter-layer locks; this is to facilitate inter-layer path computations across multiple TE topologies provided by the same topology provider.
Figure 9: Merging Domain TE Topologies

Figure 9 illustrates the process of merging, by the client, of TE topologies provided by the client’s providers. In the Figure, each of the two providers caters to the client (abstract or native) TE topology, describing the network domain under the respective provider’s control. The client, by consulting the attributes of the inter-domain TE links - such as inter-domain plug IDs or remote TE node/link IDs (as defined by the TE Topology model) - is able to determine that:

a) the two domains are adjacent and are inter-connected via three inter-domain TE links, and;
b) each domain is connected to a separate customer site, connecting the left domain in the Figure to customer devices C-11 and C-12, and the right domain to customer devices C-21, C-22 and C-23.

Therefore, the client inter-connects the open-ended TE links, as shown on the upper part of the Figure.

As mentioned, one way to inter-connect the open-ended inter-domain TE links of neighboring domains is to mandate the providers to specify remote nodeID/linkID attribute in the provided inter-domain TE links. This, however, may prove to be not flexible. For example, the providers may not know the respective remote nodeIDs/ linkIDs. More importantly, this option does not allow for the client to mix-n-match multiple (more than one) topologies catered by the same providers (see below). Another, more flexible, option to resolve the open-ended inter-domain TE links is by annotating them with the inter-domain plug ID attribute. Inter-domain plug ID is a network-wide unique number that identifies on the network a connectivity supporting a given inter-domain TE link. Instead of specifying remote node ID/link ID, an inter-domain TE link may provide a non-zero inter-domain plug ID. It is expected that two neighboring domain TE topologies (provided by separate providers) will have each at least one open-ended inter-domain TE link with an inter-domain plug ID matching to one provided by its neighbor. For example, the inter-domain TE link originating from node S15 of the Domain 1 TE topology (Figure 9) and the inter-domain TE link coming from node S23 of Domain 2 TE topology may specify matching inter-domain plug ID (e.g. 175344). This allows for the client to identify adjacent nodes in the separate neighboring TE topologies and resolve the inter-domain TE links connecting them regardless of their respective nodeIDs/linkIDs (which, as mentioned, could be allocated from independent name spaces). Inter-domain plug IDs may be assigned and managed by a central network authority. Alternatively, inter-domain plug IDs could be dynamically auto-discovered (e.g. via LMP protocol).

Furthermore, the client renames the TE nodes, links and SRLGs offered in the abstract TE topologies by assigning to them IDs allocated from a separate name space managed by the client. Such renaming is necessary, because the two abstract TE topologies may have their own name spaces, generally speaking, independent one from another; hence, ID overlaps/clashes are possible. For example, both TE topologies have TE nodes named S7, which, after renaming, appear in the merged TE topology as S17 and S27, respectively.

Once the merging process is complete, the client can use the merged TE topology for path computations across both domains, for example, to compute a TE path connecting C-11 to C-23.
4.4. Dealing with Multiple Abstract TE Topologies Provided by the Same Provider

Based on local configuration, templates and/or policies pushed by the client, a given provider may expose more than one abstract TE topology to the client. For example, one abstract TE topology could be optimized based on a lowest-cost criterion, while another one could be based on best possible delay metrics, while yet another one could be based on maximum bandwidth availability for the client services. Furthermore, the client may request all or some providers to expose additional abstract TE topologies, possibly of a different type and/or optimized differently, as compared to already-provided TE topologies. In any case, the client should be prepared for a provider to offer to the client more than one abstract TE topology.

It should be up to the client (based on the client’s local configuration and/or policies conveyed to the client by the client’s
clients) to decide how to mix-and-match multiple abstract TE topologies provided by each or some of the providers, as well as how to merge them into the client’s native TE topologies. The client also decides how many such merged TE topologies it needs to produce and maintain. For example, in addition to the merged TE topology depicted in the upper part of Figure 9, the client may merge the abstract TE topologies received from the two providers, as shown in Figure 10, into the client’s additional native TE topologies, as shown in Figure 11.

Note that allowing for the client mix-n-matching of multiple TE topologies assumes that inter-domain plug IDs (rather than remote nodeID/linkID) option is used for identifying neighboring domains and inter-domain TE link resolution.
Figure 11: Multiple Native (Merged) Client’s TE Topologies

It is important to note that each of the three native (merged) TE topologies could be used by the client for computing TE paths for any of the multi-domain services. The choice as to which topology to use for a given service depends on the service parameters/requirements and the topology’s style, optimization criteria and the level of details.
5. Modeling Considerations

5.1. Network topology building blocks

The network topology building blocks are discussed in [RFC8345]. The TE Topology model proposed in this document augments and uses the ietf-network-topology module defined in [RFC8345].

![Diagram: Augmenting the Network Topology Model]

5.2. Technology agnostic TE Topology model

The TE Topology model proposed in this document is meant to be network technology agnostic. Other technology specific TE Topology models can augment and use the building blocks provided by the proposed model.
5.3. Model Structure

The high-level model structure proposed by this document is as shown below:

```
module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
    +++-rw te-topology!

augment /nw:networks:
    +++-rw te!
      +++-rw templates
        +++-rw node-template* [name] [template]?
        |  ............
        +++-rw link-template* [name] [template]?
        ............

augment /nw:networks/nw:network:
    +++-rw provider-id? te-types:te-global-id
    +++-rw client-id? te-types:te-global-id
    +++-rw te-topology-id? te-types:te-topology-id
    +++-rw te!
      ............

augment /nw:networks/nw:network/nw:node:
    +++-rw te-node-id? te-types:te-node-id
    +++-rw te!
      ............
      +++-rw tunnel-termination-point* [tunnel-tp-id]
      +++-rw tunnel-tp-id binary
```

Figure 13: Augmenting the Technology agnostic TE Topology model
5.4. Topology Identifiers

The TE-Topology is uniquely identified by a key that has 3 constituents - te-topology-id, provider-id and client-id. The combination of provider-id and te-topology-id uniquely identifies a native TE Topology on a given provider. The client-id is used only when Customized TE Topologies come into play; a value of "0" is used as the client-id for native TE Topologies.

5.5. Generic TE Link Attributes

The model covers the definitions for generic TE Link attributes - bandwidth, admin groups, SRLGs, switching capabilities, TE metric extensions etc.
5.6. Generic TE Node Attributes

The model covers the definitions for generic TE Node attributes.

The definition of a generic connectivity matrix is shown below:

```yaml
++-rw te-node-attributes
    +++-rw connectivity-matrices
        +++-rw connectivity-matrix* [id]
            |     +++-rw id          uint32
            |     +++-rw from
            |     |     +++-rw tp-ref?    leafref
            |     |     +++-rw label-restrictions
            |     |     +++-rw to
            |     |     +++-rw tp-ref?    leafref
            |     |     +++-rw label-restrictions
            |     |     +++-rw is-allowed? boolean

        +++-rw underlay! {te-topology-hierarchy}?

        +++-rw path-constraints

        +++-rw optimizations

        +++-ro path-properties
```

The definition of a TTP Local Link Connectivity List is shown below:

```yaml
++-rw tunnel-termination-point* [tunnel-tp-id]
    ++-rw tunnel-tp-id       binary
    ++-rw admin-status?      te-types:te-admin-status
    ++-rw name?              string
    ++-rw switching-capability?  identityref
    ++-rw encoding?          identityref
    ++-rw inter-layer-lock-id* uint32
    ++-rw protection-type?    Idenityref
    ++-rw client-layer-adaptation
```
The attributes directly under container connectivity-matrices are the default attributes for all connectivity-matrix entries when the per entry corresponding attribute is not specified. When a per entry attribute is specified, it overrides the corresponding attribute directly under the container connectivity-matrices. The same rule applies to the attributes directly under container local-link-connectivities.

Each TTP (Tunnel Termination Point) MAY be supported by one or more supporting TTPs. If the TE node hosting the TTP in question refers to a supporting TE node, then the supporting TTPs are hosted by the supporting TE node. If the TE node refers to an underlay TE topology, the supporting TTPs are hosted by one or more specified TE nodes of the underlay TE topology.

5.7. TED Information Sources

The model allows each TE topological element to have multiple TE information sources (OSPF-TE, ISIS-TE, BGP-LS, User-Configured, System-Processed, Other). Each information source is associated with a credibility preference to indicate precedence. In scenarios where a customized TE Topology is merged into a Client’s native TE Topology, the merged topological elements would point to the corresponding customized TE Topology as its information source.
augment /nw:networks/nw:network/nt:link:
 +++-rw te!

 +++-ro information-source? te-info-source
 +++-ro information-source-state
 | +++-ro credibility-preference? uint16
 | +++-ro logical-network-element? string
 | +++-ro network-instance? string
 | +++-ro topology
 | | +++-ro node-ref? leafref
 | | +++-ro network-ref? leafref
 | +++-ro information-source-entry* [information-source]
 | | +++-ro information-source te-info-source

5.8. Overlay/Underlay Relationship

The model captures overlay and underlay relationship for TE nodes/links. For example - in networks where multiple TE Topologies are built hierarchically, this model allows the user to start from a specific topological element in the top most topology and traverse all the way down to the supporting topological elements in the bottom most topology.

This relationship is captured via the "underlay-topology" field for the node and via the "underlay" field for the link. The use of these fields is optional and this functionality is tagged as a "feature" ("te-topology-hierarchy").
The data model provides the users with the ability to define templates and apply them to link and node configurations. The use of "template" configuration is optional and this functionality is tagged as a "feature" ("template").
Multiple templates can be specified to a configuration element. When two or more templates specify values for the same configuration field, the value from the template with the highest priority is used. The reference-change-policy specifies the action that needs to be taken when the template changes on a configuration element that has a reference to this template. The choices of action include taking no action, rejecting the change to the template and applying the change to the corresponding configuration.

5.10. Scheduling Parameters

The model allows time scheduling parameters to be specified for each topological element or for the topology as a whole. These parameters allow the provider to present different topological views to the client at different time slots. The use of "scheduling parameters" is optional.

The YANG data model for configuration scheduling is defined in [I-D.liu-netmod-yang-schedule], which allows specifying configuration schedules without altering this data model.

5.11. Notifications

Notifications are a key component of any topology data model.

[I-D.ietf-netconf-subscribed-notifications] and [I-D.ietf-netconf-yang-push] define a subscription and push mechanism for YANG datastores. This mechanism currently allows the user to:

- Subscribe notifications on a per client basis
- Specify subtree filters or xpath filters so that only interested contents will be sent.
- Specify either periodic or on-demand notifications.

6. Guidance for Writing Technology Specific TE Topology Augmentations

The TE topology model defined in this document is technology agnostic as it defines concepts, abstractions and attributes that are common across multiple network technologies. It is envisioned that this base model will be widely used when defining technology specific TE topology models for various layer networks. [I-D.ietf-ccamp-wson-yang], [I-D.ietf-ccamp-otn-topo-yang], and [I-D.ietf-teas-yang-l3-te-topo] are some examples of technology specific TE Topology models. Writers of such models are encouraged to augment the basic TE topology model’s containers, such as TE Topology, TE Node, TE Link, Link Termination Point (LTP), Tunnel Termination Point (TTP), Bandwidth and Label with the layer specific attributes instead of defining new containers.

Consider the following technology specific example-topology model:

module: example-topology
 augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
 +--rw example-topology!
 augment /nw:networks/nw:network/tet:te:
 +--rw attributes
 +--rw attribute-1? uint8
 augment /nw:networks/nw:network/nw:node/tet:te:
 /tet:te-node-attributes:
 +--rw attributes
 +--rw attribute-2? uint8
 augment /nw:networks/nw:network/nw:node/tet:te:
 /tet:te-node-attributes/tet:connectivity-matrices:
 +--rw attributes
 +--rw attribute-3? uint8
 augment /nw:networks/nw:network/nw:node/tet:te:
 +--rw attributes
 +--rw attribute-3? uint8
 augment /nw:networks/nw:network/nw:node/tet:te:
 /tet:tunnel-termination-point:
 +--rw attributes
The technology specific TE bandwidth for this example topology can be specified using the following augment statements:

```yang
  /tet:te-link-attributes:
    /tet:interface-switching-capability/tet:max-lsp-bandwidth
    /tet:te-bandwidth/tet:technology:
      +--:(example)
      +--rw example
        +--rw bandwidth-1?   uint32

  /tet:te-link-attributes/tet:max-link-bandwidth
  /tet:te-bandwidth/tet:technology:
    +--:(example)
    +--rw example
      +--rw bandwidth-1?   uint32

  /tet:te-link-attributes/tet:max-resv-link-bandwidth
  /tet:te-bandwidth/tet:technology:
    +--:(example)
    +--rw example
      +--rw bandwidth-1?   uint32

  /tet:te-link-attributes/tet:unreserved-bandwidth
  /tet:te-bandwidth/tet:technology:
    +--:(example)
    +--rw example
      +--rw bandwidth-1?   uint32
```

augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:path-constraints
 /tet:te-bandwidth/tet:technology:
 +--:(example)
 | +--rw example
 | | +--rw bandwidth-1? uint32
 | augment /nw:networks/nw:network/nw:node/tet:te
 | /tet:information-source-entry/tet:connectivity-matrices
 | /tet:connectivity-matrix/tet:path-constraints
 | /tet:te-bandwidth/tet:technology:
 | +--:(example)
 | | +--ro example
 | | | +--ro bandwidth-1? uint32
 | | augment /nw:networks/nw:network/nw:node/tet:te
 | | /tet:tunnel-termination-point/tet:client-layer-adaptation
 | | /tet:switching-capability/tet:te-bandwidth
 | | /tet:technology:
 | +--:(example)
 | | +--rw example
 | | | +--rw bandwidth-1? uint32
 | | augment /nw:networks/nw:network/nw:node/tet:te
 | | /tet:local-link-connectivities/tet:path-constraints
 | | /tet:te-bandwidth/tet:technology:
 +--:(example)
 | +--rw example
 | | +--rw bandwidth-1? uint32
 | augment /nw:networks/nw:network/nw:node/tet:te
 | /tet:tunnel-termination-point
 | /tet:local-link-connectivities
/tet:local-link-connectivity/tet:path-constraints
tet:te-bandwidth/tet:technology:
 +--:(example)
 ++--rw example
 ++--rw bandwidth-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
tet:te-link-attributes
tet:interface-switching-capability/tet:max-lsp-bandwidth
tet:te-bandwidth/tet:technology:
 +--:(example)
 ++--rw example
 ++--rw bandwidth-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
tet:te-link-attributes/tet:max-link-bandwidth
tet:te-bandwidth/tet:technology:
 +--:(example)
 ++--rw example
 ++--rw bandwidth-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
tet:information-source-entry
tet:interface-switching-capability/tet:max-lsp-bandwidth
tet:te-bandwidth/tet:technology:
 +--:(example)
 ++--ro example
 ++--ro bandwidth-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
tet:information-source-entry/tet:max-link-bandwidth
tet:te-bandwidth/tet:technology:
 +--:(example)
 ++--ro example
 ++--ro bandwidth-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
tet:information-source-entry/tet:max-resv-link-bandwidth
tet:te-bandwidth/tet:technology:
The technology specific TE label for this example topology can be specified using the following augment statements:

```
++--rw example
+--rw label-1?  uint32
  /tet:te-link-attributes/tet:label-restrictions
  /tet:label-restriction/tet:label-start/tet:te-label
  /tet:technology:
++--:(example)
```

```
++--rw example
+--rw label-1?  uint32
  /tet:te-link-attributes/tet:label-restrictions
  /tet:label-restriction/tet:label-end/tet:te-label
  /tet:technology:
++--:(example)
```

```
++--rw example
+--rw label-1?  uint32
  /tet:te-link-attributes/tet:te-bandwidth
  /tet:technology:
++--:(example)
```
/tet:te-link-attributes/tet:label-restrictions
/tet:label-restriction/tet:label-end/tet:te-label/tet:technology:
+--:(example)
 +--rw example
 +--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te/
tet:te-node-attributes/tet:connectivity-matrices
/tet:label-restrictions/tet:label-restriction/tet:label-start/tet:te-label/tet:technology:
+--:(example)
 +--rw example
 +--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te/
tet:te-node-attributes/tet:connectivity-matrices
/tet:label-restrictions/tet:label-restriction/tet:label-end/tet:te-label/tet:technology:
+--:(example)
 +--rw example
 +--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te/
tet:te-node-attributes/tet:connectivity-matrices
tet:label/tet:label-hop/tet:te-label/tet:technology:
+--:(example)
 +--rw example
 +--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te/
tet:te-node-attributes/tet:connectivity-matrices
tet:label/tet:label-hop/tet:te-label/tet:technology:
+--:(example)
 +--rw example
 +--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te/
tet:te-node-attributes/tet:connectivity-matrices
/tet:path-properties/tet:path-route-objects
+--:(example)
 +--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:from/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
+++:(example)
+++--rw example
+++--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:from/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
+++:(example)
+++--rw example
+++--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:to/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
+++:(example)
+++--rw example
+++--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:to/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
+++:(example)
+++--rw example
+++--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
+++:(example)
+++--rw example
+++--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 +++: (example)
 +++rw example
 +++rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:te-node-attributes/tet:connectivity-matrices
 /tet:connectivity-matrix/tet:path-properties
 /tet:path-route-objects/tet:path-route-object/tet:type
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +++: (example)
 +++ro example
 +++ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label-restrictions/tet:label-restriction
 /tet:label-start/tet:te-label/tet:technology:
 +++: (example)
 +++ro example
 +++ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label-restrictions/tet:label-restriction
 /tet:label-end/tet:te-label/tet:technology:
 +++: (example)
 +++ro example
 +++ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +++: (example)
 +++ro example
 +++ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:information-source-entry/tet:connectivity-matrices
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
++--:(example)
++--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:information-source-entry/tet:connectivity-matrices
/tet:path-properties/tet:path-route-objects
/tet:te-label/tet:technology:
++--:(example)
++--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:connectivity-matrix/tet:from/tet:label-restrictions
/tet:label-restriction/tet:label-start/tet:te-label
/tet:technology:
++--:(example)
++--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:connectivity-matrix/tet:from/tet:label-restrictions
/tet:label-restriction/tet:label-end/tet:te-label
/tet:technology:
++--:(example)
++--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:connectivity-matrix/tet:to/tet:label-restrictions
/tet:label-restriction/tet:label-start/tet:te-label
/tet:technology:
++--:(example)
++--ro example
++--ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
/tet:connectivity-matrix/tet:to/tet:label-restrictions
/tet:label-restriction/tet:label-end/tet:te-label
/tet:technology:
++--ro example
++--ro label-1? uint32
++--{example}
++--rw example
++--rw label-1? uint32
++--{example}
++--rw example
+--rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities/tet:underlay
 /tet:primary-path/tet:path-element/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +---(example)
 +---rw example
 +---rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities/tet:underlay
 /tet:backup-path/tet:path-element/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +---(example)
 +---rw example
 +---rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities/tet:path-properties
 /tet:path-route-objects/tet:path-route-object/tet:type
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +---(example)
 +---ro example
 +---ro label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities
 /tet:local-link-connectivity/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 +---(example)
 +---rw example
 +---rw label-1? uint32
augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities
 /tet:local-link-connectivity/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
 +---(example)
---rw example
 +---rw label-1? uint32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities
 /tet:local-link-connectivity/tet:underlay
 /tet:primary-path/tet:path-element/tet:type/tet:label
 /tet:label-hop/tet:te-label/tet:technology:
 +---:(example)
 +---rw example
 +---rw label-1? uint32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities
 /tet:local-link-connectivity/tet:underlay/tet:backup-path
 /tet:path-element/tet:type/tet:label/tet:label-hop
 /tet:te-label/tet:technology:
 +---:(example)
 +---rw example
 +---rw label-1? uint32
 augment /nw:networks/nw:network/nw:node/tet:te
 /tet:tunnel-termination-point
 /tet:local-link-connectivities
 /tet:local-link-connectivity/tet:path-properties
 /tet:path-route-objects/tet:path-route-object/tet:type
 /tet:label/tet:label-hop/tet:te-label/tet:technology:
 +---:(example)
 +---ro example
 +---ro label-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te-link-attributes/tet:label-restrictions
 /tet:label-restriction/tet:label-start/tet:te-label
 /tet:technology:
 +---:(example)
 +---rw example
 +---rw label-1? uint32
 augment /nw:networks/nw:network/nt:link/tet:te
 /tet:te-link-attributes/tet:label-restrictions
 /tet:label-restriction/tet:label-end/tet:te-label
 /tet:technology:
 +---:(example)
The YANG module to implement the above example topology can be seen in Appendix C.

7. TE Topology YANG Module

This module references [RFC1195], [RFC3209], [RFC3272], [RFC3471], [RFC3630], [RFC3785], [RFC4201], [RFC4202], [RFC4203], [RFC4206], [RFC4872], [RFC5152], [RFC5305], [RFC5316], [RFC5329], [RFC5392], [RFC6001], [RFC6241], [RFC6991], [RFC7308], [RFC7471], [RFC7579], [RFC7752], [RFC8345], and [I-D.ietf-teas-yang-te].
<CODE BEGINS> file "ietf-te-topology@2018-06-15.yang"
module ietf-te-topology {
 yang-version 1.1;

 prefix "tet";

 import ietf-yang-types {
 prefix "yang";
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-inet-types {
 prefix "inet";
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-te-types {
 prefix "te-types";
 reference "I-D.ietf-teas-yang-te: A YANG Data Model for Traffic Engineering Tunnels and Interfaces";
 }

 import ietf-network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }

 import ietf-network-topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }

 organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>
description
"TE topology model for representing and manipulating technology
agnostic TE Topologies.

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the
RFC itself for full legal notices."

revision "2018-06-15" {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for TE Topologies";
 // RFC Ed.: replace XXXX with actual RFC number and remove
 // this note
feature nsrlg {
 description
 "This feature indicates that the system supports NSRLG
 (Not Sharing Risk Link Group).";
}

feature te-topology-hierarchy {
 description
 "This feature indicates that the system allows underlay
 and/or overlay TE topology hierarchy.";
}

feature template {
 description
 "This feature indicates that the system supports
 template configuration.";
}

typedef geographic-coordinate-degree {
 type decimal64 {
 fraction-digits 8;
 }
 description
 "Decimal degree (DD) used to express latitude and longitude
 geographic coordinates.";
} // geographic-coordinate-degree

typedef te-info-source {
 type enumeration {
 enum "unknown" {
 description "The source is unknown.";
 }
 enum "locally-configured" {
 description "Locally configured.";
 }
 }
}

Liu, et al Expires December 27, 2018
description "Configured entity."
}
enum "ospfv2" {
 description "OSPFv2."
}
enum "ospfv3" {
 description "OSPFv3."
}
enum "isis" {
 description "ISIS."
}
enum "bgp-ls" {
 description "BGP-LS."
 reference "RFC 7752: North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP";
}
enum "system-processed" {
 description "System processed entity."
}
enum "other" {
 description "Other source."
}

description "Describing the type of source that has provided the related information, and the source credibility."
} // te-info-source

/*
 * Groupings
 */
grouping connectivity-matrix-entry-path-attributes {
 description "Attributes of connectivity matrix entry."
 leaf is-allowed {
 type boolean;
 description "true - switching is allowed, false - switching is disallowed."
 }
}
container underlay {
 if-feature te-topology-hierarchy;
 description "Attributes of the te-link underlay.";
 reference
 "RFC 4206: Label Switched Paths (LSP) Hierarchy with
 Generalized Multi-Protocol Label Switching (GMPLS)
 Traffic Engineering (TE)";

 uses te-link-underlay-attributes;
} // underlay

uses te-types:generic-path-constraints;
uses te-types:generic-path-optimization;
uses te-types:generic-path-properties;
} // connectivity-matrix-entry-path-attributes

grouping geolocation-container {
 description
 "A container containing a GPS location.";
 container geolocation{
 config false;
 description
 "A container containing a GPS location.";
 leaf altitude {
 type int64;
 units millimeter;
 description
 "Distance above the sea level.";
 }
 leaf latitude {
 type geographic-coordinate-degree {
 range "-90..90";
 }
 description
 "Relative position north or south on the Earth’s surface.";
 }
 leaf longitude {
 type geographic-coordinate-degree {
 range "-180..180";
 }
 description
 }
 }
}
"Angular distance east or west on the Earth’s surface."
}
) // gps-location
}) // geolocation-container

grouping information-source-state-attributes {
 description
 "The attributes identifying source that has provided the
 related information, and the source credibility.";
 leaf credibility-preference {
 type uint16;
 description
 "The preference value to calculate the traffic
 engineering database credibility value used for
 tie-break selection between different
 information-source values.
 Higher value is more preferable.";
 }
 leaf logical-network-element {
 type string;
 description
 "When applicable, this is the name of a logical network
 element from which the information is learned.";
 }
 leaf network-instance {
 type string;
 description
 "When applicable, this is the name of a network-instance
 from which the information is learned.";
 }
}) // information-source-state-attributes

grouping information-source-per-link-attributes {
 description
 "Per node container of the attributes identifying source that
 has provided the related information, and the source
 credibility.";
 leaf information-source {
 type te-info-source;
 config false;
 description
 }
}
"Indicates the source of the information."
}
container information-source-state {
 config false;
 description
 "The container contains state attributes related to
 the information source."
 uses information-source-state-attributes;
 container topology {
 description
 "When the information is processed by the system,
 the attributes in this container indicate which topology
 is used to process to generate the result information.";
 uses nt:link-ref;
 }
} // topology
} // information-source-state
} // information-source-per-link-attributes

grouping information-source-per-node-attributes {
 description
 "Per node container of the attributes identifying source that
 has provided the related information, and the source
 credibility.";
 leaf information-source {
 type te-info-source;
 config false;
 description
 "Indicates the source of the information."
 }
 container information-source-state {
 config false;
 description
 "The container contains state attributes related to
 the information source."
 uses information-source-state-attributes;
 container topology {
 description
 "When the information is processed by the system,
 the attributes in this container indicate which topology
 is used to process to generate the result information.";
 uses nw:node-ref;
 }
 }
} // information-source-per-node-attributes
grouping interface-switching-capability-list {
 description "List of Interface Switching Capabilities Descriptors (ISCD)";
 list interface-switching-capability {
 description "List of Interface Switching Capabilities Descriptors (ISCD)
 for this link.";
 reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS)
 Signaling Functional Description.
 RFC 4203: OSPF Extensions in Support of Generalized
 Multi-Protocol Label Switching (GMPLS).";
 leaf switching-capability {
 type identityref {
 base te-types:switching-capabilities;
 }
 description "Switching Capability for this interface.";
 }
 leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description "Encoding supported by this interface.";
 }
 uses te-link-iscd-attributes;
 } // interface-switching-capability
} // interface-switching-capability-list

grouping statistics-per-link {
 description "Statistics attributes per TE link.";
 leaf discontinuity-time {
 type yang:date-and-time;
 description
 }
} // statistics-per-link

grouping information-source-state {
 // information-source-state
} // information-source-state

grouping information-source-per-node-attributes {
 // information-source-per-node-attributes
} // information-source-per-node-attributes

grouping interface-switching-capability-list {
 description "List of Interface Switching Capabilities Descriptors (ISCD)";
 list interface-switching-capability {
 description "List of Interface Switching Capabilities Descriptors (ISCD)
 for this link.";
 reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS)
 Signaling Functional Description.
 RFC 4203: OSPF Extensions in Support of Generalized
 Multi-Protocol Label Switching (GMPLS).";
 leaf switching-capability {
 type identityref {
 base te-types:switching-capabilities;
 }
 description "Switching Capability for this interface.";
 }
 leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description "Encoding supported by this interface.";
 }
 uses te-link-iscd-attributes;
 } // interface-switching-capability
} // interface-switching-capability-list

Liu, et al Expires December 27, 2018 [Page 53]
"The time on the most recent occasion at which any one or more of this interface’s counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself."

/* Administrative attributes */
leaf disables {
 type yang:counter32;
 description
 "Number of times that link was disabled.";
}
leaf enables {
 type yang:counter32;
 description
 "Number of times that link was enabled.";
}
leaf maintenance-clears {
 type yang:counter32;
 description
 "Number of times that link was put out of maintenance.";
}
leaf maintenance-sets {
 type yang:counter32;
 description
 "Number of times that link was put in maintenance.";
}
leaf modifies {
 type yang:counter32;
 description
 "Number of times that link was modified.";
}
/* Operational attributes */
leaf downs {
 type yang:counter32;
 description
 "Number of times that link was set to operational down.";
}
leaf ups {
 type yang:counter32;
description
 "Number of times that link was set to operational up.";
} /* Recovery attributes */
leaf fault-clears {
 type yang:counter32;
 description
 "Number of times that link experienced fault clear event.";
}
leaf fault-detects {
 type yang:counter32;
 description
 "Number of times that link experienced fault detection.";
}
leaf protection-switches {
 type yang:counter32;
 description
 "Number of times that link experienced protection
 switchover.";
}
leaf protection-reverts {
 type yang:counter32;
 description
 "Number of times that link experienced protection
 reversion.";
}
leaf restoration-failures {
 type yang:counter32;
 description
 "Number of times that link experienced restoration
 failure.";
}
leaf restoration-starts {
 type yang:counter32;
 description
 "Number of times that link experienced restoration
 start.";
}
leaf restoration-successes {
 type yang:counter32;
 description

"Number of times that link experienced restoration success.";
}
leaf restoration-reversion-failures {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion failure.";
}
leaf restoration-reversion-starts {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion start.";
}
leaf restoration-reversion-successes {
 type yang:counter32;
 description
 "Number of times that link experienced restoration reversion success.";
}
} // statistics-per-link

grouping statistics-per-node {
 description
 "Statistics attributes per TE node.";
 leaf discontinuity-time {
 type yang:date-and-time;
 description
 "The time on the most recent occasion at which any one or more of this interface’s counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself.";
 }
 container node {
 description
 "Containing TE node level statistics attributes.";
 leaf disables {
 type yang:counter32;
 }
 }
}
description
 "Number of times that node was disabled.";
}
leaf enables {
 type yang:counter32;
 description
 "Number of times that node was enabled.";
}
leaf maintenance-sets {
 type yang:counter32;
 description
 "Number of times that node was put in maintenance.";
}
leaf maintenance-clears {
 type yang:counter32;
 description
 "Number of times that node was put out of maintenance.";
}
leaf modifies {
 type yang:counter32;
 description
 "Number of times that node was modified.";
}
} // node
container connectivity-matrix-entry {
 description
 "Containing connectivity matrix entry level statistics attributes.";
 leaf creates {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was created.";
 reference
 "RFC 6241. Section 7.2 for 'create' operation. ";
 }
 leaf deletes {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was deleted.";
 }
}
reference
 "RFC 6241. Section 7.2 for ‘delete’ operation. ";
}
leaf disables {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was disabled.";
}
leaf enables {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was enabled.";
}
leaf modifies {
 type yang:counter32;
 description
 "Number of times that a connectivity matrix entry was modified.";
}
} // connectivity-matrix-entry
} // statistics-per-node

grouping statistics-per-ttp {
 description
 "Statistics attributes per TE TTP (Tunnel Termination Point).";
 leaf discontinuity-time {
 type yang:date-and-time;
 description
 "The time on the most recent occasion at which any one or more of this interface’s counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself.";
 }
 container tunnel-termination-point {
 description
 "Containing TE TTP (Tunnel Termination Point) level statistics attributes.";
 }
} // statistics-per-ttp
/* Administrative attributes */
leaf disables {
 type yang:counter32;
 description
 "Number of times that TTP was disabled.";
}
leaf enables {
 type yang:counter32;
 description
 "Number of times that TTP was enabled.";
}
leaf maintenance-clears {
 type yang:counter32;
 description
 "Number of times that TTP was put out of maintenance.";
}
leaf maintenance-sets {
 type yang:counter32;
 description
 "Number of times that TTP was put in maintenance.";
}
leaf modifies {
 type yang:counter32;
 description
 "Number of times that TTP was modified.";
}
/* Operational attributes */
leaf downs {
 type yang:counter32;
 description
 "Number of times that TTP was set to operational down.";
}
leaf ups {
 type yang:counter32;
 description
 "Number of times that TTP was set to operational up.";
}
leaf in-service-clears {
 type yang:counter32;
 description
 "Number of times that TTP was taken out of service
(TE tunnel was released).";
}
leaf in-service-sets {
 type yang:counter32;
 description
 "Number of times that TTP was put in service by a TE
tunnel (TE tunnel was set up).";
}
} // tunnel-termination-point

container local-link-connectivity {
 description
 "Containing TE LLCL (Local Link Connectivity List) level
statistics attributes.";
 leaf creates {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was created.";
 reference
 "RFC 6241. Section 7.2 for 'create' operation.";
 }
 leaf deletes {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was deleted.";
 reference
 "RFC 6241. Section 7.2 for 'delete' operation.";
 }
 leaf disables {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was disabled.";
 }
 leaf enables {
 type yang:counter32;
 description
 "Number of times that an LLCL entry was enabled.";
 }
 leaf modifies {
 type yang:counter32;
 description
"Number of times that an LLCL entry was modified."
)
} // local-link-connectivity
} // statistics-per-ttp

grouping te-link-augment {
 description "Augmentation for TE link.";
 uses te-link-config;
 uses te-link-state-derived;
 container statistics {
 config false;
 description "Statistics data.";
 uses statistics-per-link;
 } // statistics
} // te-link-augment

grouping te-link-config {
 description "TE link configuration grouping.";
 choice bundle-stack-level {
 description "The TE link can be partitioned into bundled links, or component links.";
 case bundle {
 container bundled-links {
 description "A set of bundled links.";
 reference "RFC 4201: Link Bundling in MPLS Traffic Engineering (TE).";
 list bundled-link {
 key "sequence";
 description "Specify a bundled interface that is further partitioned.";
 leaf sequence {
 type uint32;
 description "Identify the sequence in the bundle.";
 }
 }
 }
 }
 }
} // te-link-config

Liu, et al Expires December 27, 2018 [Page 61]
case component {
 container component-links {
 description "A set of component links";
 list component-link {
 key "sequence";
 description "Specify a component interface that is sufficient to unambiguously identify the appropriate resources";
 leaf sequence {
 type uint32;
 description "Identify the sequence in the bundle.";
 }
 leaf src-interface-ref {
 type string;
 description "Reference to component link interface on the source node.";
 }
 leaf des-interface-ref {
 type string;
 description "Reference to component link interface on the destination node.";
 }
 }
 }
}
} // bundle-stack-level

leaf-list te-link-template {
 if-feature template;
 type leafref {
 path "../..../..../..../te/templates/link-template/name";
 }
}
uses te-link-config-attributes;
} // te-link-config

grouping te-link-config-attributes {
 description
 "Link configuration attributes in a TE topology.";
 container te-link-attributes {
 description
 "Link attributes in a TE topology.";
 leaf access-type {
 type te-types:te-link-access-type;
 description
 "Link access type, which can be point-to-point or multi-access.";
 }
 container external-domain {
 description
 "For an inter-domain link, specify the attributes of the remote end of link, to facilitate the signalling at local end.";
 uses nw:network-ref;
 leaf remote-te-node-id {
 type te-types:te-node-id;
 description
 "Remote TE node identifier, used together with remote-te-link-id to identify the remote link termination point in a different domain.";
 }
 leaf remote-te-link-tp-id {
 type te-types:te-tp-id;
 description
 "Remote TE link termination point identifier, used together with remote-te-node-id to identify the remote link termination point in a different domain.";
 }
 }
 leaf is-abstract {
 type empty;
 }
 }
}
description "Present if the link is abstract.";
}
leaf name {
 type string;
 description "Link Name.";
}
container underlay {
 if-feature te-topology-hierarchy;
 description "Attributes of the te-link underlay.";
 reference
 "RFC 4206: Label Switched Paths (LSP) Hierarchy with
 Generalized Multi-Protocol Label Switching (GMPLS)
 Traffic Engineering (TE)";

 uses te-link-underlay-attributes;
} // underlay
leaf admin-status {
 type te-types:te-admin-status;
 description
 "The administrative state of the link.";
}

 uses te-link-info-attributes;
} // te-link-attributes
} // te-link-config-attributes

grouping te-link-info-attributes {
 description
 "Advertised TE information attributes.";
 leaf link-index {
 type uint64;
 description
 "The link identifier. If OSPF is used, this represents an
 ospfLsdbID. If IS-IS is used, this represents an isisLSPID.
 If a locally configured link is used, this object represents
 a unique value, which is locally defined in a router.";
 }
 leaf administrative-group {
 type te-types:admin-groups;
 description
 "Administrative group or color of the link.";
This attribute covers both administrative group (defined in RFC 3630, RFC 5305 and RFC 5329), and extended administrative group (defined in RFC 7308).

uses interface-switching-capability-list;
uses te-types:label-set-info;

leaf link-protection-type {
 type enumeration {
 enum "unprotected" {
 description "Unprotected.";
 }
 enum "extra-traffic" {
 description "Extra traffic.";
 }
 enum "shared" {
 description "Shared.";
 }
 enum "1-for-1" {
 description "One for one protection.";
 }
 enum "1-plus-1" {
 description "One plus one protection.";
 }
 enum "enhanced" {
 description "Enhanced protection.";
 }
 }
 description "Link Protection Type desired for this link.";
}

container max-link-bandwidth {
 uses te-types:te-bandwidth;
 description "Maximum bandwidth that can be seen on this link in this direction. Units in bytes per second.";
}
reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
RFC 5305: IS-IS Extensions for Traffic Engineering.";
}
container max-resv-link-bandwidth {
 uses te-types:te-bandwidth;
 description
 "Maximum amount of bandwidth that can be reserved in this
 direction in this link. Units in bytes per second.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
RFC 5305: IS-IS Extensions for Traffic Engineering.";
}
list unreserved-bandwidth {
 key "priority";
 max-elements "8";
 description
 "Unreserved bandwidth for 0-7 priority levels. Units in
 bytes per second.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
RFC 5305: IS-IS Extensions for Traffic Engineering.";
 leaf priority {
 type uint8 {
 range "0..7";
 }
 description "Priority.";
 }
 uses te-types:te-bandwidth;
}
leaf te-default-metric {
 type uint32;
 description
 "Traffic engineering metric.";
 reference
 "RFC 3630: Traffic Engineering (TE) Extensions to OSPF
 Version 2.
RFC 5305: IS-IS Extensions for Traffic Engineering.";
}
leaf te-delay-metric {
 type uint32;
 description "Traffic engineering delay metric."
 reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions.";
}
leaf te-igp-metric {
 type uint32;
 description "IGP metric used for traffic engineering."
}
container te-srlgs {
 description "Containing a list of SRLGs."
 leaf-list value {
 type te-types:srlg;
 description "SRLG value."
 }
}
container te-nsrlgs {
 if-feature nsrlg;
 description "Containing a list of NSRLGs (Not Sharing Risk Link Groups). When an abstract TE link is configured, this list specifies the request that underlay TE paths need to be mutually disjoint with other TE links in the same groups.";
 leaf-list id {
 type uint32;
 description "NSRLG ID, uniquely configured within a topology."
 reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End
grouping te-link-info-attributes {
 description "Generalized Multi-Protocol Label Switching (GMPLS) Recovery";
}
}
} // te-link-info-attributes

grouping te-link-iscd-attributes {
 description "TE link ISCD (Interface Switching Capability Descriptor) attributes.";
 reference "Sec 1.4, RFC 4203: OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS). Section 1.4.";
 list max-lsp-bandwidth {
 key "priority";
 max-elements "8";
 description "Maximum LSP Bandwidth at priorities 0-7.";
 leaf priority {
 type uint8 {
 range "0..7";
 }
 description "Priority."
 }
 uses te-types:te-bandwidth;
 }
}
} // te-link-iscd-attributes

grouping te-link-state-derived {
 description "Link state attributes in a TE topology.";
 leaf oper-status {
 type te-types:te-oper-status;
 config false;
 description "The current operational state of the link.";
 }
 leaf is-transitional {
 type empty;
 config false;
 description
 }
}

Liu, et al Expires December 27, 2018 [Page 68]
"Present if the link is transitional, used as an alternative approach in lieu of inter-layer-lock-id for path computation in a TE topology covering multiple layers or multiple regions.";

reference
"RFC 5212: Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/MLN).
RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/MRN).";
}
uses information-source-per-link-attributes;
list information-source-entry {
 key "information-source";
 config false;
 description
 "A list of information sources learned, including the one used.";
 uses information-source-per-link-attributes;
 uses te-link-info-attributes;
}
container recovery {
 config false;
 description
 "Status of the recovery process.";
 leaf restoration-status {
 type te-types:te-recovery-status;
 description
 "Restoration status.";
 }
 leaf protection-status {
 type te-types:te-recovery-status;
 description
 "Protection status.";
 }
}
container underlay {
 if-feature te-topology-hierarchy;
 config false;
 description "State attributes for te-link underlay.";
 leaf dynamic {
 type boolean;
grouping te-link-underlay-attributes {
 description "Attributes for te-link underlay.";
 reference
 RFC 4206: Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)";
 leaf enabled {
 type boolean;
 description
 "true" if the underlay is enabled. 'false' if the underlay is disabled."
 }
 container primary-path {
 description
 "The service path on the underlay topology that supports this link.";
 uses nw:network-ref;
 list path-element {
 key "path-element-id";
 description
 "A list of path elements describing the service path.";
 leaf path-element-id {
 type uint32;
 description "To identify the element in a path.";
 }
 }
 }
 list backup-path {
 key "index";
 }
} // primary-path
description
"A list of backup service paths on the underlay topology that protect the underlay primary path. If the primary path is not protected, the list contains zero elements. If the primary path is protected, the list contains one or more elements."
leaf index {
 type uint32;
 description
 "A sequence number to identify a backup path.";
} uses nw:network-ref;
list path-element {
 key "path-element-id";
 description
 "A list of path elements describing the backup service path";
 leaf path-element-id {
 type uint32;
 description "To identify the element in a path."
 }
 uses te-path-element;
} // underlay-backup-path
leaf protection-type {
 type identityref {
 base te-types:lsp-protection-type;
 }
 description
 "Underlay protection type desired for this link.";
} container tunnel-termination-points {
 description
 "Underlay TTP(Tunnel Termination Points) desired for this link.";
 leaf source {
 type binary;
 description
 "Source tunnel termination point identifier.";
 }
 leaf destination {
type binary;
description
"Destination tunnel termination point identifier.";
}
}
container tunnels {
description
"Underlay TE tunnels supporting this TE link.";
leaf sharing {
type boolean;
default true;
description
"true' if the underlay tunnel can be shared with other
TE links;
'false' if the underlay tunnel is dedicated to this
TE link.
This leaf is the default option for all TE tunnels,
and may be overridden by the per TE tunnel value.";
}
list tunnel {
key "tunnel-name";
description
"Zero, one or more underlay TE tunnels that support this TE
link.";
leaf tunnel-name {
type string;
description
"A tunnel name uniquely identifies an underlay TE tunnel,
used together with the source-node of this link.
The detailed information of this tunnel can be retrieved
from the ietf-te model.";
reference "RFC 3209";
}
leaf sharing {
type boolean;
description
"'true' if the underlay tunnel can be shared with other
TE links;
'false' if the underlay tunnel is dedicated to this
TE link.";
}
grouping te-node-augment {
 description "Augmentation for TE node."
 uses te-node-config;
 uses te-node-state-derived;
 container statistics {
 config false;
 description "Statistics data."
 uses statistics-per-node;
 } // statistics
}

list tunnel-termination-point {
 key "tunnel-tp-id";
 description "A termination point can terminate a tunnel."
 leaf tunnel-tp-id {
 type binary;
 description "Tunnel termination point identifier."
 }
}

uses te-node-tunnel-termination-point-config;
leaf oper-status {
 type te-types:te-oper-status;
 config false;
 description "The current operational state of the tunnel termination point."
}

uses geolocation-container;
container statistics {
 config false;
 description "Statistics data."
 uses statistics-per-ttp;
} // statistics
// Relations to other tunnel termination points
list supporting-tunnel-termination-point {
 key "node-ref tunnel-tp-ref";
 description
 "Identifies the tunnel termination points, that this
 tunnel termination point is depending on.";
 leaf node-ref {
 type inet:uri;
 description
 "This leaf identifies the node in which the supporting
 tunnel termination point is present.
 This node is either the supporting node or a node in
 an underlay topology.";
 }
 leaf tunnel-tp-ref {
 type binary;
 description
 "Reference to a tunnel termination point, which is
 either in the supporting node or a node in an
 underlay topology.";
 }
} // supporting-tunnel-termination-point
} // tunnel-termination-point
} // te-node-augment

grouping te-node-config {
 description "TE node configuration grouping.";
 leaf-list te-node-template {
 if-feature template;
 type leafref {
 path "../../../../te/templates/node-template/name";
 }
 description
 "The reference to a TE node template.";
 }
 uses te-node-config-attributes;
} // te-node-config

grouping te-node-config-attributes {
 description "Configuration node attributes in a TE topology.";
} // te-node-config-attributes
container te-node-attributes {
 description "Containing node attributes in a TE topology.";
 leaf admin-status {
 type te-types:te-admin-status;
 description "The administrative state of the link.";
 }
 uses te-node-connectivity-matrices;
 uses te-node-info-attributes;
} // te-node-attributes
} // te-node-config-attributes

grouping te-node-config-attributes-template {
 description "Configuration node attributes for template in a TE topology.";
 container te-node-attributes {
 description "Containing node attributes in a TE topology.";
 leaf admin-status {
 type te-types:te-admin-status;
 description "The administrative state of the link.";
 }
 uses te-node-info-attributes;
 } // te-node-attributes
} // te-node-config-attributes-template

grouping te-node-connectivity-matrices {
 description "Connectivity matrix on a TE node.";
 container connectivity-matrices {
 description "Containing connectivity matrix on a TE node.";
 leaf number-of-entries {
 type uint16;
 description "The number of connectivity matrix entries. If this number is specified in the configuration request, the number is requested number of entries, which may not all be listed in the list; if this number is reported in the state data, the number is the current number of operational entries.";
 }
 }
}
uses te-types:label-set-info;
uses connectivity-matrix-entry-path-attributes;
list connectivity-matrix {
 key "id";
 description
 "Represents node's switching limitations, i.e. limitations
 in interconnecting network TE links across the node."
 reference
 "RFC 7579: General Network Element Constraint Encoding
 for GMPLS-Controlled Networks.";
 leaf id {
 type uint32;
 description "Identifies the connectivity-matrix entry.";
 }
} // connectivity-matrix
} // connectivity-matrices
} // te-node-connectivity-matrices

grouping te-node-connectivity-matrix-attributes {
 description
 "Termination point references of a connectivity matrix entry.";
 container from {
 description
 "Reference to source link termination point.";
 leaf tp-ref {
 type leafref {
 path "../.../../.../nt:termination-point/nt:tp-id";
 }
 description
 "Relative reference to a termination point.";
 }
 uses te-types:label-set-info;
 }
 container to {
 description
 "Reference to destination link termination point.";
 leaf tp-ref {
 type leafref {
 path "../.../../.../nt:termination-point/nt:tp-id";
 }
 description
 "Relative reference to a termination point.";
 }
 uses te-types:label-set-info;
 }
}
"Relative reference to a termination point."
}
uses te-types:label-set-info;
}
uses connectivity-matrix-entry-path-attributes;
} // te-node-connectivity-matrix-attributes

grouping te-node-info-attributes {
 description
 "Advertised TE information attributes.";
 leaf domain-id {
 type uint32;
 description
 "Identifies the domain that this node belongs.
 This attribute is used to support inter-domain links.";
 reference
 "RFC 5152: A Per-Domain Path Computation Method for
 Establishing Inter-Domain Traffic Engineering (TE)
 Label Switched Paths (LSPs).
 RFC 5392: OSPF Extensions in Support of Inter-Autonomous
 System (AS) MPLS and GMPLS Traffic Engineering.
 RFC 5316: ISIS Extensions in Support of Inter-Autonomous
 System (AS) MPLS and GMPLS Traffic Engineering.";
 }
 leaf is-abstract {
 type empty;
 description
 "Present if the node is abstract, not present if the node
 is actual.";
 }
 leaf name {
 type string;
 description "Node name.";
 }
 leaf-list signaling-address {
 type inet:ip-address;
 description "Node signaling address.";
 }
 container underlay-topology {
 if-feature te-topology-hierarchy;
 description
"When an abstract node encapsulates a topology, the attributes in this container point to said topology."
uses nw:network-ref;
}
} // te-node-info-attributes

grouping te-node-state-derived {
 description "Node state attributes in a TE topology.";
 leaf oper-status {
 type te-types:te-oper-status;
 config false;
 description "The current operational state of the node."
 }
} uses geolocation-container;
leaf is-multi-access-dr {
 type empty;
 config false;
 description "The presence of this attribute indicates that this TE node is a pseudonode elected as a designated router.";
} uses information-source-per-node-attributes;
list information-source-entry {
 key "information-source";
 config false;
 description "A list of information sources learned, including the one used.";
 uses information-source-per-node-attributes;
 uses te-node-connectivity-matrices;
 uses te-node-info-attributes;
}
} // te-node-state-derived

grouping te-node-tunnel-termination-point-config {

container local-link-connectivities {
 description
 "Containing local link connectivity list for a tunnel termination point on a TE node.";
 leaf number-of-entries {
 type uint16;
 description
 "The number of local link connectivity list entries. If this number is specified in the configuration request, the number is requested number of entries, which may not all be listed in the list; if this number is reported in the state data, the number is the current number of operational entries.";
 }
 uses te-types:label-set-info;
 uses connectivity-matrix-entry-path-attributes;
} // local-link-connectivities
} // te-node-tunnel-termination-point-config

grouping te-node-tunnel-termination-point-config-attributes {
 description
 "Configuration attributes of a tunnel termination point on a TE node.";
 leaf admin-status {
 type te-types:te-admin-status;
 description
 "The administrative state of the tunnel termination point.";
 }
 leaf name {
 type string;
 description
 "A descriptive name for the tunnel termination point.";
 }
 leaf switching-capability {
 type identityref {
 base te-types:switching-capabilities;
 }
 }
}
description
 "Switching Capability for this interface."
}
leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description
 "Encoding supported by this interface."
}
leaf-list inter-layer-lock-id {
 type uint32;
 description
 "Inter layer lock ID, used for path computation in a TE
 topology covering multiple layers or multiple regions."
 reference
 "RFC 5212: Requirements for GMPLS-Based Multi-Region and
 Multi-Layer Networks (MRN/MLN).
 RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi-Layer and Multi-Region Networks (MLN/MRN)."
}
leaf protection-type {
 type identityref {
 base te-types:lsp-protection-type;
 }
 description
 "The protection type that this tunnel termination point
 is capable of."
}
container client-layer-adaptation {
 description
 "Containing capability information to support a client layer
 adaptation in multi-layer topology."
 list switching-capability {
 key "switching-capability encoding";
 description
 "List of supported switching capabilities"
 reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi-Layer and Multi-Region Networks (MLN/MRN)."
RFC 4202: Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)."
leaf switching-capability {
 type identityref {
 base te-types:switching-capabilities;
 }
 description
 "Switching Capability for the client layer adaption.";
}
leaf encoding {
 type identityref {
 base te-types:lsp-encoding-types;
 }
 description
 "Encoding supported by the client layer adaption.";
}
uses te-types:te-bandwidth;
} // te-node-tunnel-termination-point-config-attributes

grouping te-node-tunnel-termination-point-llc-list {
 description
 "Local link connectivity list of a tunnel termination point on a TE node.";
 list local-link-connectivity {
 key "link-tp-ref";
 description
 "The termination capabilities between tunnel-termination-point and link termination-point.
 The capability information can be used to compute the tunnel path.
 The Interface Adjustment Capability Descriptors (IACD)
 (defined in RFC 6001) on each link-tp can be derived from this local-link-connectivity list.";
 reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/MRN).";
 leaf link-tp-ref {
 type leafref {

Liu, et al Expires December 27, 2018 [Page 81]
grouping te-path-element {
 description
 "A group of attributes defining an element in a TE path
 such as TE node, TE link, TE atomic resource or label.";
 uses te-types:explicit-route-hop;
} // te-path-element

grouping te-termination-point-augment {
 description
 "Augmentation for TE termination point.";
 leaf te-tp-id {
 type te-types:te-tp-id;
 description
 "An identifier to uniquely identify a TE termination
 point.";
 }
 container te {
 must "../te-tp-id";
 presence "TE support.";
 description
 "Indicates TE support.";
 uses te-termination-point-config;
 leaf oper-status {
 type te-types:te-oper-status;
 config false;
 description
 "The current operational state of the link termination
 point.";
 }
 }
 uses geolocation-container;
} // te-node-tunnel-termination-point-augment
grouping te-termination-point-config {
 description
 "TE termination point configuration grouping.";
 leaf admin-status {
 type te-types:te-admin-status;
 description
 "The administrative state of the link termination point.";
 }
 leaf name {
 type string;
 description
 "A descriptive name for the link termination point.";
 }
 uses interface-switching-capability-list;
 leaf inter-domain-plug-id {
 type binary;
 description
 "A topology-wide unique number that identifies on the
 network a connectivity supporting a given inter-domain
 TE link. This is more flexible alternative to specifying
 remote-te-node-id and remote-te-link-tp-id on a TE link,
 when the provider does not know remote-te-node-id and
 remote-te-link-tp-id or need to give client the
 flexibility to mix-n-match multiple topologies.";
 }
 leaf-list inter-layer-lock-id {
 type uint32;
 description
 "Inter layer lock ID, used for path computation in a TE
 topology covering multiple layers or multiple regions.";
 reference
 "RFC 5212: Requirements for GMFLS-Based Multi-Region and
 Multi-Layer Networks (MRN/MLN).
 RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi-Layer and Multi-Region Networks (MLN/MRN).";
 }
} // te-termination-point-config
grouping te-topologies-augment {
 description
 "Augmentation for TE topologies.";
 container te {
 presence "TE support.";
 description
 "Indicates TE support.";
 }
 container templates {
 description
 "Configuration parameters for templates used for TE topology.";
 }
 list node-template {
 if-feature template;
 key "name";
 leaf name {
 type te-types:te-template-name;
 description
 "The name to identify a TE node template.";
 }
 description
 "The list of TE node templates used to define sharable and reusable TE node attributes.";
 uses template-attributes;
 uses te-node-config-attributes-template;
 } // node-template
 list link-template {
 if-feature template;
 key "name";
 leaf name {
 type te-types:te-template-name;
 description
 "The name to identify a TE link template.";
 }
 description
 "The list of TE link templates used to define sharable and reusable TE link attributes.";
 uses template-attributes;
 uses te-link-config-attributes;
grouping te-topology-augment {
 description "Augmentation for TE topology.";
 leaf provider-id {
 type te-types:te-global-id;
 description "An identifier to uniquely identify a provider.";
 }
 leaf client-id {
 type te-types:te-global-id;
 description "An identifier to uniquely identify a client.";
 }
 leaf te-topology-id {
 type te-types:te-topology-id;
 description "It is presumed that a datastore will contain many topologies. To distinguish between topologies it is vital to have UNIQUE topology identifiers.";
 }
}

container te {
 must "../provider-id and ../client-id and ../te-topology-id";
 presence "TE support.";
 description "Indicates TE support.";
 uses te-topology-config;
 uses geolocation-container;
} // te
} // te-topologies-augment

grouping te-topology-config {
 description "TE topology configuration grouping.";
 leaf name {
 type string;
 description "Name of the topology configuration.";
 }
 leaf location {
 type te-types:geolocation;
 description "Location of the topology configuration.";
 }
 leaf timestamp {
 type uint64;
 description "Timestamp of the topology configuration.";
 }
 leaf version {
 type uint64;
 description "Version of the topology configuration.";
 }
 leaf description {
 type string;
 description "Description of the topology configuration.";
 }
 leaf status {
 type te-topology-config-status;
 description "Status of the topology configuration.";
 }
}

type string;
description
"Name of the TE topology. This attribute is optional and can be specified by the operator to describe the TE topology, which can be useful when network-id is not descriptive and not modifiable because of being generated by the system."
}
leaf preference {
 type uint8 {
 range "1..255"
 }
 description
 "Specifies a preference for this topology. A lower number indicates a higher preference."
}
leaf optimization-criterion {
 type identityref {
 base te-types:te-optimization-criterion;
 }
 description
 "Optimization criterion applied to this topology."
 reference
 "RFC 3272: Overview and Principles of Internet Traffic Engineering."
}
list nsrlg {
 if-feature nsrlg;
 key "id";
 description
 "List of NSRLGs (Not Sharing Risk Link Groups)."
 reference
 "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery";
 leaf id {
 type uint32;
 description
 "Identify the NSRLG entry."
 }
 leaf disjointness {
 }}
type te-types:te-path-disjointness;
description
 "The type of resource disjointness.";
}
} // nsrlg
} // te-topology-config

grouping template-attributes {
 description
 "Common attributes for all templates.";
 leaf priority {
 type uint16;
 description
 "The preference value to resolve conflicts between different
 templates. When two or more templates specify values for
 one configuration attribute, the value from the template
 with the highest priority is used."
 }
 leaf reference-change-policy {
 type enumeration {
 enum no-action {
 description
 "When an attribute changes in this template, the
 configuration node referring to this template does
 not take any action.";
 }
 enum not-allowed {
 description
 "When any configuration object has a reference to this
 template, changing this template is not allowed.";
 }
 enum cascade {
 description
 "When an attribute changes in this template, the
 configuration object referring to this template applies
 the new attribute value to the corresponding
 configuration.";
 }
 }
 }
 description
 "This attribute specifies the action taken to a configuration
node that has a reference to this template.
}
} // template-attributes

/*
 * Data nodes
 */
augment "/nw:networks/nw:network/nw:network-types" {
 description
 "Introduce new network type for TE topology.";
 container te-topology {
 presence "Indicates TE topology.";
 description
 "Its presence identifies the TE topology type.";
 }
}

augment "/nw:networks" {
 description
 "Augmentation parameters for TE topologies.";
 uses te-topologies-augment;
}

augment "/nw:networks/nw:network" {
 when "nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE topology.";
 uses te-topology-augment;
}

augment "/nw:networks/nw:network/nw:node" {
 when "../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description

"Configuration parameters for TE at node level."
leaf te-node-id {
 type te-types:te-node-id;
 description
 "The identifier of a node in the TE topology. A node is specific to a topology to which it belongs."
}
container te {
 must "./te-node-id" {
 description
 "te-node-id is mandatory."
 }
 must "count(../nw:supporting-node)<=1" {
 description
 "For a node in a TE topology, there cannot be more than 1 supporting node. If multiple nodes are abstracted, the underlay-topology is used."
 }
 presence "TE support.";
 description
 "Indicates TE support."
 uses te-node-augment;
} // te

augment "/nw:networks/nw:network/nt:link" {
 when "./nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with TE topology type."
 }
 description
 "Configuration parameters for TE at link level."
 container te {
 must "count(../nt:supporting-link)<=1" {
 description
 "For a link in a TE topology, there cannot be more than 1 supporting link. If one or more link paths are abstracted, the underlay is used."
 }
 presence "TE support.";
description
 "Indicates TE support."
uses te-link-augment;
} // te

augment "/nw:networks/nw:network/nw:node/"
 + "nt:termination-point" {
 when ".../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at termination point level.";
 uses te-termination-point-augment;
 }

 + "bundle/bundled-links/bundled-link" {
 when ".../../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE link bundled link.";
leaf src-tp-ref {
 type leafref {
 path ".../"/nw:node[nw:node-id = "
 + current()//nt:source"
 + "nt:source-node]"
 + "nt:termination-point/nt:tp-id"
 require-instance true;
 }
 description
 "Reference to another TE termination point on the
 same source node.";
}
leaf des-tp-ref {
type leafref {
 path "../../../nw:node[nw:node-id = "
 + "current()//...//...//nt:destination/"
 + "nt:dest-node/"
 + "nt:termination-point/nt:tp-id";
 require-instance true;
}

description
 "Reference to another TE termination point on the
 same destination node."
}

augment
 "nw:networks/nw:network/nw:node/te/
 + information-source-entry/connectivity-matrices/
 + connectivity-matrix" {
 when "../../../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type."
 }
 description
 "Augment TE node connectivity-matrix."
 uses te-node-connectivity-matrix-attributes;
 }

augment
 "nw:networks/nw:network/nw:node/te/te-node-attributes/
 + connectivity-matrices/connectivity-matrix" {
 when "../../../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type."
 }
 description
 "Augment TE node connectivity-matrix."
 uses te-node-connectivity-matrix-attributes;
 }

augment

Liu, et al Expires December 27, 2018 [Page 91]
"/nw:networks/nw:network/nw:node/te/"+ "tunnel-termination-point/local-link-connectivities" {
 when "../../../../../nw:network-types/tet:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Augment TE node tunnel termination point LLCs
 (Local Link Connectivities).";
 uses te-node-tunnel-termination-point-llc-list;
}

8. Security Considerations

The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC5246].

The NETCONF access control model [RFC6536] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.

There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config) to
these data nodes without proper protection can have a negative effect
on network operations. These are the subtrees and data nodes and
their sensitivity/vulnerability:

 This subtree specifies the TE topology type. Modifying the
 configurations can make TE topology type invalid and cause
 interruption to all TE networks.
This subtree specifies the TE node templates and TE link templates. Modifying the configurations in this subtree will change related future TE configurations.

This subtree specifies the topology-wide configurations, including the TE topology ID and topology-wide policies. Modifying the configurations here can cause traffic disabled or rerouted in this topology and the connected topologies.

This subtree specifies the configurations for TE nodes. Modifying the configurations in this subtree can add, remove, or modify TE nodes, causing traffic disabled or rerouted in the specified nodes and the related TE topologies.

This subtree specifies the configurations for TE links. Modifying the configurations in this subtree can add, remove, or modify TE links, causing traffic disabled or rerouted on the specified TE links and the related TE topologies.

This subtree specifies the configurations of TE link termination points. Modifying the configurations in this subtree can add, remove, or modify TE link terminations points, causing traffic disabled or rerouted on the related TE links and the related TE topologies.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

Unauthorized access to this subtree can disclose the TE topology type.

Unauthorized access to this subtree can disclose the TE node templates and TE link templates.
o /nw:networks/nw:network
Unauthorized access to this subtree can disclose the topology-wide configurations, including the TE topology ID, the topology-wide policies, and the topology geolocation.

o /nw:networks/nw:network/nw:node
Unauthorized access to this subtree can disclose the operational state information of TE nodes.

o /nw:networks/nw:network/nt:link/tet:te
Unauthorized access to this subtree can disclose the operational state information of TE links.

o /nw:networks/nw:network/nw:node/nt:termination-point
Unauthorized access to this subtree can disclose the operational state information of TE link termination points.

9. IANA Considerations

This document registers the following URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.

Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC7950].

name: ietf-te-topology
prefix: tet
reference: RFC XXXX

name: ietf-te-topology-state
prefix: tet-s
reference: RFC XXXX
10. References

10.1. Normative References

10.2. Informative References

Internet-Draft YANG - TE Topology June 2018

[I-D.ietf-ccamp-wson-yang]
11. Acknowledgments

The authors would like to thank Lou Berger, Sue Hares, Mazen Khaddam, Cyril Margaria and Zafar Ali for participating in design discussions and providing valuable insights.
Appendix A. Complete Model Tree Structure

module: ietf-te-topology
 augment /nw:networks/nw:network/nw:network-types:
 ++rw te-topology!
 augment /nw:networks:
 ++rw te!
 ++rw templates
 ++rw node-template* [name] {template}?
 ++rw name
 | te-types:te-template-name
 ++rw priority? uint16
 ++rw reference-change-policy? enumeration
 ++rw te-node-attributes
 ++rw admin-status? te-types:te-admin-status
 ++rw domain-id? uint32
 ++rw is-abstract? empty
 ++rw name? string
 ++rw signaling-address* inet:ip-address
 ++rw underlay-topology {te-topology-hierarchy}?
 ++rw network-ref?
 -> /nw:networks/network/network-id
 ++rw link-template* [name] {template}?
 ++rw name
 | te-types:te-template-name
 ++rw priority? uint16
 ++rw reference-change-policy? enumeration
 ++rw te-link-attributes
 ++rw access-type? te-types:te-link-access-type
 ++rw external-domain
 ++rw network-ref?
 -> /nw:networks/network/network-id
 ++rw remote-te-node-id? te-types:te-node-id
 ++rw remote-te-link-tp-id? te-types:te-tp-id
 ++rw is-abstract? empty
 ++rw name? string
 ++rw underlay {te-topology-hierarchy}?
 ++rw enabled? boolean
 ++rw primary-path
 ++rw network-ref?
Internet-Draft YANG - TE Topology June 2018

-> /nw:networks/network/network-id
 +--rw path-element* [path-element-id]
 +--rw path-element-id uint32
 +--rw index? uint32
 +--rw (type)?
 +--:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id?
 | te-types:te-node-id
 +--rw link-tp-id?
 | te-types:te-tp-id
 +--rw hop-type? te-hop-type
 +--rw direction? te-link-direction
 +--:(as-number)
 +--rw as-number-hop
 +--rw as-number? binary
 +--rw hop-type? te-hop-type
 +--:(label)
 +--rw label-hop
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label
 +--rw direction?
 te-label-direction
 +--:(backup-path* [index])
 +--rw index uint32
 +--rw network-ref?
 | -> /nw:networks/network/network-id
 +--rw path-element* [path-element-id]
 +--rw path-element-id uint32
 +--rw index? uint32
 +--rw (type)?
 +--:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id?
 | te-types:te-node-id
 +--rw link-tp-id?
 | te-types:te-tp-id

Liu, et al Expires December 27, 2018 [Page 102]
Internet-Draft YANG - TE Topology June 2018

| +--rw generic? te-bandwidth
++--rw label-restrictions
 +--rw label-restriction* [index]
 +--rw restriction? enumeration
 +--rw index uint32
 +--rw label-start
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 | +--rw generic?
 | | rt-types:generalized-label
 +--rw direction? te-label-direction
 +--rw label-end
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 | +--rw generic?
 | | rt-types:generalized-label
 +--rw direction? te-label-direction
 +--rw range-bitmap? binary
 +--rw link-protection-type? enumeration
 +--rw max-link-bandwidth
 +--rw te-bandwidth
 +--rw (technology)?
 +--:(generic)
 | +--rw generic? te-bandwidth
 +--rw max-resv-link-bandwidth
 +--rw te-bandwidth
 +--rw (technology)?
 +--:(generic)
 | +--rw generic? te-bandwidth
 +--rw unreserved-bandwidth* [priority]
 +--rw priority uint8
 +--rw te-bandwidth
 +--rw (technology)?
 +--:(generic)
 | +--rw generic? te-bandwidth
 +--rw te-default-metric? uint32
 +--rw te-delay-metric? uint32
 +--rw te-igp-metric? uint32
 +--rw te-sr-lgs
| ++--rw value* te-types:srlg
++--rw te-nsrlgs {nsrlg}?
 ++--rw id* uint32
augment /nw:networks/nw:network:
 ++--rw provider-id? te-types:te-global-id
 ++--rw client-id? te-types:te-global-id
 ++--rw te-topology-id? te-types:te-topology-id
 ++--rw te!
 ++--rw name? string
 ++--rw preference? uint8
 ++--rw optimization-criterion? identityref
 ++--rw nsrlg* [id] {nsrlg}?
 ++--rw id uint32
 ++--rw disjointness? te-types:te-path-disjointness
 ++--ro geolocation
 ++--ro altitude? int64
 ++--ro latitude? geographic-coordinate-degree
 ++--ro longitude? geographic-coordinate-degree
augment /nw:networks/nw:network/nw:node:
 ++--rw te-node-id? te-types:te-node-id
 ++--rw te!
 ++--rw te-node-template*
 -> ../../te/templates/node-template/name
 ++--rw te-node-attributes
 ++--rw admin-status? te-types:te-admin-status
 ++--rw connectivity-matrices
 ++--rw number-of-entries? uint16
 ++--rw label-restrictions
 ++--rw label-restriction* [index]
 ++--rw restriction? enumeration
 ++--rw index uint32
 ++--rw label-start
 ++--rw te-label
 ++--rw (technology)?
 ++--:(generic)
 ++--rw generic?
 rt-types:generalized-label
 ++--rw direction? te-label-direction
 ++--rw label-end
 ++--rw te-label
 ++--rw te-label
---rw path-element* [path-element-id]
 +--rw path-element-id uint32
 +--rw index? uint32
 +--rw (type)?
 ---:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id? te-types:te-node-id
 +--rw link-tp-id? te-types:te-tp-id
 +--rw hop-type? te-hop-type
 +--rw direction? te-link-direction
 ---:(as-number)
 +--rw as-number-hop
 +--rw as-number? binary
 +--rw hop-type? te-hop-type
 ---:(label)
 +--rw label-hop
 +--rw te-label
 +--rw (technology)?
 ---:(generic)
 +--rw generic? rt-types:generalized-label
 +--rw direction? te-label-direction
 +--rw protection-type? identityref
 +--rw tunnel-termination-points
 +--rw source? binary
 +--rw destination? binary
 +--rw tunnels
 +--rw sharing? boolean
 +--rw tunnel* [tunnel-name]
 +--rw tunnel-name string
 +--rw sharing? boolean
 +--rw path-constraints
 +--rw te-bandwidth
 +--rw (technology)?
 ---:(generic)
 +--rw generic? te-bandwidth
 +--rw setup-priority? uint8
 +--rw hold-priority? uint8
++-rw signaling-type? identityref
++-rw path-metric-bounds
| ++-rw path-metric-bound* [metric-type]
| ++-rw metric-type identityref
| ++-rw upper-bound? uint64
++-rw path-affinities
| ++-rw constraint* [usage]
| ++-rw usage identityref
| ++-rw value? admin-groups
++-rw path-srlgs
| ++-rw usage? identityref
| ++-rw values* srlg
++-rw optimizations
| ++-rw (algorithm)??
| +++-(metric) {path-optimization-metric}??
| ++-rw optimization-metric* [metric-type]
| ++-rw metric-type
| identityref
| ++-rw weight?
| uint8
| ++-rw explicit-route-exclude-objects
| +++-rw route-object-exclude-object* [index]
| ++-rw index uint32
| ++-rw (type)??
| +++-(num-unnum-hop)
| ++-rw num-unnum-hop
| ++-rw node-id?
| | te-types:te-node-id
| ++-rw link-tp-id?
| | te-types:te-tp-id
| ++-rw hop-type?
| | te-hop-type
| ++-rw direction?
| | te-link-direction
| +++-(as-number)
| ++-rw as-number-hop
| ++-rw as-number? binary
| ++-rw hop-type?
| | te-hop-type
| +++-(label)
+--rw generic?
 rt-types:generalized-label

+--rw direction?
 te-label-direction

+--rw label-end

+--rw te-label

+--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label

+--rw direction?
 te-label-direction

+--rw range-bitmap?
 binary

+--rw is-allowed?
 boolean

+--rw underlay {te-topology-hierarchy}?
 +--rw enabled?
 boolean

+--rw primary-path

+--rw network-ref?
 -> /nw:networks/network/network-id

+--rw path-element* [path-element-id]

 +--rw path-element-id
 uint32

 +--rw index?
 uint32

 +--rw (type)?
 +--:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id?
 te-types:te-node-id

 +--rw link-tp-id?
 te-types:te-tp-id

 +--rw hop-type?
 te-hop-type

 +--rw direction?
 te-link-direction

 +--:(as-number)
 +--rw as-number-hop
 +--rw as-number?
 binary

 +--rw hop-type?
 te-hop-type

 +--:(label)
 +--rw label-hop

 +--rw te-label
---ro (type)?
 ---:(num-unnum-hop)
 ---ro num-unnum-hop
 ---ro node-id?
 | te-types:te-node-id
 ---ro link-tp-id?
 | te-types:te-tp-id
 ---ro hop-type? te-hop-type
 ---ro direction? te-link-direction
 ---:(as-number)
 ---ro as-number-hop
 | ---ro as-number? binary
 | ---ro hop-type? te-hop-type
 ---:(label)
 ---ro label-hop
 ---ro te-label
 ---ro (technology)?
 ---:(generic)
 | ---ro generic?
 | rt-
types:generalized-label
 ---ro direction? te-label-direction
 ---rw domain-id? uint32
 ---rw is-abstract? empty
 ---rw name? string
 ---rw signaling-address* inet:ip-address
 ---rw underlay-topology {te-topology-hierarchy}?
 ---ro oper-status? te-types:te-oper-status
 ---ro geolocation
 ---ro altitude? int64
 ---ro latitude? geographic-coordinate-degree
 ---ro longitude? geographic-coordinate-degree
 ---ro is-multi-access-dr? empty
 ---ro information-source? te-info-source
 ---ro information-source-state
 | ---ro credibility-preference? uint16
 | ---ro logical-network-element? string
 | ---ro network-instance? string
++-ro topology
 +--ro node-ref? leafref
++-ro information-source-entry* [information-source]
 +--ro information-source te-info-source
 +--ro information-source-state
 +--ro credibility-preference? uint16
 +--ro logical-network-element? string
 +--ro network-instance? string
 +--ro topology
 +--ro node-ref? leafref
 +--ro network-ref?
 -> /nw:networks/network/network-id
++-ro connectivity-matrices
 +--ro number-of-entries? uint16
 ++-ro label-restrictions
 +--ro label-restriction* [index]
 +--ro restriction? enumeration
 +--ro index uint32
 +--ro label-start
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 rt-types:generalized-label
 +--ro direction? te-label-direction
 +--ro label-end
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 rt-types:generalized-label
 +--ro direction? te-label-direction
 +--ro range-bitmap? binary
 +--ro is-allowed? boolean
 +--ro underlay {te-topology-hierarchy}?
 +--ro enabled? boolean
 +--ro primary-path
 +--ro network-ref?
 -> /nw:networks/network/network-id
 +--ro path-element* [path-element-id]
++-ro path-element-id uint32
++-ro index? uint32
++-ro (type)?
 ++-:(num-unnun-hop)
 ++-ro num-unnun-hop
 ++-ro node-id?
 +--ro te-types:te-node-id
 ++-ro link-tp-id? te-types:te-tp-id
 ++-ro hop-type? te-hop-type
 ++-ro direction? te-link-direction
 ++-:(as-number)
 ++-ro as-number-hop
 ++-ro as-number? binary
 ++-ro hop-type? te-hop-type
 ++-:(label)
 ++-ro label-hop
 ++-ro te-label
 ++-ro (technology)?
 ++-:(generic)
 ++-ro generic?
 rt-types:generalized-
 label
 ++-ro direction?
 te-label-direction
++-ro backup-path* [index]
 ++-ro index uint32
 ++-ro network-ref?
 -> /nw:networks/network/network-id
++-ro path-element* [path-element-id]
 ++-ro path-element-id uint32
 ++-ro index? uint32
 ++-ro (type)?
 ++-:(num-unnun-hop)
 ++-ro num-unnun-hop
 ++-ro node-id?
 +--ro te-types:te-node-id
 ++-ro link-tp-id? te-types:te-tp-id
 ++-ro hop-type? te-hop-type
 ++-ro direction? te-link-direction
 ++-:(as-number)
 ++-ro as-number-hop
Internet-Draft YANG - TE Topology June 2018

Liu, et al Expires December 27, 2018 [Page 120]
++-ro route-object-include-object*
 [index]
 +-ro index uint32
 +-ro (type)?
 +-:(num-unnum-hop)
 +-ro num-unnum-hop
 +-ro node-id?
 | te-types:te-node-id
 +-ro link-tp-id?
 | te-types:te-tp-id
 +-ro hop-type?
 | te-hop-type
 +-ro direction?
 te-link-direction
 +-:(as-number)
 +-ro as-number-hop
 +-ro as-number? binary
 +-ro hop-type?
 | te-hop-type
 +-:(label)
 +-ro label-hop
 +-ro te-label
 +-ro (technology)?
 +-::(generic)
 +-ro generic?
 te-label-direction
 +-ro tiebreakers
 +-ro tiebreaker* [tiebreaker-type]
 +-ro tiebreaker-type identityref
 +-::(objective-function)
 {path-optimization-objective-function)?
 +-ro objective-function
 +-ro objective-function-type? identityref
 +-ro path-properties
 +-ro path-metric* [metric-type]
 +-ro metric-type identityref
 +-ro accumulative-value? uint64
 +-ro path-affinities
label
 +--ro direction?
 te-label-direction
 +--ro label-end
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 rt-types:generalized-label
 +--ro range-bitmap?
 binary
 +--ro to
 +--ro tp-ref?
 leafref
 +--ro label-restrictions
 +--ro label-restriction* [index]
 +--ro restriction?
 enumeration
 +--ro index
 uint32
 +--ro label-start
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 rt-types:generalized-label
label
 +--ro direction?
 te-label-direction
 +--ro label-end
 +--ro te-label
 +--ro (technology)?
 +--:(generic)
 +--ro generic?
 rt-types:generalized-label
| +--ro range-bitmap? binary
| +--ro is-allowed? boolean
| +--ro underlay (te-topology-hierarchy)?
| +--ro enabled? boolean
| +--ro primary-path
| +--ro network-ref?
| -> /nw:networks/network/network-id
| +--ro path-element* [path-element-id]
| +--ro path-element-id uint32
| +--ro index? uint32
| +--ro (type)?
| +--:(num-unnum-hop)
| +--ro num-unnum-hop
| +--ro node-id?
| +-- te-types:te-node-id
| +--ro link-tp-id?
| +-- te-types:te-tp-id
| +--ro hop-type? te-hop-type
| +--ro direction?
| +-- te-link-direction
| +--:(as-number)
| +-- ro as-number-hop
| +-- ro as-number? binary
| +-- ro hop-type? te-hop-type
| +--:(label)
| +-- ro label-hop
| +-- ro te-label
| +--ro (technology)?
| +--:(generic)
| +-- ro generic?
| rt-types:generalized-label
| +--ro direction?
| +-- te-label-direction
| +-- ro backup-path* [index]
| +-- ro index uint32
| +--ro network-ref?
| -> /nw:networks/network/network-id
| +--ro path-element* [path-element-id]
| +--ro path-element-id uint32
| +--ro index? uint32
---ro (type)?
 ---:(num-unnum-hop)
 ---ro num-unnum-hop
 ---ro node-id?
 | te-types:te-node-id
 ---ro link-tp-id?
 | te-types:te-tp-id
 ---ro hop-type? te-hop-type
 ---ro direction?
 te-link-direction
 ---:(as-number)
 ---ro as-number-hop
 ---ro as-number? binary
 ---ro hop-type? te-hop-type
 ---:(label)
 ---ro label-hop
 ---ro te-label
 ---ro (technology)?
 ---:(generic)
 ---ro generic?
 rt-types:generalized-label
 ---ro direction?
 te-label-direction
 ---ro protection-type? identityref
 ---ro tunnel-termination-points
 ---ro source? binary
 ---ro destination? binary
 ---ro tunnels
 ---ro sharing? boolean
 ---ro tunnel* [tunnel-name]
 ---ro tunnel-name string
 ---ro sharing? boolean
 ---ro path-constraints
 ---ro te-bandwidth
 ---ro (technology)?
 ---:(generic)
 ---ro generic? te-bandwidth
 ---ro setup-priority? uint8
 ---ro hold-priority? uint8
 ---ro signaling-type? identityref
yang - TE Topology

---ro hop-type? te-hop-type
---ro label-hop
ten:te-label?
---ro (technology)?
 --> (generic)
 ---ro generic?
 rt-
types:generalized-label
 ---ro direction?
 te-label-direction
 ---ro domain-id? uint32
 ---ro is-abstract? empty
 ---ro name? string
 ---ro signaling-address* inet:ip-address
 ---ro underlay-topology (te-topology-hierarchy)?
---ro statistics
 ---ro discontinuity-time? yang:date-and-time
---ro node
 ---ro disables? yang:counter32
 ---ro enables? yang:counter32
 ---ro maintenance-sets? yang:counter32
 ---ro maintenance-clears? yang:counter32
 ---ro modifies? yang:counter32
 ---ro connectivity-matrix-entry
 ---ro creates? yang:counter32
 ---ro deletes? yang:counter32
 ---ro disables? yang:counter32
 ---ro enables? yang:counter32
 ---ro modifies? yang:counter32
---rw tunnel-termination-point* [tunnel-tp-id]
 ---rw tunnel-tp-id binary
 ---rw admin-status?
 te-types:te-admin-status
 ---rw name? string
 ---rw switching-capability? identityref
 ---rw encoding? identityref
 ---rw inter-layer-lock-id* uint32
 ---rw protection-type? identityref
 ---rw client-layer-adaptation

Liu, et al Expires December 27, 2018 [Page 130]
---rw switching-capability*
 [switching-capability encoding]
---rw switching-capability identityref
---rw encoding identityref
---rw te-bandwidth
 ---rw (technology)?
 +=:(generic)
 ---rw generic? te-bandwidth
---rw local-link-connectivities
---rw number-of-entries? uint16
---rw label-restrictions
 ---rw label-restriction* [index]
 ---rw restriction? enumeration
 ---rw index uint32
 ---rw label-start
 ---rw te-label
 ---rw (technology)?
 +=:(generic)
 ---rw generic? rt-types:generalized-label
 ---rw direction? te-label-direction
 ---rw label-end
 ---rw te-label
 ---rw (technology)?
 +=:(generic)
 ---rw generic? rt-types:generalized-label
 ---rw direction? te-label-direction
 ---rw range-bitmap? binary
---rw is-allowed? boolean
---rw underlay {te-topology-hierarchy}?
 ---rw enabled? boolean
---rw primary-path
 ---rw network-ref?
 -> /nw:networks/network/network-id
 ---rw path-element* [path-element-id]
 ---rw path-element-id uint32
 ---rw index? uint32
 ---rw (type)?
 +=:(num-unnum-hop)
 ---rw num-unnum-hop

Liu, et al Expires December 27, 2018 [Page 131]
> label
> +++-rw direction?
> te-label-direction
> +++-rw protection-type?
> identityref
> +++-rw tunnel-termination-points
> +++-rw source? binary
> +++-rw destination? binary
> +++-rw tunnels
> +++-rw sharing? boolean
> +++-rw tunnel* [tunnel-name]
> +++-rw tunnel-name string
> +++-rw sharing? boolean
> +++-rw path-constraints
> +++-rw te-bandwidth
> +++-rw (technology)?
> +---:(generic)
> +++-rw generic? te-bandwidth
> +++-rw hold-priority? uint8
> +++-rw signaling-type? identityref
> +++-rw path-metric-bounds
> +++-rw path-metric-bound* [metric-type]
> +++-rw metric-type identityref
> +++-rw upper-bound? uint64
> +++-rw path-affinities
> +++-rw constraint* [usage]
> +++-rw usage identityref
> +++-rw value? admin-groups
> +++-rw path-srlgs
> +++-rw usage? identityref
> +++-rw values* srlg
> +++-rw optimizations
> +++-rw (algorithm)?
> +---:(metric) [path-optimization-metric]?
> +++-rw optimization-metric* [metric-type]
> +++-rw metric-type identityref
++-rw weight?
 uint8
++-rw explicit-route-exclude-objects
 +-rw route-object-exclude-object*
 [index]
 +-rw index uint32
++-rw (type)?
 +-:(num-unnum-hop)
 +-rw num-unnum-hop
 |
 +-rw node-id?
 |
 te-types:te-node-id
 +-rw link-tp-id?
 |
 te-types:te-tp-id
 +-rw hop-type?
 |
 te-hop-type
 +-rw direction?
 |
 te-link-direction
 +-:(as-number)
 +-rw as-number-hop
 +-rw hop-type?
 |
 te-hop-type
 +-:(label)
 +-rw label-hop
 +-rw te-label
 +-rw (technology)?
 +-:(generic)
 +-rw generic?
 rt-types:generalized-label
 +-rw direction?
 te-label-direction
 +-:(srlg)
 +-rw srlg
 +-rw srlg? uint32
++-rw explicit-route-include-objects
 +-rw route-object-include-object*
 [index]
 +-rw index uint32
++-rw (type)?
 +-:(num-unnum-hop)
Internet-Draft YANG - TE Topology June 2018

| +--ro values* srlg
| +--ro path-route-objects
| +--ro path-route-object* [index]
| +--ro index uint32
| +--ro (type)?
| +--:(num-unnum-hop)
| +--ro num-unnum-hop
| +--ro node-id?
| te-types:te-node-id
| +--ro link-tp-id? te-types:te-tp-id
| +--ro hop-type? te-hop-type
| +--ro direction? te-link-direction
| +--:(as-number)
| +--ro as-number-hop
| +--ro as-number? binary
| +--ro hop-type? te-hop-type
| +--:(label)
| +--ro label-hop
| +--ro te-label
| +--ro (technology)?
| +--:(generic)
| +--ro generic?
| rt-types:generalized-label
| +--ro direction?
| te-label-direction
| +--rw local-link-connectivity* [link-tp-ref]
| +--rw link-tp-ref
| -> ../../../../../nt:termination-point/tp-id
| +--rw label-restrictions
| +--rw label-restriction* [index]
| +--rw restriction? enumeration
| +--rw index uint32
| +--rw label-start
| +--rw te-label
| +--rw (technology)?
| +--:(generic)
| +--rw generic?
| rt-types:generalized-label
| +--rw direction? te-label-direction
| +--rw label-end

Liu, et al Expires December 27, 2018 [Page 136]
```yang
++-rw te-label
    +++-rw (technology)?
    |    +++-:(generic)
    |         +++-rw generic?
    |             rt-types:generalized-label
    |                 +++-rw direction? te-label-direction
    |                    +++-rw range-bitmap? binary
    |                         +++-rw is-allowed? boolean
    |                                 +++-rw underlay {te-topology-hierarchy}?
    |                                                 +++-rw enabled? boolean
    |                                                 +++-rw primary-path
    |                                                     +++-rw network-ref?
    +-- /nw:networks/network/network-id
    +++-rw path-element* [path-element-id]
    |     +++-rw path-element-id uint32
    |     +++-rw index? uint32
    |     +++-rw (type)?
    |         +++-:(num-unnum-hop)
    |             +++-rw num-unnum-hop
    |                 +++-rw node-id?
    |                     te-types:te-node-id
    |                 +++-rw link-tp-id?
    |                     te-types:te-tp-id
    |                 +++-rw hop-type? te-hop-type
    |                 +++-rw direction?
    |                     te-link-direction
    |         +++-:(as-number)
    |             +++-rw as-number-hop
    |                 +++-rw as-number? binary
    |                 +++-rw hop-type? te-hop-type
    |         +++-:(label)
    |             +++-rw label-hop
    |                 +++-rw te-label
    |                     +++-rw (technology)?
    |                         +++-:(generic)
    |                             +++-rw generic?
    |                             rt-types:generalized-label
    |                                                +++-rw direction?
    |                                                te-label-direction
    |                                               +++-rw backup-path* [index]
```

Liu, et al Expires December 27, 2018 [Page 137]
+rw index uint32
+rw network-ref?
 -> /nw:networks/network/network-id
+rw path-element* [path-element-id]
 +rw path-element-id uint32
 +rw index? uint32
 +rw (type)?
 +(num-unnum-hop)
 +rw num-unnum-hop
 +rw node-id?
 | te-types:te-node-id
 +rw link-tp-id?
 | te-types:te-tp-id
 +rw hop-type? te-hop-type
 +rw direction? te-link-direction
 +(as-number)
 +rw as-number-hop
 +rw as-number? binary
 +rw hop-type? te-hop-type
 +(label)
 +rw label-hop
 +rw te-label
 +(technology)?
 +(generic)
 +rw generic? rt-types:generalized-label
 +rw direction? te-label-direction
 +rw protection-type? identityref
 +rw tunnel-termination-points
 +rw source? binary
 +rw destination? binary
 +rw tunnels
 +rw sharing? boolean
 +rw tunnel* [tunnel-name]
 +rw tunnel-name string
 +rw sharing? boolean
 +rw path-constraints
 +rw te-bandwidth
YANG - TE Topology

---rw (technology)?
 ---:(generic)
 ---rw generic? te-bandwidth
 ---rw setup-priority? uint8
 ---rw hold-priority? uint8
 ---rw signaling-type? identityref
 ---rw path-metric-bounds
 ---rw path-metric-bound* [metric-type]
 ---rw metric-type identityref
 ---rw upper-bound? uint64
 ---rw path-afﬁnities
 ---rw constraint* [usage]
 ---rw usage identityref
 ---rw value? admin-groups
 ---rw path-srlgs
 ---rw usage? identityref
 ---rw values* srlg
 ---rw optimizations
 ---rw (algorithm)?
 ---:(metric) [path-optimization-metric]?
 ---rw optimization-metric* [metric-type]
 ---rw metric-type
 | identityref
 ---rw weight?
 | uint8
 ---rw explicit-route-exclude-objects
 ---rw route-object-exclude-object* [index]
 ---rw index uint32
 ---rw (type)?
 ---:(num-unnum-hop)
 ---rw num-unnum-hop
 ---rw node-id?
 | te-types:te-node-id
 ---rw link-tp-id?
 | te-types:te-tp-id
 ---rw hop-type?
 | te-hop-type
 ---rw direction?
 | te-link-direction
```yang
++--rw label-hop
  +--rw te-label
    +--rw (technology)?
      +--:(generic)
        +--rw generic?
          rt-

types:generalized-label
  +--rw direction?
    te-label-

direction
  +--rw tiebreakers
    +--rw tiebreaker* [tiebreaker-type]
      +--rw tiebreaker-type identityref
    +--:(objective-function)
      +--rw objective-function
        +--rw objective-function-type?
          identityref
  +--ro path-properties
    +--ro path-metric* [metric-type]
      +--ro metric-type identityref
      +--ro accumulative-value? uint64
    +--ro path-affinities
      +--ro constraint* [usage]
        +--ro usage identityref
        +--ro value? admin-groups
    +--ro path-srlgs
      +--ro usage? identityref
      +--ro values* srlg
    +--ro path-route-objects
      +--ro path-route-object* [index]
        +--ro index uint32
        +--ro (type)?
          +--:(num-unnum-hop)
            +--ro num-unnum-hop
              +--ro node-id?
                +--ro node-id identityref
              +--ro link-tp-id?
                +--ro link-tp-id identityref
              +--ro hop-type? te-hop-type
```
[node-ref tunnel-tp-ref]
 +--rw node-ref inet:uri
 +--rw tunnel-tp-ref binary
augment /nw:networks/nw:network/nt:link:
 +--rw te!
 +--rw (bundle-stack-level)?
 | +--:(bundle)
 | +--rw bundled-links
 | +--rw bundled-link* [sequence]
 | | +--rw sequence uint32
 | | +--rw src-tp-ref? leafref
 | | +--rw des-tp-ref? leafref
 | +--:(component)
 | +--rw component-links
 | +--rw component-link* [sequence]
 | | +--rw sequence uint32
 | | +--rw src-interface-ref? string
 | | +--rw des-interface-ref? string
 +--rw te-link-template*
 | -> ../../../te/templates/link-template/name
 | {template}?
 +--rw te-link-attributes
 +--rw access-type?
 | te-types:te-link-access-type
 +--rw external-domain
 | +--rw network-ref?
 | -> /nw:networks/network/network-id
 | +--rw remote-te-node-id? te-types:te-node-id
 | +--rw remote-te-link-tp-id? te-types:te-tp-id
 +--rw is-abstract? empty
 +--rw name? string
 +--rw underlay {te-topology-hierarchy}?
 | +--rw enabled? boolean
 +--rw primary-path
 | +--rw network-ref?
 | -> /nw:networks/network/network-id
 | +--rw path-element* [path-element-id]
 | +--rw path-element-id uint32
 | +--rw index? uint32
 | +--rw {type}?
 | +--:(num-unnum-hop)
YANG - TE Topology

+--rw num-unnum-hop
 +--rw node-id? te-types:te-node-id
 +--rw link-tp-id? te-types:te-tp-id
 +--rw hop-type? te-hop-type
 +--rw direction? te-link-direction

+--:(as-number)
 +--rw as-number-hop
 +--rw as-number? binary
 +--rw hop-type? te-hop-type

+--:(label)
 +--rw label-hop
 +--rw te-label
 +--rw (technology)?
 +--:(generic)
 +--rw generic?
 rt-types:generalized-label

 +--rw direction?
 te-label-direction

+--rw backup-path* [index]
 +--rw index uint32
 +--rw network-ref?
 -> /nw:networks/network/network-id
 +--rw path-element* [path-element-id]
 +--rw path-element-id uint32
 +--rw index? uint32
 +--:(num-unnum-hop)
 +--rw num-unnum-hop
 +--rw node-id? te-types:te-node-id
 +--rw link-tp-id? te-types:te-tp-id
 +--rw hop-type? te-hop-type
 +--rw direction? te-link-direction

 +--:(as-number)
 +--rw as-number-hop
 +--rw as-number? binary
 +--rw hop-type? te-hop-type

 +--:(label)
 +--rw label-hop
 +--rw te-label
 +--rw (technology)?
---:(generic)
 ---rw generic?
 rt-types:generalized-label

label
 ---rw direction?
 te-label-direction

---rw protection-type? identityref
---rw tunnel-termination-points
 ---rw source? binary
 ---rw destination? binary
---rw tunnels
 ---rw sharing? boolean
 ---rw tunnel* [tunnel-name]
 ---rw tunnel-name string
 ---rw sharing? boolean
 ---rw admin-status?
 te-types:te-admin-status
 ---rw link-index? uint64
---rw administrative-group?
 te-types:admin-groups
---rw interface-switching-capability*
 [switching-capability encoding]
 ---rw switching-capability identityref
 ---rw encoding identityref
 ---rw max-lsp-bandwidth* [priority]
 ---rw priority uint8
 ---rw te-bandwidth
 ---rw (technology)?
 ---rw generic? te-bandwidth
 ---rw generic? te-bandwidth

---rw label-restrictions
 ---rw label-restriction* [index]
 ---rw restriction? enumeration
 ---rw index uint32
 ---rw label-start
 ---rw te-label
 ---rw (technology)?
 ---rw generic?
 rt-types:generalized-label
 ---rw direction? te-label-direction
---ro information-source-entry* [information-source]
 ---ro information-source te-info-source
 ---ro information-source-state
 ---ro credibility-preference? uint16
 ---ro logical-network-element? string
 ---ro network-instance? string
 ---ro topology
 ---ro link-ref? leafref
 ---ro network-ref?
 -> /nw:networks/network/network-id
 ---ro link-index? uint64
 ---ro administrative-group?
 te-types:admin-groups
 ---ro interface-switching-capability*
 [switching-capability encoding]
 ---ro switching-capability identityref
 ---ro encoding identityref
 ---ro max-lsp-bandwidth* [priority]
 ---ro priority uint8
 ---ro te-bandwidth
 ---ro (technology)?
 ---:(generic)
 ---ro generic? te-bandwidth
 ---ro label-restrictions
 ---ro label-restriction* [index]
 ---ro restriction? enumeration
 ---ro index uint32
 ---ro label-start
 ---ro te-label
 ---ro (technology)?
 ---:(generic)
 ---ro generic?
 rt-types:generalized-label
 ---ro direction? te-label-direction
 ---ro label-end
 ---ro te-label
 ---ro (technology)?
 ---:(generic)
 ---ro generic?
 rt-types:generalized-label
| | | --- ro direction? te-label-direction
| | --- ro range-bitmap? binary
| --- ro link-protection-type? enumeration
| --- ro max-link-bandwidth
| | --- ro te-bandwidth
| | | --- ro (technology)?
| | | | --- (generic)
| | | | | --- ro generic? te-bandwidth
| --- ro max-resv-link-bandwidth
| | --- ro te-bandwidth
| | | --- ro (technology)?
| | | | --- (generic)
| | | | | --- ro generic? te-bandwidth
| --- ro unreserved-bandwidth* [priority]
| | --- ro priority uint8
| | | --- ro (technology)?
| | | | --- (generic)
| | | | | --- ro generic? te-bandwidth
| --- ro te-default-metric? uint32
| --- ro te-delay-metric? uint32
| --- ro te-igp-metric? uint32
| --- ro te-srlgs
| | --- ro value* te-types:srlg
| | --- ro te-nslrlgs (nslrg)?
| | | --- ro id* uint32
| --- ro recovery
| | --- ro restoration-status? te-types:te-recovery-status
| | --- ro protection-status? te-types:te-recovery-status
| --- ro underlay {te-topology-hierarchy}?
| | --- ro dynamic? boolean
| | --- ro committed? boolean
| --- ro statistics
| | --- ro discontinuity-time? yang:date-and-time
| | --- ro disables? yang:counter32
| | --- ro enables? yang:counter32
| | --- ro maintenance-clears? yang:counter32
| | --- ro maintenance-sets? yang:counter32
| | --- ro modifies? yang:counter32
| | --- ro downs? yang:counter32
| | --- ro ups? yang:counter32

Liu, et al Expires December 27, 2018 [Page 148]
++-ro fault-clears? yang:counter32
++-ro fault-detects? yang:counter32
++-ro protection-switches? yang:counter32
++-ro protection-reverts? yang:counter32
++-ro restoration-failures? yang:counter32
++-ro restoration-starts? yang:counter32
++-ro restoration-successes? yang:counter32
++-ro restoration-reversion-failures? yang:counter32
++-ro restoration-reversion-starts? yang:counter32
++-ro restoration-reversion-successes? yang:counter32

augment /nw:networks/nw:network/nw:node/nt:termination-point:
 ++-rw te-tp-id? te-types:te-tp-id
 ++-rw te!
 ++-rw admin-status?
 | te-types:te-admin-status
 ++-rw name? string
 ++-rw interface-switching-capability* [switching-capability encoding]
 | [switching-capability encoding]
 ++-rw switching-capability identityref
 ++-rw encoding identityref
 ++-rw max-lsp-bandwidth* [priority]
 | [priority]
 ++-rw priority uint8
 | [priority]
 ++-rw te-bandwidth
 ++-rw (technology)?
 | [technology]
 ++-rw generic? te-bandwidth
 ++-rw inter-domain-plug-id? binary
 ++-rw inter-layer-lock-id* uint32
 ++-ro oper-status?
 | te-types:te-oper-status
 ++-ro geolocation
 ++-ro altitude? int64
 ++-ro latitude? geographic-coordinate-degree
 ++-ro longitude? geographic-coordinate-degree
Appendix B. Companion YANG Model for Non-NMDA Compliant Implementations

The YANG module ietf-te-topology defined in this document is designed to be used in conjunction with implementations that support the Network Management Datastore Architecture (NMDA) defined in [RFC8342]. In order to allow implementations to use the model even in cases when NMDA is not supported, the following companion module ietf-te-topology-state is defined as a state model, which mirrors the module ietf-te-topology defined earlier in this document. However, all data nodes in the companion module are non-configurable, to represent the applied configuration or the derived operational states.

The companion module, ietf-te-topology-state, is redundant and SHOULD NOT be supported by implementations that support NMDA.

As the structure of the module ietf-te-topology-state mirrors that of the module ietf-te-topology. The YANG tree of the module ietf-te-topology-state is not depicted separately.

B.1. TE Topology State YANG Module

This module references [RFC6001], [RFC8345], and [I-D.ietf-teas-yang-te].

<CODE BEGINS> file "ietf-te-topology-state@2018-06-15.yang"
module ietf-te-topology-state {
 yang-version 1.1;
 prefix "tet-s";

 import ietf-te-types {
 prefix "te-types";
 reference "I-D.ietf-teas-yang-te: A YANG Data Model for Traffic Engineering Tunnels and Interfaces";
 }

 import ietf-te-topology {
 prefix "tet";
 }

 import ietf-network-state {

Liu, et al Expires December 27, 2018 [Page 150]
prefix "nw-s";
reference "RFC 8345: A YANG Data Model for Network Topologies";
}

import ietf-network-topology-state {
 prefix "nt-s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>
 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>
 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>
 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>
 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>
 Editor: Himanshu Shah
 <mailto:hshah@ciena.com>
 Editor: Oscar Gonzalez De Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";

description "TE topology state model";

revision "2018-06-15" {
 description "Initial revision";
 reference "RFC XXXX: YANG Data Model for TE Topologies";
 // RFC Ed.: replace XXXX with actual RFC number and remove
grouping te-node-connectivity-matrix-attributes {
 description "Termination point references of a connectivity matrix entry.";
 container from {
 description "Reference to source link termination point.";
 leaf tp-ref {
 type leafref {
 path "../../../../nt-s:termination-point/nt-s:tp-id";
 }
 description "Relative reference to a termination point.";
 }
 uses te-types:label-set-info;
 }
 container to {
 description "Reference to destination link termination point.";
 leaf tp-ref {
 type leafref {
 path "../../../../nt-s:termination-point/nt-s:tp-id";
 }
 description "Relative reference to a termination point.";
 }
 uses te-types:label-set-info;
 }
 uses tet:connectivity-matrix-entry-path-attributes;
} // te-node-connectivity-matrix-attributes

grouping te-node-tunnel-termination-point-llc-list {
 description "Local link connectivity list of a tunnel termination point on a TE node.";
 list local-link-connectivity {

key "link-tp-ref";
description
 "The termination capabilities between
tunnel-termination-point and link termination-point.
The capability information can be used to compute the tunnel path.
The Interface Adjustment Capability Descriptors (IACD)
(defined in RFC 6001) on each link-tp can be derived from
this local-link-connectivity list."
reference
 "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions
 for Multi-Layer and Multi-Region Networks (MLN/MRN).";
leaf link-tp-ref {
 type leafref {
 path "../../../nt-s:termination-point/nt-s:tp-id";
 }
 description
 "Link termination point.";
}
uses te-types:label-set-info;
uses tet:connectivity-matrix-entry-path-attributes;
} // local-link-connectivity
) // te-node-tunnel-termination-point-config
/*
 * Data nodes
 */
augment "/nw-s:networks/nw-s:network/nw-s:network-types" {
 description
 "Introduce new network type for TE topology.";
 container te-topology {
 presence "Indicates TE topology.";
 description
 "Its presence identifies the TE topology type.";
 }
}
augment "/nw-s:networks" {
 description
 "Augmentation parameters for TE topologies.";
}
uses tet:te-topologies-augment;
}

augment "/nw-s:networks/nw-s:network" {
 when "nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE topology.";
 uses tet:te-topology-augment;
}

augment "/nw-s:networks/nw-s:network/nw-s:node" {
 when "../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
 description
 "Configuration parameters for TE at node level.";
 leaf te-node-id {
 type te-types:te-node-id;
 description
 "The identifier of a node in the TE topology.
 A node is specific to a topology to which it belongs.";
 }
 container te {
 must ".../te-node-id" {
 description
 "te-node-id is mandatory.";
 }
 must "count(../nw-s:supporting-node)<=1" {
 description
 "For a node in a TE topology, there cannot be more
 than 1 supporting node. If multiple nodes are abstracted,
 the underlay-topology is used.";
 }
 presence "TE support.";
 description

 }

Liu, et al Expires December 27, 2018 [Page 154]
"Indicates TE support."
uses tet:te-node-augment;
} // te

augment "/nw-s:networks/nw-s:network/nt-s:link" {
 when ".../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with TE topology type.";
 }
 description
 "Configuration parameters for TE at link level.";
 container te {
 must "count(../nt-s:supporting-link)<=1" {
 description
 "For a link in a TE topology, there cannot be more than 1 supporting link. If one or more link paths are abstracted, the underlay is used.";
 }
 presence "TE support.";
 description
 "Indicates TE support.";
 uses tet:te-link-augment;
 } // te
}

 when ".../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with TE topology type.";
 }
 description
 "Configuration parameters for TE at termination point level.";
 uses tet:te-termination-point-augment;
}

augment "/nw-s:networks/nw-s:network/nt-s:node/" + "nt-s:termination-point" {
 when ".../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with TE topology type.";
 }
 description
 "Configuration parameters for TE at termination point level.";
 uses tet:te-termination-point-augment;
}

+ "bundle/bundled-links/bundled-link" {
 when "../../../../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with
 TE topology type.";
 }
}

description
"Augment TE link bundled link.";
leaf src-tp-ref {
 type leafref {
 path "../../../../nw-s:node[nw-s:node-id = "
 + "current()"/
 + "nt-s:source-node"]/
 + "nt-s:termination-point/nt-s:tp-id";
 require-instance true;
 }
 description
 "Reference to another TE termination point on the
 same source node.";
}
leaf des-tp-ref {
 type leafref {
 path "../../../../nw-s:node[nw-s:node-id = "
 + "current()"/
 + "nt-s:dest-node"]/
 + "nt-s:termination-point/nt-s:tp-id";
 require-instance true;
 }
 description
 "Reference to another TE termination point on the
 same destination node.";
}

augment
"/nw-s:networks/nw-s:network/nw-s:node/te/"
+ "information-source-entry/connectivity-matrices/"
+ "connectivity-matrix" {
 when "../../../../nw-s:network-types/tet-s:te-topology" {
 description
 "Augmentation parameters apply only for networks with
TE topology type.

} description
Augment TE node connectivity-matrix.
uses te-node-connectivity-matrix-attributes;

} augment
"/nw-s:networks/nw-s:network/nw-s:node/te/te-node-attributes/"
+ "connectivity-matrices/connectivity-matrix" {
when "../../../nw-s:network-types/tet-s:te-topology"
{ description
Augmentation parameters apply only for networks with
TE topology type.
}; description
Augment TE node connectivity-matrix.
uses te-node-connectivity-matrix-attributes;

} augment
"/nw-s:networks/nw-s:network/nw-s:node/te/"
+ "tunnel-termination-point/local-link-connectivities" {
when "../../../nw-s:network-types/tet-s:te-topology"
{ description
Augmentation parameters apply only for networks with
TE topology type.
}; description
Augment TE node tunnel termination point LLCs
(Local Link Connectivities).
uses te-node-tunnel-termination-point-llc-list;

} <CODE ENDS>
Appendix C. Example: YANG Model for Technology Specific Augmentations

This section provides an example YANG module to define a technology specific TE topology model for the example-topology described in Section 6.

module example-topology {
 yang-version 1.1;

 namespace "http://example.com/example-topology";
 prefix "ex-topo";

 import ietf-network {
 prefix "nw";
 }

 import ietf-network-topology {
 prefix "nt";
 }

 import ietf-te-topology {
 prefix "tet";
 }

 organization
 "Example Organization";
 contact
 "Editor: Example Author";

 description
 "This module defines a topology data model for the example technology.";

 revision 2018-06-15 {
 description
 "Initial revision.";
 reference
 "Example reference.";
 }

 /*
 * Data nodes

Liu, et al Expires December 27, 2018 [Page 158]
augment "/nw:networks/nw:network/nw:network-types/"
+ "tet:te-topology" {
 description
 "Augment network types to define example topology type.";
 container example-topology {
 presence
 "Introduce new network type for example topology.";
 description
 "Its presence identifies the example topology type.";
 }
}

augment "/nw:networks/nw:network/tet:te" {
 when "./nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment network topology.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute-1 {
 type uint8;
 description "Attribute 1 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes" {
 when "././nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 description "Augment node attributes.";
 container attributes {
 description "Attributes for example technology.";
}
leaf attribute-2 {
 type uint8;
 description "Attribute 2 for example technology."
}

 when "/nw:network-types/tet:te-topology/" + "ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type."
 }
 description "Augment node connectivity matrices.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute-3 {
 type uint8;
 description "Attribute 3 for example technology."
 }
 }
}

 when "/nw:network-types/tet:te-topology/" + "ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type."
 }
 description "Augment node connectivity matrix.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute-3 {
 type uint8;
 description "Attribute 3 for example technology."
 }
 }
}
augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:tunnel-termination-point" {
 when "../../../nw:network-types/tet:te-topology/" + "ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type.";
 }
 description "Augment tunnel termination point.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute-4 {
 type uint8;
 description "Attribute 4 for example technology.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/nt:termination-point/" + "tet:te" {
 when "../../../nw:network-types/tet:te-topology/" + "ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type.";
 }
 description "Augment link termination point.";
 container attributes {
 description "Attributes for example technology.";
 leaf attribute-5 {
 type uint8;
 description "Attribute 5 for example technology.";
 }
 }
}

when "../../../nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
description "Augment link attributes.";
container attributes {
 description "Attributes for example technology.";
 leaf attribute-6 {
 type uint8;
 description "Attribute 6 for example technology.";
 }
}
}
/
*
* Augment TE bandwidth.
*/
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
}
description "Augment TE bandwidth.";
}

 + "tet:link-template/tet:te-link-attributes/"
 + "tet:max-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 case "example" {

Liu, et al Expires December 27, 2018 [Page 162]
container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
}
}
description "Augment TE bandwidth.";
}

+ "tet:link-template/tet:te-link-attributes/
+ "tet:max-resv-link-bandwidth/
+ "tet:te-bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
}
description "Augment TE bandwidth.";
}

+ "tet:link-template/tet:te-link-attributes/
+ "tet:unreserved-bandwidth/
+ "tet:te-bandwidth/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
}
description "Augment TE bandwidth.";
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:path-constraints/tet:te-bandwidth/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 } case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
 }

 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connectivity-matrix/"
 + "tet:path-constraints/tet:te-bandwidth/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 } case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:path-constraints/tet:te-bandwidth/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}

+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/
+ "tet:path-constraints/tet:te-bandwidth/tet:technology" {
 when "../../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
}
augment "nw:networks/nw:network/nw:node/tet:te"
 + "tet:tunnel-termination-point/tet:client-layer-adaptation/"
 + "tet:switching-capability/tet:te-bandwidth/tet:technology"
when "nw:network-types/tet:te-topology/
 + "ex-topo:example-topology"
 description
 "Augmentation parameters apply only for networks with example topology type.";
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
}
description "Augment TE bandwidth.";
}

augment "nw:networks/nw:network/nw:node/tet:te"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:path-constraints/tet:te-bandwidth/tet:technology"
when "nw:network-types/tet:te-topology/
 + "ex-topo:example-topology"
 description
 "Augmentation parameters apply only for networks with example topology type.";
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 }
 }
}
description "Augment TE bandwidth.";
}
description "Bandwidth 1 for example technology."
}
}
}

description "Augment TE bandwidth."
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/
 + "tet:local-link-connectivity/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type."
 }
 case "example" {
 container example {
 description "Attributes for example technology."
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology."
 }
 }
 }

description "Augment TE bandwidth."
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" { when "../.../.../.../.../.../nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type."
 }
 case "example" {
 container example {

description "Attributes for example technology.";
leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
}
}
}
description "Augment TE bandwidth.";

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when ""/""/""/""/""/""/nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
 }
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:max-resv-link-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when ""/""/""/""/""/""/nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
 description "Augment TE bandwidth.";
 }
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
}

description "Augment TE bandwidth.";

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/
 + "tet:bandwidth/tet:technology" {
 when "../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 }

description "Augment TE bandwidth.";

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:information-source-entry/"
 + "tet:max-link-bandwidth/
 + "tet:bandwidth/tet:technology" {
 when "../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {

description
"Augmentation parameters apply only for networks with example topology type.";
}

case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
}

description "Augment TE bandwidth."
}

 + "tet:information-source-entry/
 + "tet:max-resv-link-bandwidth/
 + "tet:te-bandwidth/tet:technology" {
 when "../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology.";
 }
 }
 }
}

description "Augment TE bandwidth."
}

 + "tet:information-source-entry/
 + "tet:unreserved-bandwidth/"
+ "tet:te-bandwidth/tet:technology" {
 when "../../../nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with example topology type."
 }
 case "example" {
 container example {
 description "Attributes for example technology."
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology."
 }
 }
 }
 description "Augment TE bandwidth.";
}

augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
 + "tet:te/"
 + "tet:interface-switching-capability/tet:max-lsp-bandwidth/"
 + "tet:te-bandwidth/tet:technology" {
 when "../../../nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with example topology type."
 }
 case "example" {
 container example {
 description "Attributes for example technology."
 leaf bandwidth-1 {
 type uint32;
 description "Bandwidth 1 for example technology."
 }
 }
 }
 description "Augment TE bandwidth.";
 }
augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:link-template/tet:te-link-attributes/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }

augment "/nw:networks/tet:te/tet:templates/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/"
 + "tet:te-label/tet:technology" {
 case "example" {
container example {
 description "Attributes for example technology."
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology."
 }
}

description "Augment TE label.";

augment "/nw:networks/tet:te/tet:templates/"
+ "tet:link-template/tet:te-link-attributes/
+ "tet:label-restrictions/tet:label-restriction/tet:label-end/
+ "tet:te-label/tet:technology"
 case "example" {
 container example {
 description "Attributes for example technology."
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology."
 }
 }
 }

description "Augment TE label.";

/* Under te-node-attributes/connectivity-matrices */
+ "tet:te-node-attributes/tet:connectivity-matrices/
+ "tet:label-restrictions/tet:label-restriction/tet:label-start/
+ "tet:te-label/tet:technology"
 when "./../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology"
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {

Liu, et al Expires December 27, 2018 [Page 173]
description "Attributes for example technology.";
leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
}
}
description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology"
 when ""../.../.../.../.../.../.../nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology"
 {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
 when ""../.../.../.../.../.../.../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology"
 {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}

description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "/nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}

description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:te-node-attributes/tet:connectivity-matrices/"
+ "tet:path-properties/tet:path-route-objects/"
+ "tet:path-route-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "/nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}

description "Augment TE label.";

+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
}

case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}

description "Augment TE label.";

/* Under te-node-attributes/.../connectivity-matrix */

 + "tet:te-node-attributes/tet:connectivity-matrices/
 + "tet:connection-matrix/tet:from/
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/
 + "tet:te-label/tet:technology" {
 when ""/nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 }
 }
 "case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}

description "Augment TE label.";

Liu, et al Expires December 27, 2018 [Page 17]
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:from/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/"
 + "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }
}
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology" {
 when "../../../../../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 }
}

description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/tet:to/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology" {
 when "../../../../../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 }
}

description "Augment TE label.";
}
container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
}

description "Augment TE label.";

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../././././././././././././././nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
}

case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}

description "Augment TE label.";

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:te-node-attributes/tet:connectivity-matrices/"
 + "tet:connectivity-matrix/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../././././././././././././././nw:network-types/"
+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with example topology type.";
}

 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }

 description "Augment TE label.";
} /* Under information-source-entry/connectivity-matrices */

 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/
 + "tet:te-label/tet:technology" {
 when "../....../....../....../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with example topology type.";
 }
 }

 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }

 description "Augment TE label.";
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology" {
when "../../../../../../../nw:network-types/tet:te-topology/
 + "ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
}
}

Liu, et al Expires December 27, 2018 [Page 181]
description "Augment TE label."
}

+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "../../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
}
}
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}
 description "Augment TE label."
}

+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:path-properties/tet:path-route-objects/
+ "tet:path-route-object/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
when "../../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
}
}
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 }
 }
 }
}
 description "Augment TE label."
}
+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/tet:from/
+ "tet:label-restrictions/tet:label-restriction/tet:label-start/
+ "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

+ "tet:information-source-entry/tet:connectivity-matrices/
+ "tet:connectivity-matrix/tet:from/
+ "tet:label-restrictions/tet:label-restriction/tet:label-end/
+ "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}
example topology type;}
}
case "example" { container example {
 description "Attributes for example technology.;
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.;
 }
}
}
description "Augment TE label.;"
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/tet:to/"
+ "tet:label-restrictions/tet:label-restriction/tet:label-start/"
+ "tet:te-label/tet:technology" {
 when "../../../../../../../../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type.;"
 }
}
case "example" { container example {
 description "Attributes for example technology.;"
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.;
 }
}
}
description "Augment TE label.;"
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/tet:to/"
+ "tet:label-restrictions/tet:label-restriction/tet:label-end/"
Internet-Draft YANG - TE Topology June 2018

+ "tet:te-label/tet:technology" {
 when "/nw:network-types/tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
}

 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}

 description "Augment TE label.";
}

 + "tet:information-source-entry/tet:connectivity-matrices/
 + "tet:connectivity-matrix/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "/nw:network-types/tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
}

 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 }

 description "Augment TE label.";
}
augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../.../.../.../.../.../.../.../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}
description "Augment TE label.";

augment "/nw:networks/nw:network/nw:node/tet:te/"
+ "tet:information-source-entry/tet:connectivity-matrices/"
+ "tet:connectivity-matrix/"
+ "tet:path-properties/tet:path-route-objects/"
+ "tet:path-route-object/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../.../.../.../.../.../.../.../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 }
 }
}
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/"
 + "tet:te-label/tet:technology"
 when "./././././././././nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology"
 description "Augmentation parameters apply only for networks with
 example topology type.";
 case "example" {
 container example {
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 description "Augment TE label.";
 }

 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/"
 + "tet:te-label/tet:technology"
 when "./././././././././nw:network-types/tet:te-topology/"
 + "ex-topo:example-topology"
 description "Augmentation parameters apply only for networks with
 example topology type.";

case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}

description "Augment TE label.";
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
 when "../.../.../.../.../.../.../.../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
 when "../.../.../.../.../.../.../.../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 }

Liu, et al Expires December 27, 2018 [Page 188]
"Augmentation parameters apply only for networks with example topology type."
}

case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}

description "Augment TE label."
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology"
 when "./.}
+ "tet:tunnel-termination-point/tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:label-restrictions/tet:label-restriction/tet:label-start/
+ "tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

+ "tet:tunnel-termination-point/tet:local-link-connectivities/
+ "tet:local-link-connectivity/
+ "tet:label-restrictions/tet:label-restriction/tet:label-end/
+ "tet:te-label/tet:technology" {
 when "../../../../../../../nw:network-types/
+ "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
}
augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" { description "Augmentation parameters apply only for networks with example topology type.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:underlay/tet:backup-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" { description "Augmentation parameters apply only for networks with example topology type.";
 }
 }
}

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/"
 + "tet:local-link-connectivity/"
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" { when "../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" { description "Augmentation parameters apply only for networks with example topology type.";
 }
 }
}

Liu, et al Expires December 27, 2018 [Page 191]
leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
}

description "Augment TE label."

augment "/nw:networks/nw:network/nw:node/tet:te/"
 + "tet:tunnel-termination-point/tet:local-link-connectivities/
 + "tet:local-link-connectivity/"
 + "tet:path-properties/tet:path-route-objects/"
 + "tet:path-route-object/tet:type/"
 + "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when ""././././././././././././././././././nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 }
 description "Augment TE label."
}

/* Under te-link-attributes */

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/"
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/"
 + "tet:te-label/tet:technology" {
 when ""././././././././././././././././././nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {

description "Augmentation parameters apply only for networks with example topology type.";
}
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}
description "Augment TE label.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/
 + "tet:te-label/tet:technology" {
 when "../../../nw:network-types/"
 + "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with example topology type.";
 }
 }
case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
}
description "Augment TE label.";
}

augment "/nw:networks/nw:network/nt:link/tet:te/"
 + "tet:te-link-attributes/
 + "tet:underlay/tet:primary-path/tet:path-element/tet:type/"
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}

+ "tet:link-attributes/
+ "tet:underlay/tet:backup-path/tet:path-element/tet:type/
+ "tet:label/tet:label-hop/tet:te-label/tet:technology" {
 when "../../../../../../../../../../../nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description "Augmentation parameters apply only for networks with
 example topology type.";
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
}
/* Under te-link information-source-entry */

 + "tet:information-source-entry/
 + "tet:label-restrictions/tet:label-restriction/tet:label-start/
 + "tet:label/tet:technology" {
when "./././././././nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type."
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }
 description "Augment TE label.";
 }

 + "tet:information-source-entry/
 + "tet:label-restrictions/tet:label-restriction/tet:label-end/
 + "tet:te-label/tet:technology" {
when "./././././././nw:network-types/
 + "tet:te-topology/ex-topo:example-topology" {
 description
 "Augmentation parameters apply only for networks with
 example topology type."
 }
 case "example" {
 container example {
 description "Attributes for example technology.";
 leaf label-1 {
 type uint32;
 description "Label 1 for example technology.";
 }
 }
 }

Contributors

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Dieter Beller
Nokia
Email: Dieter.Beller@nokia.com

Carlo Perocchio
Ericsson
Email: carlo.perocchio@ericsson.com

Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com

Authors' Addresses

Xufeng Liu
Volta Networks
Email: xufeng.liu.ietf@gmail.com

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc
Email: tsaad@cisco.com

Himanshu Shah
Ciena
Email: hshah@ciena.com
This document provides a YANG data model for WSON TE tunnel.

Abstract

This document provides a YANG data model for WSON TE tunnel.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on July 8, 2018.

Lee, et al. Expires July 2018
1. Introduction

This document provides a YANG data model for WSON tunnel model. The YANG model described in this document is a WSON technology-specific Yang Tunnel model based on the information model developed in [RFC7446] and the two encoding documents [RFC7581] and [RFC7579] that developed protocol independent encodings based on [RFC7446].

This document augments the generic TE tunnel model [TE-Tunnel].

2. YANG Model (Tree Structure)

module: ietf-wson-tunnel
augment /te:te/te:tunnels/te:tunnel:
 ++rw src-client-signal? identityref
 ++rw dst-client-signal? identityref
augment /te:te/te:tunnels/te:tunnel/te:state:
 ++ro src-client-signal? identityref
 ++ro dst-client-signal? identityref
augment /te:te/te:globals/te:named-path-constraints/te:named-path-constraint:
 ++rw wavelength-assignment? identityref
augment /te:tunnels-rpc/te:input/te:tunnel-info/tepc:request-list:
 +++ src-client-signal? identityref
 +++ dst-client-signal? identityref
 +++ wavelength-assignment? identityref

3. TE Tunnel Model for WSON

<CODE BEGINS> file "ietf-wson-tunnel@2018-01-08.yang"

module ietf-wson-tunnel {
 //TODO: FIXME
 //yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-wson-tunnel";
 prefix "wson-tunnel";

 import ietf-te { prefix "te"; }
 import ietf-otn-types { prefix "otn-types"; }
 import ietf-te-wson-types { prefix "wson-types"; }
 import ietf-te-path-computation { prefix "tepc"; }

 organization
 "IETF CCAMP Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>
 WG Chair: Daniele Ceccarelli
 <mailto:daniele.ceccarelli@ericsson.com>
 WG Chair: Fatai Zhang
 <mailto:zhangfatai@huawei.com>
This module defines a model for WSON Tunnel Services.

Revision "2018-01-08" {
 description "Updates to version 4";
 reference "version 4";
}

Grouping wson-tunnel-endpoint {
 description "Parameters for OTN tunnel."

 Leaf src-client-signal {
 type identityref {
 base otn-types:client-signal;
 }
 description "Client signal at the source endpoint of the tunnel.";
 }

 Leaf dst-client-signal {
 type identityref {
 base otn-types:client-signal;
 }
 description "Client signal at the destination endpoint of the tunnel.";
 }
}

Grouping wson-path-constraints {
 description "Global named path constraints configuration grouping for WSON tunnel";

 Leaf wavelength-assignment {
 type identityref {
 base wson-types:wavelength-assignment;
 }
 }

description "Wavelength Allocation Method";
}
}

augment "/te:te/te:tunnels/te:tunnel" {
 description
 "Augment with additional parameters required for WSON tunnel."
 uses wson-tunnel-endpoint;
}

augment "/te:te/te:tunnels/te:tunnel/te:state" {
 description
 "Augment with additional parameters required for WSON tunnel."
 uses wson-tunnel-endpoint;
}

augment "/te:te/te:globals/te:named-path-constraints/" + "te:named-path-constraint" {
 description
 "Augment with additional constraints WSON tunnel."
 uses wson-path-constraints;
}

augment "/te:tunnels-rpc/te:input/te:tunnel-info/" + "tepc:request-list" {
 description
 "Augment with additional constraints WSON tunnel."
 uses wson-tunnel-endpoint;
 uses wson-path-constraints;
}
}

<CODE ENDS>

4. Security Considerations

The configuration, state, and action data defined in this document
are designed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF protocol operations and content.

A number of configuration data nodes defined in this document are writable/deletable (i.e., "config true") These data nodes may be considered sensitive or vulnerable in some network environments.

5. IANA Considerations

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

--
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--

This document registers the following YANG modules in the YANG Module Names registry [RFC7950]:

--
name: ietf-wson-tunnel
reference: RFC XXXX (TDB)
--

6. Acknowledgments

This document was prepared using 2-Word-v2.0.template.dot.
7. References

7.1. Normative References

7.2. Informative References

8. Contributors

Authors’ Addresses

Young Lee (ed.)
Huawei Technologies
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies India Pvt. Ltd.
Email: dhruv.dhody@huawei.com
Victor Lopez
Telefonica

Email: victor.lopezalvarez@telefonica.com

Daniel King
University of Lancaster

Email: d.king@lancaster.ac.uk

Bin Yeong Yoon
ETRI

Email: byyun@etri.re.kr

Ricard Vilalta
CTTC

Email: ricard.vilalta@cttc.es
Abstraction and Control of TE Networks (ACTN) Abstraction Methods

draft-lee-teas-actn-abstraction-02

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with
the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at

This Internet-Draft will expire on December 5, 2017.

Copyright Notice

Lee, et al. Expires December 5, 2017
Abstract

Abstraction and Control of Traffic Engineering (TE) Networks (ACTN) refers to the set of virtual network operations needed to orchestrate, control and manage large-scale multi-domain TE networks, so as to facilitate network programmability, automation, and efficient resource sharing.

As the ACTN architecture considers abstraction as one of the important building blocks, this document describes a few alternatives methods of abstraction for both packet and optical networks. This is an important consideration since the choice of the abstraction method impacts protocol design and the information it carries.

Table of Contents

1. Introduction...3
2. Abstraction Factors in ACTN Architecture.......................3
3. Build Method of Grey Topology..................................6
 3.1. Automatic generation of abstract topology by configuration
 3.2. On-demand generation of supplementary topology via path
 compute request/reply..6
4. Protocol/Data Model Requirements...............................8
 4.1. Packet Networks...8
 4.2. OTN Networks..8
 4.3. WSON Networks...9
5. Acknowledgements..11
6. References..11
1. Introduction

Abstraction and Control of TE Networks (ACTN) describes a method for operating a Traffic Engineered (TE) network (such as an MPLS-TE network or a layer 1 transport network) to provide connectivity and virtual network services for customers of the TE network. The services provided can be tuned to meet the requirements (such as traffic patterns, quality, and reliability) of the applications hosted by the customers. More details about ACTN can be found in Section 2.

Abstraction is defined in [RFC7926] as:

Abstraction is the process of applying policy to the available TE information within a domain, to produce selective information that represents the potential ability to connect across the domain. Thus, abstraction does not necessarily offer all possible connectivity options, but presents a general view of potential connectivity according to the policies that determine how the domain’s administrator wants to allow the domain resources to be used.

Connectivity referred to this document is TE path through a series of connected domains as used in [RFC7926].

As the ACTN architecture considers abstraction as one of the important building blocks, this document discusses a few alternatives for the methods of abstraction for both packet and optical networks. This is an important consideration since the choice of the abstraction method impacts protocol design and the information it carries.

The purpose of this document is to find a common agreement on the factors and methods of abstraction. These abstraction factors and methods may in turn impact implementations and protocol design.

2. Abstraction Factors in ACTN Architecture

This section provides abstraction factors in the ACTN architecture. [ACTN-Frame] describes the architecture model for ACTN including the entities (Customer Network Controller (CNC), Multi-domain Service

Lee, et. al. Expires December 5, 2017 [Page 3]
Coordinator (MDSC), and Physical Network Controller (PNC) and their interfaces.

The MDSC oversees the specific aspects of the different domains and builds a single abstracted end-to-end network topology in order to coordinate end-to-end path computation and path/service provisioning. In order for the MDSC to perform its coordination function, it depends on the coordination with the PNCs which are the domain-level controllers especially as to what level of domain network resource abstraction is agreed upon between the MDSC and the PNCs.

As discussed in [RFC7926], abstraction is tied with policy of the networks. For instance, per an operational policy, the PNC would not be allowed to provide any technology specific details (e.g., optical parameters for WSON) in its update. In such case, the abstraction level of the update will be in a generic nature. In order for the MDSC to get technology specific topology information from the PNC, a request/reply mechanism may be employed.

In some cases, abstraction is also tied with the controller’s capability of abstraction as abstraction involves some rules and algorithms to be applied to the actual network resource information (which is also known as network topology).

[TE-Topology] describes YANG models for TE-network abstraction. [PCEP-LS] describes PCEP Link-state mechanism that also allows for transport of abstract topology in the context of Hierarchical PCE.

There are factors that may impact the choice of abstraction and presents a number of abstraction methods. It is important to understand that abstraction depends on several factors:

- The nature of underlying domain networks: Abstraction depends on the nature of the underlying domain networks. For instance, packet networks may have different level of abstraction requirements from that of optical networks. Within optical networks, WSON may have different level of abstraction requirements than the OTN networks.

- The capability of the PNC: Abstraction depends on the capability of the PNCs. As abstraction requires hiding details of the underlying resource network resource information, the PNC capability to run some internal optimization algorithm impacts the feasibility of abstraction. Some PNC may not have the ability to abstract native topology while other PNCs may have such an ability to abstract actual topology by using sophisticated algorithms.
- Scalability factor: Abstraction is a function of scalability. If the actual network resource information is of small size, then the need for abstraction would be less than the case where the native network resource information is of large size. In some cases, abstraction may not be needed at all.

- The frequency of topology updates: The proper abstraction level may depend on the frequency of topology updates and vice versa.

- The capability/nature of the MDSC: The nature of the MDSC impacts the degree/level of abstraction. If the MDSC is not capable of handling optical parameters such as those specific to OTN/WSON, then white topology abstraction may not work well.

- The confidentiality: In some cases where the PNC would like to hide key internal topological data from the MDSC, the abstraction method should consider this aspect.

- The scope of abstraction: All of the aforementioned factors are equally applicable to both the MPI (MDSC-PNC Interface) and the CMI (CNC-MDSC Interface).

[ACTN-Framework] defined the following three levels of topology abstraction and their descriptions:

- White topology: this is a case where the PNC provides the actual network topology to the MDSC without any hiding or filtering.

- Black topology: the entire domain network is abstracted as a single virtual node (see the definition of virtual node in [RFC7926]) with the access/egress links without disclosing any node internal connectivity information.

- Grey topology: this abstraction level is between black topology and white topology from a granularity point of view. We may further differentiate from a perspective of how to abstract internal TE resources between the pairs of border nodes:

 - Grey topology type A: border nodes with a TE links between them in a full mesh fashion
 - Grey topology type B: border nodes with some internal abstracted nodes and abstracted links
3. Build Method of Grey Topology

This section discusses two different methods of building a grey topology:

. Automatic generation of abstract topology by configuration (Section 3.1)
. On-demand generation of supplementary topology via path computation request/reply (Section 3.2)

3.1. Automatic generation of abstract topology by configuration

The "Automatic generation" method is based on the abstraction/summarization of the whole domain by the PNC and its advertisement on MPI interface once the abstraction level is configured. The level of abstraction advertisement can be decided based on some PNC configuration parameters (e.g. provide the potential connectivity between any PE and any ASBR in an MPLS-TE network as described in section 3.3.1)

Note that the configuration parameters for this potential topology can include available B/W, latency, or any combination of defined parameters. How to generate such tunnel information is beyond the scope of this document. Appendix A provides one example of this method for the WSON case.

Such potential topology needs to be periodically or incrementally/asynchronously updated every time that a failure, a recovery or the setup of new VNs causes a change in the characteristics of the advertised grey topology (e.g. in our previous case if due to changes in the network is it now possible to provide connectivity between a given PE and a given ASBR with a higher delay in the update).

3.2. On-demand generation of supplementary topology via path compute request/reply

The "on-demand generation" of supplementary topology is to be distinguished from automatic generation of abstract topology. While abstract topology is generated and updated automatically by configuration as explained in Section 3.1., additional supplementary topology may be obtained by the MDSC via path compute request/reply mechanism. Starting with a black topology advertisement from the
PNCs, the MDSC may need additional information beyond the level of black topology from the PNCs. It is assumed that the black topology advertisement from PNCs would give the MDSC each domain's the border node/link information as described in Figure 2. Under this scenario, when the MDSC needs to allocate a new VN, the MDSC can issue a number of Path Computation requests as described in [ACTN-YANG] to different PNCs with constraints matching the VN request.

An example is provided in Figure 4, where the MDSC is requesting to setup a P2P VN between AP1 and AP2. The MDSC can use two different inter-domain links to get from Domain X to Domain Y, namely the one between ASBRX.1 and ASBRY.1 and the one between ASBRX.2 and ASBRY.2, but in order to choose the best end-to-end path it needs to know what domain X and Y can offer in term of connectivity and constraints between the PE nodes and the ASBR nodes.

```
(       )              (       )
-      ASBRX.1------- ASBRY.1 -
(       )              (       )
-++++-|PE1| Dom.X           | Dom.Y |PE2|-++++-

AP1 -      ASBRX.2------- ASBRY.2 -      AP2
```

Figure 4: A multi-domain networks example

A path computation request will be issued to PNC.X asking for potential connectivity between PE1 and ASBRX.1 and between PE1 and ASBRX.2 with related objective functions and TE metric constraints. A similar request will be issued to PNC.Y and the results merged together at the MDSC to be able to compute the optimal end-to-end path including the inter domain links.

The info related to the potential connectivity may be cached by the MDSC for subsequent path computation processes or discarded, but in this case the PNCs are not requested to keep the grey topology updated.
4. Protocol/Data Model Requirements

This section provides a set of requirements that may impact the way protocol/data model is designed and the information elements thereof which are carried in the protocol/data model.

It is expected that the abstraction level be negotiated between the CNC and the MDSC (i.e., the CMI) depending on the capability of the CNC. This negotiated level of abstraction on the CMI may also impact the way the MDSC and the PNCs configure and encode the abstracted topology. For example, if the CNC is capable of sophisticated technology specific operation, then this would impact the level of abstraction at the MDSC with the PNCs. On the other hand, if the CNC asks for a generic topology abstraction, then the level of abstraction at the MDSC with the PNCs can be less technology specific than the former case.

The subsequent sections provide a list of possible abstraction levels for various technology domain networks.

4.1. Packet Networks

- For grey abstraction, the type of abstraction and its parameters MUST be defined and configured/negotiated.
 - Abstraction Level 1: TE-tunnel abstraction for all (S-D) border pairs with:
 . Maximum B/W available per Priority Level
 . Minimum Latency
 - Other Level (TBD)

4.2. OTN Networks

For OTN networks, max bandwidth available may be per ODU 0/1/2/3 switching level or aggregated across all ODU switching levels (i.e., ODUj/k). Clearly, there is a trade-off between these two abstraction methods. Some OTN switches can switch any level of ODUs and in such case there is no need for ODU level abstraction.

- For grey abstraction, the type of abstraction and its parameters MUST be defined and configured/negotiated.
 - Abstraction Level 1: Per ODU Switching level (i.e., ODU type and number) TE-tunnel abstraction for all (S-D) border pairs with:...
Abstraction Level 2: Aggregated TE-tunnel abstraction for all (S-D) border pairs with:
 - Maximum B/W available per Priority Level
 - Minimum Latency

- Other Level (TBD)

4.3. WSON Networks

For WSON networks, max bandwidth available may be per lambda/frequency level (OCh) or aggregated across all lambda/frequency level. Per OCh level abstraction gives more detailed data to the MDSC at the expense of more information processing. Either OCh-level or aggregated level abstraction should factor in the RWA constraint (i.e., wavelength continuity) at the PNC level. This means the PNC should have this capability and advertise it as such. See the Appendix for this abstraction method.

- For grey abstraction, the type of abstraction MUST and its parameters be defined and configured/negotiated.

 - Abstraction Level 1: Per Lambda/Frequency level TE-tunnel abstraction for all (S-D) border pairs with:
 - Maximum B/W available per Priority Level
 - Minimum Latency

 - Abstraction Level 2: Aggregated TE-tunnel abstraction for all (S-D) border pairs with:
 - Maximum B/W available per Priority Level
 - Minimum Latency

 - Other Level (TBD)

Examples: these examples show how to compute WSON grey topology Abstraction Level 1 and Level 2. These examples illustrate that the encoding of an abstraction topology can be impacted by the configured/negotiated abstraction level in the ACTN interfaces.

This section provides how WSON grey topology abstraction levels 1 and 2 can be computed at a PNC. These examples illustrate that the
encoding of an abstraction topology can be impacted by the configured/negotiated abstraction level at the MPI.

. Abstraction Level 1: Per Lambda/Frequency level TE-tunnel abstraction for all (S-D) border pairs:

For each (S-D) border node pair,

1) The concept of a lambda plane: A lambda plane is a confined optical topology with respect to a given lambda value. If an OMS link has the wavelength of the given lambda available, it is included, otherwise excluded.

2) Calculate the maximal flow between S and D in every lambda plane. Max flow computation is restricted to each lambda plane is for OCh wavelength continuity.

3) Convert each feasible lambda plane with OCh wavelength continuity to B/W equivalent encoding; Send this per lambda level encoding for (S-D) to the MDSC;

. Abstraction Level 2: Aggregated TE-tunnel abstraction for WSON for all (S-D) border pairs

For each (S-D) border node pair,

1) The concept of a lambda plane: A lambda plane is a confined optical topology with respect to a given lambda value. If an OMS link has the wavelength of the given lambda available, it is included, otherwise excluded.

2) Calculate the maximal flow between S and D in every lambda plane. Max flow computation is restricted to each lambda plane is for OCh wavelength continuity.

3) Add up the max flow values across all lambda planes. This is the maximal number of OCh paths that can be setup between S and D at the same time.

4) Convert the max number of OCh paths to B/W equivalent encoding; Send this encoding as max B/W for (S-D) to the MDSC;
5. Acknowledgements

We thank Adrian Farrel and Italo Busi for providing useful comments and suggestions for this draft.

6. References

6.1. Informative References

7. Contributors

Contributor's Addresses

Sergio Belotti
Nokia

Email: sergio.belotti@nokia.com

Xian Zhang
Huawei

Email: zhang.xian@huawei.com
Authors’ Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277-5838

Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies

Email: dhruv.ietf@gmail.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden

Email: daniele.ceccarelli@ericsson.com

Oscar Gonzalez de Dios
Telefonica

Email: oscar.gonzalezdedios@telefonica.com
YANG models for ACTN TE Performance Monitoring Telemetry and Network Autonomics
draft-lee-teas-actn-pm-telemetry-autonomics-07

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 2, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

Abstraction and Control of TE Networks (ACTN) refers to the set of virtual network operations needed to operate, control and manage large-scale multi-domain, multi-layer and multi-vendor TE networks, so as to facilitate network programmability, automation, efficient resource sharing.

This document provides YANG data models that describe Key Performance Indicator (KPI) telemetry and network autonomies for TE-tunnels and ACTN VNs.

Table of Contents

1. Introduction...3
 1.1. Terminology...3
 1.2. Tree Structure - Legend...................................3
2. Use-Cases..4
3. Design of the Data Models......................................5
 3.1. TE KPI Telemetry Model....................................6
 3.2. ACTN TE KPI Telemetry Model...............................6
4. Notification...8
 4.1. YANG Push Subscription Examples...........................8
5. YANG Data Tree...9
6. Yang Data Model...11
 6.1. ietf-te-kpi-telemetry model..............................11
 6.2. ietf-actn-te-kpi-telemetry model.........................19
7. Security Considerations.......................................22
8. IANA Considerations...22
9. Acknowledgements..22
10. References...22
 10.1. Informative References..................................22
 10.2. Normative References.................................23
11. Contributors...24
12. Authors’ Addresses...24
1. Introduction

Abstraction and Control of TE Networks (ACTN) describes a method for operating a Traffic Engineered (TE) network (such as an MPLS-TE network or a layer 1/0 transport network) to provide connectivity and virtual network services for customers of the TE network [ACTN-Frame]. The services provided can be optimized to meet the requirements (such as traffic patterns, quality, and reliability) of the applications hosted by the customers. Data models are a representation of objects that can be configured or monitored within a system. Within the IETF, YANG [RFC6020] is the language of choice for documenting data models, and YANG models have been produced to allow configuration or modeling of a variety of network devices, protocol instances, and network services. YANG data models have been classified in [Netmod-Yang-Model-Classification] and [Service-YANG].

[ACTN-VN] describes how customers or end to end orchestrators can request and/or instantiate a generic virtual network service. [ACTN-Appliability] describes a connection between IETF YANG model classifications to ACTN interfaces. In particular, it describes the customer service model can be mapped into the CMI (CNC-MDSC Interface) of the ACTN architecture.

The YANG model on the ACTN CMI is known as customer service model in [Service-YANG]. [PCEP-Service-Aware] describes key network performance data to be considered for end-to-end path computation in TE networks. Key performance indicator is a term that describes critical performance data that may affect VN/TE service.

1.1. Terminology

1.2. Tree Structure - Legend

A simplified graphical representation of the data model is used in Section 5 of this document. The meaning of the symbols in these diagrams is defined in [RFC8342].

1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.
Table 1: Prefixes and corresponding YANG modules

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rt</td>
<td>ietf-routing-types</td>
<td>[Routing-Types]</td>
</tr>
<tr>
<td>te</td>
<td>ietf-te</td>
<td>[TE-tunnel]</td>
</tr>
<tr>
<td>te-types</td>
<td>ietf-te-types</td>
<td>[TE-Types]</td>
</tr>
<tr>
<td>te-kpi</td>
<td>ietf-te-kpi-telemetry</td>
<td>[This I-D]</td>
</tr>
<tr>
<td>vn</td>
<td>ietf-actn-vn</td>
<td>[ACTN-VN]</td>
</tr>
<tr>
<td>actn-tel</td>
<td>ietf-actn-te-kpi-telemetry</td>
<td>[This I-D]</td>
</tr>
</tbody>
</table>

2. Use-Cases

[ACTN-PERF] describes use-cases relevant to this draft. It introduces the dynamic creation, modification and optimization of services based on the performance monitoring in the Abstraction and Control of Transport Networks (ACTN) architecture. Figure 1 shows a high-level workflows for dynamic service control based on traffic monitoring.

Some of the key points from [ACTN-PERF] are as follows:

1. Network traffic monitoring is important to facilitate automatic discovery of the imbalance of network traffic, and initiate the network optimization, thus helping the network operator or the virtual network service provider to use the network more efficiently and save CAPEX/OPEX.

2. Customer services have various SLA requirements, such as service availability, latency, latency jitter, packet loss rate, BER, etc. The transport network can satisfy service availability and BER requirements by providing different protection and restoration mechanisms. However, for other performance parameters, there are no such mechanisms. In order to provide high quality services according to customer SLA, one possible solution is to measure the service SLA related performance parameters, and dynamically provision and optimize services based on the performance monitoring results.

3. Performance monitoring in a large scale network could generate a huge amount of performance information. Therefore, the appropriate way to deliver the information in CMI and MPI interfaces should be carefully considered.
3. Design of the Data Models

The YANG models developed in this document describe two models:

(i) TE KPI Telemetry Model which provides the TE-Tunnel level of performance monitoring mechanism (See Section 4 for details)

(ii) ACTN TE KPI Telemetry Model which provides the VN level of the aggregated performance monitoring mechanism (See Section 5 for details)
The models include -

(i) Performance Telemetry details as measured during the last interval, ex delay.

(ii) Scaling Intent based on with TE/VN could be scaled in/out.

[Editor’s Note - Need to decide if scaling and telemetry can be in the same model as per the current draft.]

3.1. TE KPI Telemetry Model

This module describes performance telemetry for TE-tunnel model. The telemetry data is augmented to tunnel state. This module also allows autonomic traffic engineering scaling intent configuration mechanism on the TE-tunnel level. Various conditions can be set for auto-scaling based on the telemetry data.

The TE KPI Telemetry Model augments the TE-Tunnel Model to enhance TE performance monitoring capability. This monitoring capability will facilitate proactive re-optimization and reconfiguration of TEs based on the performance monitoring data collected via the TE KPI Telemetry YANG model.

3.2. ACTN TE KPI Telemetry Model

This module describes performance telemetry for ACTN VN model. The telemetry data is augmented both at the VN Level as well as individual VN member level. This module also allows autonomic traffic engineering scaling intent configuration mechanism on the VN
level. Scale in/out criteria might be used for network autonomies in order the controller to react to a certain set of variations in monitored parameters.

Moreover, this module also provides mechanism to define aggregated telemetry parameters as a grouping of underlying VN level telemetry parameters. Grouping operation (such as maximum, mean) could be set at the time of configuration. For example, if maximum grouping operation is used for delay at the VN level, the VN telemetry data is reported as the maximum \{delay_vn_member_1, delay_vn_member_2,.. delay_vn_member_N\}. Thus, this telemetry abstraction mechanism allows the grouping of a certain common set of telemetry values under a grouping operation. This can be done at the VN-member level to suggest how the E2E telemetry be inferred from the per domain tunnel created and monitored by PNCs. One proposed example is the following:

```
+------------------------------------------------------------+
| CNC                                                        |
|                                                            |
+------------------------------------------------------------+
1.CNC sets the grouping op, and subscribes to the VN level telemetry for Delay and Utilized-bw-percentage
2. MDSC gets VN Telemetry
   /\     VN KPI TELEMETRY (VN Level)
   |     VN Utilized-bw-percentage:
   |     Minimum across VN Members
   \|/     VN Delay: Maximum across VN Members
+------------------------------------------------------------+
| MDSC                                                       |
|                                                            |
+------------------------------------------------------------+
```

The ACTN VN TE-Telemetry Model augments the basic ACTN VN model to enhance VN monitoring capability. This monitoring capability will facilitate proactive re-optimization and reconfiguration of VNs based on the performance monitoring data collected via the ACTN VN Telemetry YANG model.

```
+----------+          +--------------+
|  ACTN VN | augments |     ACTN     |
|   Model  |<--------| TE-Telemetry |
+----------+          | Model        |
```
4. Notification

This model does not define specific notifications. To enable notifications, the mechanism defined in [I-D.ietf-netconf-yang-push] and [I-D.ietf-netconf-rfc5277bis] can be used. This mechanism currently allows the user to:

- Subscribe notifications on a per client basis.
- Specify subtree filters or xpath filters so that only interested contents will be sent.
- Specify either periodic or on-demand notifications.

4.1. YANG Push Subscription Examples

Below example shows the way for a client to subscribe for the telemetry information for a particular tunnel (Tunnel1). The telemetry parameter that the client is interested in is the utilized bandwidth percentage.

```xml
<netconf:rpc netconf:message-id="101"
    xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
    <establish-subscription
        xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
        <filter netconf:type="subtree">
            <te xmlns="urn:ietf:params:xml:ns:yang:ietf-te">
                <tunnels>
                    <tunnel>
                        <name>Tunnel1</name>
                        <identifier/>
                        <state>
                            <te-telemetry
                                <utilized-
                                    percentage/>
                            </te-telemetry>
                        </state>
                    </tunnel>
                </tunnels>
            </te>
        </filter>
    </establish-subscription>
</netconf:rpc>
```
This example shows the way for a client to subscribe for the telemetry information for all VNs. The telemetry parameter that the client is interested in is one-way delay and utilized bandwidth percentage.

```xml
<netconf:rpc netconf:message-id="101"
    xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
    <establish-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
        <filter netconf:type="subtree">
            <actn-state xmlns="urn:ietf:params:xml:ns:yang:ietf-actn-vn">
                <vn>
                    <vn-list>
                        <vn-id/>
                        <vn-name/>
                            <one-way-delay/>
                            <utilized-percentage/>
                        </vn-telemetry>
                    </vn-list>
                </vn>
            </actn-state>
        </filter>
        <period>500</period>
    </establish-subscription>
</netconf:rpc>
```

5. YANG Data Tree
augment /te:te:tunnels/te:tunnel:
 +--rw te-scaling-intent
 ++--rw scale-in-intent
 | +--rw threshold-time? uint32
 | +--rw cooldown-time? uint32
 | +--rw scale-in-operation-type? scaling-criteria-operation
 | +--rw scale-out-operation-type? scaling-criteria-operation
 | +--rw scaling-condition* [performance-type]
 | +--rw performance-type identityref
 | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name
 ++--rw scale-out-intent
 | +--rw threshold-time? uint32
 | +--rw cooldown-time? uint32
 | +--rw scale-in-operation-type? scaling-criteria-operation
 | +--rw scale-out-operation-type? scaling-criteria-operation
 | +--rw scaling-condition* [performance-type]
 | +--rw performance-type identityref
 | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name
 +--ro te-telemetry
 ++--ro id? string
 ++--ro unidirectional-delay? uint32
 ++--ro unidirectional-min-delay? uint32
 ++--ro unidirectional-max-delay? uint32
 ++--ro unidirectional-delay-variation? uint32
 ++--ro unidirectional-packet-loss? decimal64
 ++--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro bidirectional-delay? uint32
 ++--ro bidirectional-min-delay? uint32
 ++--ro bidirectional-max-delay? uint32
 ++--ro bidirectional-delay-variation? uint32
 ++--ro bidirectional-packet-loss? decimal64
 ++--ro bidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro bidirectional-available-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro bidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float
 ++--ro utilized-percentage? uint8
 ++--ro te-ref? -> /te:te/tunnels/tunnel/name

module: ietf-actn-te-kpi-telemetry
augment /vn:actn/vn:vn/vn:vn-list:
 +--rw vn-scaling-intent
 ++--rw scale-in-intent
 | +--rw threshold-time? uint32
 | +--rw cooldown-time? uint32
 | +--rw scale-in-operation-type? scaling-criteria-operation
 | +--rw scale-out-operation-type? scaling-criteria-operation
 | +--rw scaling-condition* [performance-type]
 | +--rw performance-type identityref
 | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name
 ++--rw scale-out-intent
 | +--rw threshold-time? uint32
 | +--rw cooldown-time? uint32
 | +--rw scale-in-operation-type? scaling-criteria-operation
 | +--rw scale-out-operation-type? scaling-criteria-operation
 | +--rw scaling-condition* [performance-type]
 | +--rw performance-type identityref
 | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name
6. Yang Data Model

6.1. ietf-te-kpi-telemetry model
The YANG code is as follows:

```yang
<CODE BEGINS> file "ietf-te-kpi-telemetry@2018-07-02.yang"

module ietf-te-kpi-telemetry {
    prefix "te-tel";

    import ietf-te {
        prefix "te";
    }

    import ietf-te-types {
        prefix "te-types";
    }

    import ietf-routing-types {
        prefix "rt-types";
    }

    organization
        "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";

    contact
        "Editor: Young Lee <leeyoung@huawei.com>
        Editor: Dhruv Dhody <dhruv.ietf@gmail.com>
        Editor: Ricard Vilalta <ricard.vilalta@cttc.es>
        Editor: Satish Karunanithi <satish.karunanithi@gmail.com>";

    description
        "This module describes telemetry for teas tunnel model";

    revision 2018-07-02 {
        description
            "Initial revision. This YANG file defines
                the reusable base types for TE telemetry.";
        reference
            "Derived from earlier versions of base YANG files";
    }

    /*
     * Identities
     */

    identity telemetry-param-type {
        description
```
"Base identity for telemetry param types";
}

identity one-way-delay {
 base telemetry-param-type;
 description
 "To specify average Delay in one (forward) direction";
}

identity bidirectional-delay {
 base telemetry-param-type;
 description
 "To specify average Delay in both (forward and reverse) directions";
}

identity one-way-delay-variation {
 base telemetry-param-type;
 description
 "To specify average Delay Variation in one (forward) direction";
}

identity bidirectional-delay-variation {
 base telemetry-param-type;
 description
 "To specify average Delay Variation in both (forward and reverse) directions";
}

identity one-way-packet-loss {
 base telemetry-param-type;
 description
 "To specify packet loss in one (forward) direction.";
}

identity bidirectional-packet-loss {
 base telemetry-param-type;
 description
 "To specify packet loss in both (forward and reverse) directions";
}

identity utilized-bandwidth {
 base telemetry-param-type;
 description
 "To specify utilized bandwidth over the specified source and destination.";
identity utilized-percentage {
 base telemetry-param-type;
 description
 "To specify utilization percentage of the entity
 (e.g., tunnel, link, etc.)";
}
/
 * Enums
 */
typedef scaling-criteria-operation {
 type enumeration {
 enum AND {
 description
 "AND operation";
 }
 enum OR {
 description
 "OR operation";
 }
 }
 description
 "Operations to analize list of scaling criterias";
}
/
 * Groupings
 */
grouping bidirectional-telemetry-data {
 description
 "list all bidirectional telemetry data in this grouping";
 leaf bidirectional-delay {
 type uint32;
 units "microseconds";
 description
 "To specify average Delay in both (forward and reverse)
 directions during the measurement interval";
 }
 leaf bidirectional-min-delay {
 type uint32;
 units "microseconds";
 description
 "To specify minimum Delay in both (forward and reverse)
directions during the measurement interval);
}
leaf bidirectional-max-delay {
 type uint32;
 units "microseconds";
 description
 "To specify maximum Delay in both (forward and reverse)
 directions during the measurement interval";
}
leaf bidirectional-delay-variation {
 type uint32;
 units "microseconds";
 description
 "To specify average Delay Variation in both
 (forward and reverse) directions during the
 measurement interval";
}
leaf bidirectional-packet-loss {
 type decimal64 {
 fraction-digits 4;
 range "0.0000..100.0000"
 }
 units "percent";
 description
 "To specify packet loss in in both (forward and reverse)
 directions";
}
leaf bidirectional-residual-bandwidth {
 type rt-types:bandwidth-ieee-float32;
 description
 "To specify residual bandwidth over the specified source
 and destination in bytes per seconds.";
 reference
 "RFC 3471";
}
leaf bidirectional-available-bandwidth {
 type rt-types:bandwidth-ieee-float32;
 description
 "To specify available bandwidth over the specified source
 and destination in bytes per seconds.";
 reference
 "RFC 3471";
}
leaf bidirectional-utilized-bandwidth {
 type rt-types:bandwidth-ieee-float32;
description
 "To specify utilized bandwidth over the specified source and destination in bytes per seconds.";
reference
 "RFC 3471";
}
leaf utilized-percentage {
 type uint8;
 units "percentage";
 description
 "integer indicating a percentage value (0..100) for utilization";
}

grouping scaling-duration {
 description
 "Base scaling criteria durations";
 leaf threshold-time {
 type uint32;
 units "seconds";
 description
 "The duration for which the criteria must hold true";
 }
 leaf cooldown-time {
 type uint32;
 units "seconds";
 description
 "The duration after a scaling-in/scaling-out action has been triggered, for which there will be no further operation";
 }
}

grouping scaling-criteria {
 description
 "Grouping for scaling criteria";
 leaf performance-type {
 type identityref {
 base telemetry-param-type;
 }
 description
 "Reference to the tunnel level telemetry type";
 }
 leaf te-telemetry-tunnel-ref {
 type leafref {
 path "/te:te/te:tunnels/te:tunnel/te:name";
 }
 }
}

description
 "Reference to tunnel";
}
}

grouping scaling-intent {
 description
 "Basic scaling intent";
 uses scaling-duration;

 leaf scale-in-operation-type {
 type scaling-criteria-operation;
 default AND;
 description
 "Operation to be applied to check between scaling criterias to check if the scale in threshold condition has been met. Defaults to AND";
 }

 leaf scale-out-operation-type {
 type scaling-criteria-operation;
 default OR;
 description
 "Operation to be applied to check between scaling criterias to check if the scale out threshold condition has been met. Defaults to OR";
 }

 list scaling-condition {
 key "performance-type";
 description
 "Scaling conditions";
 uses scaling-criteria;
 }
}

/*
 * Augments
 */
augment "/te:te:te:tunnels/te:tunnel" {
 description
 "Augmentation parameters for config scaling-criteria TE tunnel topologies. Scale in/out criteria might be used for network autonemics in order the controller to react to a certain set of monitored params.";
container te-scaling-intent {
 description "scaling intent";
}

container scale-in-intent{
 description "scale-in";
 uses scaling-intent;
}

container scale-out-intent{
 description "scale-out";
 uses scaling-intent;
}

container te-telemetry {
 config false;
 description "telemetry params";
 leaf id {
 type string;
 description "Id of telemetry param";
 }

 uses te-types:performance-metric-attributes;
 /* all unidirectional PM data is defined in this grouping */

 uses bidirectional-telemetry-data;
 /* all bidirectional PM data is defined in this grouping */

 leaf te-ref{
 type leafref{ path '/te:te/te:tunnels/te:tunnel/te:name'; }
 description "Reference to measured te tunnel";
 }
}

<CODE ENDS>
6.2. ietf-actn-te-kpi-telemetry model

The YANG code is as follows:

<CODE BEGINS> file "ietf-actn-te-kpi-telemetry@2018-07-02.yang"

module ietf-actn-te-kpi-telemetry {
 prefix "actn-tel";

 import ietf-actn-vn {
 prefix "vn";
 }

 import ietf-te {
 prefix "te";
 }

 import ietf-te-types {
 prefix "te-types";
 }

 import ietf-te-kpi-telemetry {
 prefix "te-kpi";
 }
}

organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";

contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Editor: Dhruv Dhody <dhruv.ietf@gmail.com>
 Editor: Ricard Vilalta <ricard.vilalta@cttc.es>
 Editor: Satish Karunanithi <satish.karunanithi@gmail.com>"

description
 "This module describes telemetry for actn vn model"

revision 2018-07-02 {
 description
 "Initial revision. This YANG file defines
 the ACTN VN telemetry.";
 reference
typedef grouping-operation {
 type enumeration {
 enum MINIMUM { description "Select the minimum param"; }
 enum MAXIMUM { description "Select the maximum param"; }
 enum MEAN { description "Select the MEAN of the params"; }
 enum STD_DEV { description "Select the STD_DEV of the monitored params"; }
 enum AND { description "Select the AND of the params"; }
 enum OR { description "Select the OR of the params"; }
 }
 description "Operations to analyze list of monitored params";
}

grouping vn-telemetry-param {
 description "augment of te-kpi:telemetry-param for VN specific params";

 leaf-list te-grouped-params {
 type leafref{
 path '/te:te/te:tunnels/te:tunnel/' + 'te-kpi:te-telemetry/te-kpi:id';
 }
 description "Allows the definition of a vn-telemetry param as a grouping of underlying TE params";
 }

 leaf grouping-operation {
 type grouping-operation;
 description "describes the operation to apply to te-grouped-params";
 }
}
/*
 * Augments
 */

augment "/vn:actn/vn:vn/vn:vn-list" {

description
"Augmentation parameters for state TE VN topologies.";

container vn-scaling-intent {

description
"scaling intent";

container scale-in-intent{

description
"VN scale-in";

uses te-kpi:scaling-intent;
}

container scale-out-intent{

description
"VN scale-out";

uses te-kpi:scaling-intent;
}
}

container vn-telemetry {

cfg false;

description
"VN telemetry params";

uses te-types:performance-metric-attributes;

uses te-kpi:bidirectional-telemetry-data;

leaf grouping-operation {

type grouping-operation;

description "describes the operation to apply to the VN-members";

}
}
}

/*
 * VN-member augment
 */

augment "/vn:actn/vn:vn/vn:vn-list/vn:vn-member-list" {

description
"Augmentation parameters for state TE vn member topologies.";

container vn-member-telemetry {

}
config false;
description
 "VN member telemetry params";

 uses te-types:performance-metric-attributes;
 uses te-kpi:bidirectional-telemetry-data;
 uses vn-telemetry-param;
}
10.2. Normative References

11. Contributors

Authors’ Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive Suite 173
Plano, TX 75024, USA
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technology
Leela Palace
Bangalore, Karnataka 560008
India
Email: dhruv.dhody@huawei.com

Satish Karunanithi
Huawei Technology
Leela Palace
Bangalore, Karnataka 560008
India
Email: satish.karunanithi@gmail.com
Ricard Vilalta
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA)
Av. Carl Friedrich Gauss 7
08860 - Castelldefels
Barcelona (Spain)
Email: ricard.vilalta@cttc.es

Daniel King
Lancaster University
Email: d.king@lancaster.ac.uk

Daniele Ceccarelli
Ericsson
Torshamnsgatan, 48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com
A Yang Data Model for ACTN VN Operation

draft-lee-teas-actn-vn-yang-13

Abstract

This document provides a YANG data model for the Abstraction and Control of Traffic Engineered (TE) networks (ACTN) Virtual Network Service (VNS) operation.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on November 29, 2018.

Copyright Notice

Lee, et al. Expires November 2018
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
 1.1. Terminology ... 4
2. ACTN CMI context... 4
 2.1. Type 1 VN... 4
 2.2. Type 2 VN... 5
3. High-Level Control Flows with Examples......................... 6
 3.1. Type 1 VN Illustration.................................... 6
 3.2. Type 2 VN Illustration.................................... 8
4. Justification of the ACTN VN Model on the CMI 10
 4.1. Customer view of VN...................................... 10
 4.2. Innovative Services...................................... 10
 4.2.1. VN Compute.. 10
 4.2.2. Multi-sources and Multi-destinations 11
 4.2.3. Others... 11
 4.3. Summary .. 12
5. ACTN VN YANG Model (Tree Structure)........................... 12
6. ACTN-VN YANG Code... 15
7. JSON Example.. 27
 7.1. ACTN VN JSON... 28
 7.2. TE-topology JSON... 33
8. Security Considerations....................................... 49
9. IANA Considerations... 50
10. Acknowledgments... 50
11. References .. 51
 11.1. Normative References 51
 11.2. Informative References 51
12. Contributors... 52
1. Introduction

This document provides a YANG data model for the Abstraction and Control of Traffic Engineered (TE) networks (ACTN) Virtual Network Service (VNS) operation that is going to be implemented for the Customer Network Controller (CNC)-Multi-Domain Service Coordinator (MSDC) interface (CMI).

The YANG model on the CMI is also known as customer service model in [Service-YANG]. The YANG model discussed in this document is used to operate customer-driven VNs during the VN computation, VN instantiation and its life-cycle management and operations.

The YANG model discussed in this document basically provides the following:

- Characteristics of Access Points (APs) that describe customer’s end point characteristics;

- Characteristics of Virtual Network Access Points (VNAP) that describe how an AP is partitioned for multiple VNs sharing the AP and its reference to a Link Termination Point (LTP) of the Provider Edge (PE) Node;

- Characteristics of Virtual Networks (VNs) that describe the customer’s VNs in terms of VN Members comprising a VN, multi-source and/or multi-destination characteristics of VN Member, the VN’s reference to TE-topology’s Abstract Node;

The actual VN instantiation is performed with Connectivity Matrices sub-module of TE-Topology Model [TE-Topo] which interacts with the VN YANG module presented in this draft. Once TE-topology Model is used in triggering VN instantiation over the networks, TE-tunnel [TE-tunnel] Model will inevitably interact with TE-Topology model for setting up actual tunnels and LSPs under the tunnels.

The ACTN VN operational state is included in the same tree as the configuration consistent with Network Management Datastore Architecture (NMDA) [NMDA]. The origin of the data is indicated as per the origin metadata annotation.
1.1. Terminology

Refer to [ACTN-Frame] and [RFC7926] for the key terms used in this document.

2. ACTN CMI context

The model presented in this document has the following ACTN context.

```
+-------+
|  CNC  |
+-------+
      |
      |
      VN YANG + TE-topology YANG
      +-----------------------+
            |                      |
            |                      |
            MDSC
```

Figure 1. ACTN CMI

Both ACTN VN YANG and TE-topology models are used over the CMI to establish a VN over TE networks.

2.1. Type 1 VN

As defined in [ACTN-FW], a Virtual Network is a customer view of the TE network. To recapitulate VN types from [ACTN-FW], Type 1 VN is defined as follows:

The VN can be seen as a set of edge-to-edge links (a Type 1 VN). Each link is referred to as a VN member and is formed as an end-to-end tunnel across the underlying networks. Such tunnels may be constructed by recursive slicing or abstraction of paths in the underlying networks and can encompass edge points of the customer’s network, access links, intra-domain paths, and inter-domain links.

If we were to create a VN where we have four VN-members as follows:

VN-Member 1	L1-L4
VN-Member 2	L1-L7
VN-Member 3	L2-L4
VN-Member 4	L3-L8
Where L1, L2, L3, L4, L7 and L8 correspond to a Customer End-Point, respectively.

This VN can be modeled as one abstract node representation as follows in Figure 2:

```
+---------------+
L1 ------|               |------ L4
L2 ------|     AN 1      |------ L7
L3 ------|               |------ L8
+---------------+
```

Figure 2. Abstract Node (One node topology)

Modeling a VN as one abstract node is the easiest way for customers to express their end-to-end connectivity; however, customers are not limited to express their VN only with one abstract node. In some cases, more than one abstract nodes can be employed to express their VN.

2.2. Type 2 VN

For some VN members of a VN, the customers are allowed to configure the actual path (i.e., detailed virtual nodes and virtual links) over the VN/abstract topology agreed mutually between CNC and MDSC prior to or a topology created by the MDSC as part of VN instantiation. Type 2 VN is always built on top of a Type 1 VN.

If a Type 2 VN is desired for some or all of VN members of a type 1 VN (see the example in Section 2.1), the TE-topology model can provide the following abstract topology (that consists of virtual nodes and virtual links) which is built on top of the Type 1 VN.

```
+--------------------------+
              S1               S2
              O------------------O
              \                     \```

As you see from Figure 3, the Type 1 abstract node is depicted as a Type 1 abstract topology comprising of detailed virtual nodes and virtual links.

As an example, if VN-member 1 (L1-L4) is chosen to configure its own path over Type 2 topology, it can select, say, a path that consists of the ERO \{S3,S4,S5\} based on the topology and its service requirement. This capability is enacted via TE-topology configuration by the customer.

3. High-Level Control Flows with Examples

3.1. Type 1 VN Illustration

If we were to create a VN where we have four VN-members as follows:

<table>
<thead>
<tr>
<th>VN-Member 1</th>
<th>L1-L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN-Member 2</td>
<td>L1-L7</td>
</tr>
<tr>
<td>VN-Member 3</td>
<td>L2-L4</td>
</tr>
<tr>
<td>VN-Member 4</td>
<td>L3-L8</td>
</tr>
</tbody>
</table>

Where L1, L2, L3, L4, L7 and L8 correspond to Customer End-Point, respectively.
This VN can be modeled as one abstract node representation as follows:

+-------------------+
| L1 ------ | AN 1  |------ L4 |
| L2 ------ |       |------ L7 |
| L3 ------ |       |------ L8 |
+-------------------+

If this VN is Type 1, the following diagram shows the message flow between CNC and MDSC to instantiate this VN using ACTN VN and TE-Topology Model.

CNC POST TE-topo model (with Conn. Matrix on one Abstract node)  
CNC POST the ACTN VN identifying AP, VNAP and VN-Members and maps to the TE-topo  
CNC GET the ACTN VN YANG status

POST /nw:networks/nw:network/  

HTTP 200

POST /ACTN VN

HTTP 200

GET /ACTN VN

HTTP 200 (ACTN VN with status: selected VN-members in case of multi s-d)

If there is multi-dest’n module, then MDSC selects a src or dest’n and update ACTN VN YANG
### 3.2. Type 2 VN Illustration

For some VN members, the customer may want to "configure" explicit routes over the path that connects its two end-points. Let us consider the following example.

- **VN-Member 1**: L1-L4
- **VN-Member 2**: L1-L7 (via S4 and S7)
- **VN-Member 3**: L2-L4
- **VN-Member 4**: L3-L8 (via S10)

Where the following topology is the underlay for Abstraction Node 1 (AN1).

If CNC creates the single abstract topology, the following diagram shows the message flow between CNC and MDSC to instantiate this VN using ACTN VN and TE-Topology Model.
On the other hand, if MDSC create single node topology based ACTN VN YANG posted by the CNC, the following diagram shows the message flow between CNC and MDSC to instantiate this VN using ACTN VN and TE-Topology Model.

```
| CNC | MDSC |
+-----+-----+
CNC POST ACTN VN |
Identifying AP, VNAP and VN-Members |
<table>
<thead>
<tr>
<th>POST /ACTN VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP 200</td>
</tr>
<tr>
<td><-------------</td>
</tr>
</tbody>
</table>
MDSC populates a single Abst. node topology by itself
```

Lee, et al. Expires November 2018
4. Justification of the ACTN VN Model on the CMI.

4.1. Customer view of VN

The VN-Yang model allows to define a customer view, and allows the customer to communicate using the VN constructs as described in the [ACTN-INFO]. It also allows to group the set of edge-to-edge links (i.e., VN members) under a common umbrella of VN. This allows the customer to instantiate and view the VN as one entity, making it easier for some customers to work on VN without worrying about the details of the provider based YANG models.

This is similar to the benefits of having a separate YANG model for the customer services as described in [SERVICE-YANG], which states that service models do not make any assumption of how a service is actually engineered and delivered for a customer.

4.2. Innovative Services

4.2.1. VN Compute

ACTN VN supports VN compute (pre-instantiation mode) to view the full VN as a single entity before instantiation. Achieving this via path computation or "compute only" tunnel setup does not provide the same functionality.
4.2.2. Multi-sources and Multi-destinations

In creating a virtual network, the list of sources or destinations or both may not be pre-determined by the customer. For instance, for a given source, there may be a list of multiple-destinations to which the optimal destination may be chosen depending on the network resource situations. Likewise, for a given destination, there may also be multiple-sources from which the optimal source may be chosen. In some cases, there may be a pool of multiple sources and destinations from which the optimal source-destination may be chosen. The following YANG module is shown for describing source container and destination container. The following YANG tree shows how to model multi-sources and multi-destinations.

```yang
++-rw actn
 . .
 ++-rw vn
 ++-rw vn-list* [vn-id]
 ++-rw vn-id uint32
 ++-rw vn-name? string
 ++-rw vn-topology-id? te-types:te-topology-id
 ++-rw vn-member-list* [vn-member-id]
 | ++-rw vn-member-id uint32
 | ++-rw src -> /actn/ap/access-point-list/access-po
 | | ++-rw src? -> /actn/ap/access-point-list/access-po
 | | | ++-rw src-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-
 | | | | ++-rw multi-src? boolean {multi-src-dest}?
 | | | | ++-rw dest -> /actn/ap/access-point-list/access-p
 | | | | | ++-rw dest? -> /actn/ap/access-point-list/access-p
 | | | | | | ++-rw dest-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-
 | | | | | | | ++-rw multi-dest? boolean {multi-src-dest}?
 | | | | | | | | | ++-ro oper-status? identityref
 | | | | | | | | | | ++-ro if-selected? boolean {multi-src-dest}?
 | | | | | | | | | | | ++-ro admin-status? identityref
 | | | | | | | | | | | | ++-ro oper-status? identityref
```

4.2.3. Others

The VN Yang model can be easily augmented to support the mapping of VN to the Services such as L3SM and L2SM as described in [TE-MAP].
The VN Yang model can be extended to support telemetry, performance monitoring and network autonomies as described in [ACTN-PM].

4.3. Summary

This section summarizes the innovative service features of the ACTN VN Yang.

- Maintenance of AP and VNAP along with VN.
- VN construct to group of edge-to-edge links
- VN Compute (pre-instantiate)
- Multi-Source / Multi-Destination
- Ability to support various VN and VNS Types

* VN Type 1: Customer configures the VN as a set of VN Members. No other details need to be set by customer, making for a simplified operations for the customer.

* VN Type 2: Along with VN Members, the customer could also provide an abstract topology, this topology is provided by the Abstract TE Topology Yang Model.

5. ACTN VN YANG Model (Tree Structure)

module: ietf-actn-vn
   +-rw actn
++-rw ap
  |  +--rw access-point-list* [access-point-id]
  |     +--rw access-point-id       uint32
  |     +--rw access-point-name?    string
  |     +--rw max-bandwidth?        te-types:te-bandwidth
  |     +--rw avl-bandwidth?        te-types:te-bandwidth
  |     +--rw vn-ap* [vn-ap-id]
  |        +--rw vn-ap-id         uint32
  |        +--rw vn?              -> /actn/vn/vn-list/vn-id
  |        +--rw abstract-node?   ->
  |        +--rw ltp?             te-types:te-tp-id
  |  /nw:networks/network/node/tet:te-node-id
  |     +--rw vn-list* [vn-id]
  |        +--rw vn-id           uint32
  |        +--rw vn-name?        string
  |        +--rw vn-topology-id?  te-types:te-topology-id
  |        +--rw abstract-node?  ->
  |  /nw:networks/network/node/tet:te-node-id
  |     +--rw vn-member-list* [vn-member-id]
  |        +--rw vn-member-id     uint32
  |        +--rw src
  |        |  +--rw src?            -> /actn/ap/access-point-list/access-point-id
  |        |  +--rw src-vn-ap-id?   -> /actn/ap/access-point-list/vn-ap/vn-ap-id
  |        |  +--rw multi-src?      boolean {multi-src-dest}?
  |        |  +--rw dest
  |        |  |  +--rw dest?            -> /actn/ap/access-point-list/access-point-id
  |        |  |  +--rw dest-vn-ap-id?   -> /actn/ap/access-point-list/vn-ap/vn-ap-id
  |        |  +--rw multi-dest?      boolean {multi-src-dest}?
  |        |  +--rw connetivity-matrix-id?   ->
  |        |     +--ro oper-status?     identityref
  |        |     +--ro if-selected?    boolean {multi-src-dest}?
  |        |     +--rw admin-status?   identityref
  |        |     +--ro oper-status?     identityref
  |        |     +--rw vn-level-diversity? vn-disjointness
rpcs:
  +---x vn-compute
  +---w input
    | +---w abstract-node? ->
/nw:networks/network/node/tet:te-node-id
    | +---w vn-member-list* [vn-member-id]
    |    | +---w vn-member-id uint32
    |    | +---w src
    |    |    | +---w src? -> /actn/ap/access-point-list/access-point-id
    |    |    | +---w src-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id
    |    |    | +---w multi-src? boolean {multi-src-dest}?
    |    |    | +---w dest
    |    |    |    | +---w dest? -> /actn/ap/access-point-list/access-point-id
    |    |    | +---w dest-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id
    |    |    | +---w multi-dest? boolean {multi-src-dest}?
    |    |    | +---w connectivity-matrix-id? ->
    | +---w vn-level-diversity? vn-disjointness
  +--ro output
    | +--ro vn-member-list* [vn-member-id]
    |    | +--ro vn-member-id uint32
    |    | +--ro src
    |    |    | +--ro src? -> /actn/ap/access-point-list/access-point-id
    |    |    | +--ro src-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id
    |    | +--ro multi-src? boolean {multi-src-dest}?
    |    | +--ro dest
    |    |    | +--ro dest? -> /actn/ap/access-point-list/access-point-id
    |    | +--ro dest-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id
    |    | +--ro multi-dest? boolean {multi-src-dest}?
6. ACTN-VN YANG Code

The YANG code is as follows:

```Yang
module ietf-actn-vn {
 namespace "urn:ietf:params:xml:ns:yang:ietf-actn-vn";
 prefix "vn";

 /* Import network */
 import ietf-network {
 prefix "nw";
 }

 /* Import TE generic types */
 import ietf-te-types {
 prefix "te-types";
 }

 /* Import Abstract TE Topology */
 import ietf-te-topology {
 prefix "tet";
 }

 organization "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";
 contact "Editor: Young Lee <leeyoung@huawei.com>
 : Dhruv Dhody <dhruv.ietf@gmail.com>";
 description "This module contains a YANG module for the ACTN VN. It
 describes a VN operation module that takes place in the
 context of the CNC-MDSC Interface (CMI) of the ACTN
 architecture where the CNC is the actor of a VN
```
Instantiation/modification /deletion.";
revision 2018-02-27 {
  description
    "initial version.";
  reference
    "TBD";
}
/*
 * Features
 */
feature multi-src-dest {
  description
    "Support for selection of one src or destination
     among multiple.";
}

/*identity path-metric-delay {
  base te-types:path-metric-type;
  description
    "delay path metric";
}*/
identity path-metric-delay {
  base te-types:path-metric-type;
  description
    "delay path metric";
}
identity path-metric-delay-variation {
  base te-types:path-metric-type;
  description
    "delay-variation path metric";
}
identity path-metric-loss {
  base te-types:path-metric-type;
  description
    "loss path metric";
}*/
identity vn-state-type {
  description
    "Base identity for VN state";
}
identity vn-state-up {
  base vn-state-type;
  description "VN state up";
}
identity vn-state-down {
  base vn-state-type;
  description "VN state down";
}
identity vn-admin-state-type {
description
    "Base identity for VN admin states";
}
identity vn-admin-state-up {
    base vn-admin-state-type;
    description "VN administratively state up";
}
identity vn-admin-state-down {
    base vn-admin-state-type;
    description "VN administratively state down";
}
identity vn-compute-state-type {
    description
        "Base identity for compute states";
}
identity vn-compute-state-computing {
    base vn-compute-state-type;
    description
        "State path compute in progress";
}
identity vn-compute-state-computation-ok {
    base vn-compute-state-type;
    description
        "State path compute successful";
}
identity vn-compute-state-computatione-failed {
    base vn-compute-state-type;
    description
        "State path compute failed";
}

/*
 * Groupings
 */

typedef vn-disjointness {
    type bits {
        bit node {
            position 0;
            description "node disjoint";
        }
        bit link {
            position 1;
            description "link disjoint";
        }
        bit srlg {

position 2;
    description "srlg disjoint";
}
}
description
  "type of the resource disjointness for 
  VN level applied across all VN members 
  in a VN";
}
grouping vn-ap {
    description
        "VNAP related information";
    leaf vn-ap-id {
        type uint32;
        description
            "unique identifier for the referred 
            VNAP";
    }
    leaf vn {
        type leafref {
            path "/actn/vn/vn-list/vn-id";
        }
        description
            "reference to the VN";
    }
    leaf abstract-node {
        type leafref {
            path "/nw:networks/nw:network/nw:node/" + 
            "tet:te-node-id";
        }
        description
            "a reference to the abstract node in TE 
            Topology";
    }
    leaf ltp {
        type te-types:te-tp-id;
        description
            "Reference LTP in the TE-topology";
    }
}
grouping access-point{
    description
        "AP related information";
    leaf access-point-id {

type uint32;
description
   "unique identifier for the referred access point";
}
leaf access-point-name {
   type string;
description
   "ap name";
}

leaf max-bandwidth {
   type te-types:te-bandwidth;
description
   "max bandwidth of the AP";
}
leaf avl-bandwidth {
   type te-types:te-bandwidth;
description
   "available bandwidth of the AP";
}
/*add details and any other properties of AP, not associated by a VN
  CE port, PE port etc.*/
list vn-ap {
   key vn-ap-id;
   uses vn-ap;
description
   "list of VNAP in this AP";
}
}//access-point
grouping vn-member {
   description
   "vn-member is described by this container";
leaf vn-member-id {
   type uint32;
description
   "vn-member identifier";
}
container src {
   description
   "the source of VN Member";
   leaf src {
type leafref {
    path "/actn/ap/access-point-list/access-point-id";
}
description
    "reference to source AP";
} leaf src-vn-ap-id{
    type leafref {
        path "/actn/ap/access-point-list/vn-ap/vn-ap-id";
    }
    description
        "reference to source VNAP";
} leaf multi-src {
    if-feature multi-src-dest;
    type boolean;
    description
        "Is source part of multi-source, where only one of the source is enabled";
}
} container dest {
    description
        "the destination of VN Member";
    leaf dest {
        type leafref {
            path "/actn/ap/access-point-list/access-point-id";
        }
        description
            "reference to destination AP";
    } leaf dest-vn-ap-id{
        type leafref {
            path "/actn/ap/access-point-list/vn-ap/vn-ap-id";
        }
        description
            "reference to dest VNAp";
    } leaf multi-dest {
        if-feature multi-src-dest;
        type boolean;
        description
            "Is destination part of multi-destination, where only one of the destination is enabled";
leaf connectivity-matrix-id{
    type leafref {
        path "/nw:networks/nw:network/nw:node/tet:te/
            + "tet:te-node-attributes/"
            + "tet:connectivity-matrices/"
            + "tet:connectivity-matrix/tet:id";
    }
    description
        "reference to connectivity-matrix";
}
} // vn-member

/*
grouping policy {
    description
        "policy related to vn-member-id";
    leaf local-reroute {
        type boolean;
        description
            "Policy to state if reroute can be done locally";
    }
    leaf push-allowed {
        type boolean;
        description
            "Policy to state if changes can be pushed to the customer";
    }
    leaf incremental-update {
        type boolean;
        description
            "Policy to allow only the changes to be reported";
    }
} // policy
*/
grouping vn-policy {
    description
        "policy for VN-level diversity";
    leaf vn-level-diversity {
        type vn-disjointness;
        description
            "the type of disjointness on the VN level (i.e., across all VN members)";
        
Lee, et al.
grouping metrics-op {
  description
    "metric related information";
  list metric{
    key "metric-type";
    config false;
    description
      "The list of metrics for VN";
    leaf metric-type {
      type identityref {
        base te-types:path-metric-type;
      }
      description
        "The VN metric type.";
    }
    leaf value{
      type uint32;
      description
        "The limit value";
    }
  }
}
*/

/*
grouping metrics {
  description
    "metric related information";
  list metric{
    key "metric-type";
    description
      "The list of metrics for VN";
    uses te:path-metrics-bounds_config;
    container optimize{
      description
        "optimizing constraints";
      leaf enabled{
        type boolean;
        description
          "Metric to optimize";
      }
      leaf value{
        type uint32;
      }
    }
}
*/
description
    "The computed value";
}
}
}
}*/
/*
grouping service-metric {
    description
        "service-metric";
    uses te:path-objective-function_config;
    uses metrics;
    uses te-types:common-constraints_config;
    uses te:protection-restoration$params_config;
    uses policy;
}//service-metric
*/
/*
* Configuration data nodes
*/
container actn {
    description
        "actn is described by this container";
    container ap {
        description
            "AP configurations";
        list access-point-list {
            key "access-point-id";
            description
                "access-point identifier";
            uses access-point{
                description
                    "access-point information";
            }
        }
    }
    container vn {
        description
            "VN configurations";
        list vn-list {
            key "vn-id";
            description
                "a virtual network is identified by a vn-id";
            leaf vn-id {

type uint32;
description "a unique vn identifier";
}
leaf vn-name {
    type string;
description "vn name";
}
leaf vn-topology-id{
    type te-types:te-topology-id;
description "An optional identifier to the TE Topology Model where the abstract nodes and links of the Topology can be found for Type 2 VNS";
}
leaf abstract-node {
    type leafref {
        path "/nw:networks/nw:network/nw:node/" + "tet:te-node-id";
    }
description "a reference to the abstract node in TE Topology";
}
list vn-member-list{
    key "vn-member-id";
description "List of VN-members in a VN";
uses vn-member;
/*uses metrics-op;*/
leaf oper-status {
    type identityref {
        base vn-state-type;
    }
    config false;
description "VN-member operational state.";
}
}
leaf if-selected{
    if-feature multi-src-dest;
    type boolean;
default false;
config false;
  description
  "Is the vn-member is selected among the
  multi-src/dest options";
}
/*
container multi-src-dest{
  if-feature multi-src-dest;
  config false;
  description
  "The selected VN Member when multi-src
  and/or multi-destination is enabled.";
  leaf selected-vn-member{
    type leafref {
      path "/actn/vn/vn-list/vn-member-list" + "/vn-member-id";
    }
    description
    "The selected VN Member along the set
    of source and destination configured
    with multi-source and/or multi-destination";
  }
}
/*/uses service-metric;*/
leaf admin-status {
  type identityref {
    base vn-admin-state-type;
  }
  default vn-admin-state-up;
  description "VN administrative state.";
}
leaf oper-status {
  type identityref {
    base vn-state-type;
  }
  config false;
  description "VN operational state.";
} uses vn-policy;
};//vn-list
}//vn
}//actn
/*
* Notifications - TBD

rpc vn-compute{
    description "The VN computation without actual instantiation";
    input {
        leaf abstract-node {
            type leafref {
                path "/nw:networks/nw:network/nw:node/
                    + "tet:te-node-id";
            }
            description "a reference to the abstract node in TE Topology";
        }
        list vn-member-list{
            key "vn-member-id";
            description "List of VN-members in a VN";
            uses vn-member;
        }
        uses vn-policy;
        /*uses service-metric;*/
    }
    output {
        list vn-member-list{
            key "vn-member-id";
            description "List of VN-members in a VN";
            uses vn-member;
            leaf if-selected{
                if-feature multi-src-dest;
                type boolean;
                default false;
                description "Is the vn-member is selected among the multi-src/dest options";
            }
            /*uses metrics-op;*/
            leaf compute-status {
                type identityref {
                    base vn-compute-state-type;
                }
            }
        }
    }
}
7. JSON Example

This section provides json implementation examples as to how ACTN VN YANG model and TE topology model are used together to instantiate virtual networks.

The example in this section includes following VN

- VN1 (Type 1): Which maps to the single node topology abstract1 (node D1) and consist of VN Members 104 (L1 to L4), 107 (L1 to L7), 204 (L2 to L4), 308 (L3 to L8) and 108 (L1 to L8). We also show how disjointness (node, link, srlg) is supported in the example on the global level (i.e., connectivity matrices level).
o VN2 (Type 2): Which maps to the single node topology abstract2 (node D2), this topology has an underlay topology (absolute) (see figure in section 3.2). This VN has a single VN member 105 (L1 to L5) and an underlay path (S4 and S7) has been set in the connectivity matrix of abstract2 topology;

o VN3 (Type 1): This VN has a multi-source, multi-destination feature enable for VN Member 104 (L1 to L4)/107 (L1 to L7) [multi-src] and VN Member 204 (L2 to L4)/304 (L3 to L4) [multi-dest] usecase. The selected VN-member is known via the field "if-selected" and the corresponding connectivity-matrix-id.

Note that the ACTN VN YANG model also include the AP and VNAP which shows various VN using the same AP.

7.1. ACTN VN JSON

```json
{
 "actn": {
 "ap": {
 "access-point-list": [
 {
 "access-point-id": 101,
 "access-point-name": "101",
 "vn-ap": [
 {
 "vn-ap-id": 10101,
 "vn": 1,
 "abstract-node": "D1",
 "ltp": "1-0-1"
 },
 {
 "vn-ap-id": 10102,
 "vn": 2,
 "abstract-node": "D2",
 "ltp": "1-0-1"
 },
 {
 "vn-ap-id": 10103,
 "vn": 3,
 "abstract-node": "D3",
 "ltp": "1-0-1"
 }
]
 },
 {
 "access-point-id": 202,
 "access-point-name": "202",
 "vn-ap": [
```
{  
    "vn-ap-id": 20201,
    "vn": 1,
    "abstract-node": "D1",
    "ltp": "2-0-2"
  }
},
{  
    "access-point-id": 303,
    "access-point-name": "303",
    "vn-ap": [  
        {  
            "vn-ap-id": 30301,
            "vn": 1,
            "abstract-node": "D1",
            "ltp": "3-0-3"
        },  
        {  
            "vn-ap-id": 30303,
            "vn": 3,
            "abstract-node": "D3",
            "ltp": "3-0-3"
        }
    ]
  }
},
{  
    "access-point-id": 440,
    "access-point-name": "440",
    "vn-ap": [  
        {  
            "vn-ap-id": 44001,
            "vn": 1,
            "abstract-node": "D1",
            "ltp": "4-4-0"
        }
    ]
  }
},
{  
    "access-point-id": 550,
    "access-point-name": "550",
    "vn-ap": [  
        {  
            "vn-ap-id": 55002,
            "vn": 2,
            "abstract-node": "D2",
            "ltp": "5-5-0"
        }
    ]
  }
}
"access-point-id": 770,
"access-point-name": "770",
"vn-ap": [
  {
    "vn-ap-id": 77001,
    "vn": 1,
    "abstract-node": "D1",
    "ltp": "7-7-0"
  },
  {
    "vn-ap-id": 77003,
    "vn": 3,
    "abstract-node": "D3",
    "ltp": "7-7-0"
  }
],

"access-point-id": 880,
"access-point-name": "880",
"vn-ap": [
  {
    "vn-ap-id": 88001,
    "vn": 1,
    "abstract-node": "D1",
    "ltp": "8-8-0"
  },
  {
    "vn-ap-id": 88003,
    "vn": 3,
    "abstract-node": "D3",
    "ltp": "8-8-0"
  }
]

"vn":{
  "vn-list": [
    {
      "vn-id": 1,
      "vn-name": "vn1",
      "vn-topology-id": "te-topology:abstract1",
      "abstract-node": "D1",
      "vn-member-list": [
        {
          "vn-member-id": 104,
          "vn-member-name": "member1"
        }
      ]
    }
  ]
}
"src": { 
    "src": 101,
    "src-vn-ap-id": 10101,
},
"dest": { 
    "dest": 440,
    "dest-vn-ap-id": 44001,
},
"connectivity-matrix-id": 104
},

{ "vn-member-id": 107,
  "src": { 
    "src": 101,
    "src-vn-ap-id": 10101,
  },
  "dest": { 
    "dest": 770,
    "dest-vn-ap-id": 77001,
  },
  "connectivity-matrix-id": 107
},

{ "vn-member-id": 204,
  "src": { 
    "src": 202,
    "dest-vn-ap-id": 20401,
  },
  "dest": { 
    "dest": 440,
    "dest-vn-ap-id": 44001,
  },
  "connectivity-matrix-id": 204
},

{ "vn-member-id": 308,
  "src": { 
    "src": 303,
    "src-vn-ap-id": 30301,
  },
  "dest": { 
    "dest": 880,
    "src-vn-ap-id": 88001,
  },
  "connectivity-matrix-id": 308
},

{ "vn-member-id": 108,
  "src": {


"src": 101,
"src-vn-ap-id": 10101,
},
"dest": {
  "dest": 880,
  "dest-vn-ap-id": 88001,
},
"connectivity-matrix-id": 108
}
],

"vn-id": 2,
"vn-name": "vn2",
"vn-topology-id": "te-topology:abstract2",
"abstract-node": "D2",
"vn-member-list": [
  {
    "vn-member-id": 105,
    "src": {
      "src": 101,
      "src-vn-ap-id": 10102,
    },
    "dest": {
      "dest": 550,
      "dest-vn-ap-id": 55002,
    },
    "connectivity-matrix-id": 105
  }
],

"vn-id": 3,
"vn-name": "vn3",
"vn-topology-id": "te-topology:abstract3",
"abstract-node": "D3",
"vn-member-list": [
  {
    "vn-member-id": 104,
    "src": {
      "src": 101,
    },
    "dest": {
      "dest": 440,
      "multi-dest": true
    }
  },
  {
    "vn-member-id": 107,
7.2. TE-topology JSON

```
{
 "networks": {

 }
}
```

Lee, et al.

Expires November 2018
"network": [
  {
    "network-types": {
      "te-topology": {}
    },
    "network-id": "abstract1",
    "provider-id": 201,
    "client-id": 600,
    "te-topology-id": "te-topology:abstract1",
    "node": [
      {
        "node-id": "D1",
        "te-node-id": "2.0.1.1",
        "te": {
          "te-node-attributes": {
            "domain-id": 1,
            "is-abstract": [null],
            "connectivity-matrices": {
              "is-allowed": true,
              "path-constraints": {
                "bandwidth-generic": {
                  "te-bandwidth": {
                    "generic": [
                      {
                        "generic": "0x1p10",
                      }
                    ]
                  }
                }
              }
            }
          }
        }
      }
    ],
    "disjointness": "node link srlg",
    "connectivity-matrix": [
      {
        "id": 104,
        "from": "1-0-1",
        "to": "4-4-0"
      },
      {
        "id": 107,
        "from": "1-0-1",
        "to": "7-7-0"
      },
      {
        "id": 204,
        "from": "2-0-2",
        "to": "4-4-0"
      }
    ]
  }
]
"id": 308,
"from": "3-0-3",
"to": "8-8-0"
},
{
"id": 108,
"from": "1-0-1",
"to": "8-8-0"
},
"
"termination-point": [
{
"tp-id": "1-0-1",
"te-tp-id": 10001,
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
},
{
"tp-id": "1-1-0",
"te-tp-id": 10100,
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
},
{
"tp-id": "2-0-2",
"te-tp-id": 20002,
"te": {
"interface-switching-capability": [
{
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
]
},
{
    "tp-id": "2-2-0",
    "te-tp-id": 20200,
    "te": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    }
},
{
    "tp-id": "3-0-3",
    "te-tp-id": 30003,
    "te": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    }
},
{
    "tp-id": "3-3-0",
    "te-tp-id": 30300,
    "te": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    }
},
{
    "tp-id": "4-0-4",
    "te-tp-id": 40004,
    "te": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    }
},
}
"tp-id": "6-6-0",
"te-tp-id": 60600,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "7-0-7",
"te-tp-id": 70007,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "7-7-0",
"te-tp-id": 70700,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "8-0-8",
"te-tp-id": 80008,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "8-8-0",
"te-tp-id": 80808,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
}
"te-tp-id": 80800,
"te": {
  "interface-switching-capability": [
    {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
}

"network-types": {
  "te-topology": {}  
},
"network-id": "abstract2",
"provider-id": 201,
"client-id": 600,
"te-topology-id": "te-topology:abstract2",
"node": [
  {
    "node-id": "D2",
    "te-node-id": "2.0.1.2",
    "te": {
      "te-node-attributes": {
        "domain-id": 1,
        "is-abstract": [null],
        "connectivity-matrices": {
          "is-allowed": true,
          "underlay": {
            "enabled": true
          },
          "path-constraints": {
            "bandwidth-generic": {
              "te-bandwidth": {
                "generic": [
                  "generic": "0x1p10"
                ]
              }
            }
          }
        },
        "optimizations": {
          "objective-function": {

"objective-function-type": "of-maximize-residual-bandwidth"
},
"connectivity-matrix": [
{
"id": 105,
"from": "1-0-1",
"to": "5-5-0",
"underlay": {
"enabled": true,
"primary-path": {
"network-ref": "absolute",
"path-element": [
{
"path-element-id": 1,
"index": 1,
"numbered-hop": {
"address": "4.4.4.4",
"hop-type": "STRICT"
}
},
{
"path-element-id": 2,
"index": 2,
"numbered-hop": {
"address": "7.7.7.7",
"hop-type": "STRICT"
}
}
]
}
},
"termination-point": {
"tp-id": "1-0-1",
"te-tp-id": 10001,
"te": {
"interface-switching-capability": {
"switching-capability": "switching-otn",
"encoding": "lsp-encoding-oduk"
}
}
"tp-id": "1-1-0",
"te-tp-id": 10100,
"te": {
  "interface-switching-capability": [
    { "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "2-0-2",
"te-tp-id": 20002,
"te": {
  "interface-switching-capability": [
    { "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "2-2-0",
"te-tp-id": 20200,
"te": {
  "interface-switching-capability": [
    { "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
},

"tp-id": "3-0-3",
"te-tp-id": 30003,
"te": {
  "interface-switching-capability": [
    { "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
    }
  ]
}
"tp-id": "7-7-0",
"te-tp-id": 70700,
"te": {
    "interface-switching-capability": [
        {
            "switching-capability": "switching-otn",
            "encoding": "lsp-encoding-oduk"
        }
    ]
},
{
    "tp-id": "8-0-8",
    "te-tp-id": 80008,
    "te": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    },
    "network-types": {
        "te-topology": {}
    },
    "network-id": "abstract3",
    "provider-id": 201,
    "client-id": 600,
    "te-topology-id": "te-topology:abstract3",
    "node": {
        "interface-switching-capability": [
            {
                "switching-capability": "switching-otn",
                "encoding": "lsp-encoding-oduk"
            }
        ]
    }
}
"node-id": "D3",
"te-node-id": "3.0.1.1",
"te": {
  "te-node-attributes": {
    "domain-id": 3,
    "is-abstract": [null],
    "connectivity-matrices": {
      "is-allowed": true,
      "path-constraints": {
        "bandwidth-generic": {
          "te-bandwidth": {
            "generic": {
              "generic": "0x1p10",
            }
          }
        }
      }
    }
  },
  "connectivity-matrix": [
    {
      "id": 107,
      "from": "1-0-1",
      "to": "7-7-0"
    },
    {
      "id": 308,
      "from": "3-0-3",
      "to": "8-8-0"
    }
  ],
  "termination-point": [
    {
      "tp-id": "1-0-1",
      "te-tp-id": 10001,
      "te": {
        "interface-switching-capability": {
          "switching-capability": "switching-otn",
          "encoding": "lsp-encoding-oduk"
        }
      }
    },
    {
      "tp-id": "1-1-0",
      "te": {
        "interface-switching-capability": {
          "switching-capability": "switching-otn",
          "encoding": "lsp-encoding-oduk"
        }
      }
    }
  ]
}
"te-tp-id": 10100,
"te": {
   "interface-switching-capability": [
   {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
   }
   ]
},
,"tp-id": "2-0-2",
"te-tp-id": 20002,
"te": {
   "interface-switching-capability": [
   {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
   }
   ]
},
,"tp-id": "2-2-0",
"te-tp-id": 20200,
"te": {
   "interface-switching-capability": [
   {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
   }
   ]
},
,"tp-id": "3-0-3",
"te-tp-id": 30003,
"te": {
   "interface-switching-capability": [
   {
      "switching-capability": "switching-otn",
      "encoding": "lsp-encoding-oduk"
   }
   ]
},
,"tp-id": "3-3-0",
"te-tp-id": 30300,
"te": {
  "interface-switching-capability": [
    {"switching-capability": "switching-otn",
     "encoding": "lsp-encoding-oduk"}
  ]
},

{"tp-id": "4-0-4",
 "te-tp-id": 40004,
 "te": {
   "interface-switching-capability": [
    {"switching-capability": "switching-otn",
     "encoding": "lsp-encoding-oduk"}
  ]
},

{"tp-id": "4-4-0",
 "te-tp-id": 40400,
 "te": {
   "interface-switching-capability": [
    {"switching-capability": "switching-otn",
     "encoding": "lsp-encoding-oduk"}
  ]
},

{"tp-id": "5-0-5",
 "te-tp-id": 50005,
 "te": {
   "interface-switching-capability": [
    {"switching-capability": "switching-otn",
     "encoding": "lsp-encoding-oduk"}
  ]
},

{"tp-id": "5-5-0",
 "te-tp-id": 50500,
 "te": {
"interface-switching-capability": [
  {
    "switching-capability": "switching-otn",
    "encoding": "lsp-encoding-oduk"
  }
],
{
  "tp-id": "6-0-6",
  "te-tp-id": 60006,
  "te": {
    "interface-switching-capability": [
      {
        "switching-capability": "switching-otn",
        "encoding": "lsp-encoding-oduk"
      }
    ]
  }
},
{
  "tp-id": "6-6-0",
  "te-tp-id": 60600,
  "te": {
    "interface-switching-capability": [
      {
        "switching-capability": "switching-otn",
        "encoding": "lsp-encoding-oduk"
      }
    ]
  }
},
{
  "tp-id": "7-0-7",
  "te-tp-id": 70007,
  "te": {
    "interface-switching-capability": [
      {
        "switching-capability": "switching-otn",
        "encoding": "lsp-encoding-oduk"
      }
    ]
  }
},
{
  "tp-id": "7-7-0",
  "te-tp-id": 70700,
  "te": {
    "interface-switching-capability": [
      {
        "switching-capability": "switching-otn",
        "encoding": "lsp-encoding-oduk"
      }
    ]
  }
}
8. Security Considerations

TDB

Lee, et al. 
Expires November 2018 
[Page 49]
9. IANA Considerations

TDB

10. Acknowledgments

The authors would like to thank Xufeng Liu for his helpful comments and valuable suggestions.
11. References

11.1. Normative References


11.2. Informative References


12. Contributors

Contributor’s Addresses

Haomian Zheng
Huawei Technologies
Email: zhenghaomian@huawei.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Qin Wu
Huawei Technologies
Email: bill.wu@huawei.com

Takuya Miyasaka
KDDI
Email: ta-miyasaka@kddi.com

Peter Park
KT
Email: peter.park@kt.com

Authors’ Addresses

Young Lee (ed.)
Huawei Technologies
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies
Email: dhruv.ietf@gmail.com
Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com

Igor Bryskin
Huawei
Email: Igor.Bryskin@huawei.com

Bin Yeong Yoon
ETRI
Email: byyun@etri.re.kr
Traffic Engineering and Service Mapping Yang Model

draft-lee-teas-te-service-mapping-yang-12

Abstract

This document provides a YANG data model to map customer service models (e.g., the L3VPN Service Model) to Traffic Engineering (TE) models (e.g., the TE Tunnel or the Abstraction and Control of Traffic Engineered Networks Virtual Network model). This model is referred to as TE Service Mapping Model and is applicable to the operator’s need for seamless control and management of their VPN services with TE tunnel support.

The model is principally used to allow monitoring and diagnostics of the management systems to show how the service requests are mapped onto underlying network resource and TE models.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 6, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction...................................................3
   1.1. Terminology...............................................4
   1.2. Tree diagram..............................................4
   1.3. Prefixes in Data Node Names...............................4
2. TE & Service Related Parameters................................5
   2.1. VN/Tunnel Selection Requirements..........................5
   2.2. Availability Requirement..................................6
3. YANG Modeling Approach.........................................7
   3.1. Forward Compatibility.....................................8
4. L3VPN Architecture in the ACTN Context.........................8
   4.1. Service Mapping..........................................11
   4.2. Site Mapping.............................................11
5. YANG Data Trees...............................................12
6. YANG Data Models..............................................14
1. Introduction

Data models are a representation of objects that can be configured or monitored within a system. Within the IETF, YANG [RFC6020] is the language of choice for documenting data models, and YANG models have been produced to allow configuration or modeling of a variety of network devices, protocol instances, and network services. YANG data models have been classified in [RFC8199] and [RFC8309].

Framework for Abstraction and Control of Traffic Engineered Networks (ACTN) [RFC8453] introduces an architecture to support virtual network services and connectivity services. [ACTN-VN-YANG] defines a YANG model and describes how customers or end-to-end orchestrators can request and/or instantiate a generic virtual network service. [ACTN-Applicability] describes the way IETF YANG models of different classifications can be applied to the ACTN interfaces. In particular, it describes how customer service models can be mapped into the CNC-MDSC Interface (CMI) of the ACTN architecture.

[RFC8299] provides a L3VPN service delivery YANG model for PE-based VPNs. The scope of that draft is limited to a set of domains under control of the same network operator to deliver services requiring TE tunnels.

[L2SM] provides a L2VPN service delivery YANG model for PE-based VPNs. The scope of that draft is limited to a set of domains under control of the same network operator to deliver services requiring TE tunnels.

[L1CSM] provides a L1 connectivity service delivery YANG model for PE-based VPNs. The scope of that draft is limited to a set of domains under control of the same network operator to deliver services requiring TE tunnels.

While the IP/MPLS Provisioning Network Controller (PNC) is responsible for provisioning the VPN service on the Provider Edge (PE) nodes, the Multi-Domain Service Coordinator (MDSC) can coordinate how to map the VPN services onto Traffic Engineering (TE)
tunnels. This is consistent with the two of the core functions of the MDSC specified in [RFC8453]:

- Customer mapping/translation function: This function is to map customer requests/commands into network provisioning requests that can be sent to the PNC according to the business policies that have been provisioned statically or dynamically. Specifically, it provides mapping and translation of a customer’s service request into a set of parameters that are specific to a network type and technology such that the network configuration process is made possible.

- Virtual service coordination function: This function translates customer service-related information into virtual network service operations in order to seamlessly operate virtual networks while meeting a customer’s service requirements. In the context of ACTN, service/virtual service coordination includes a number of service orchestration functions such as multi-destination load balancing, guarantees of service quality, bandwidth and throughput. It also includes notifications for service fault and performance degradation and so forth.

Section 2 describes a set of TE & service related parameters that this document addresses as new and advanced parameters that are not included in generic service models. Section 3 discusses YANG modeling approach.

1.1. Terminology

Refer to [RFC8453], [RFC7926], and [RFC8309] for the key terms used in this document.

1.2. Tree diagram

A simplified graphical representation of the data model is used in Section 5 of this this document. The meaning of the symbols in these diagrams is defined in [RFC8340].

1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.

+-------------------+-----------------+-----------------+
| Prefix | YANG module | Reference |
+-------------------+-----------------+-----------------+
2. TE & Service Related Parameters

While L1/2/3 service models [L1CSM, L2SM, L3SM] are intended to provide service-specific parameters for VPN service instances, there are a number of TE & Service related parameters that are not included in the generic service models.

Additional service parameters and policies that are not included in the aforementioned service models are addressed in the YANG models defined in this document.

2.1. VN/Tunnel Selection Requirements

In some cases, the service requirements may need addition TE tunnels to be established. This may occur when there are no suitable existing TE tunnels that can support the service requirements, or when the operator would like to dynamically create and bind tunnels to the VPN such that they are not shared by other VPNs, for example, for network slicing. The establishment of TE tunnels is subject to the network operator’s policies.

To summarize, there are three modes of VN/Tunnel selection operations to be supported as follows. Additional modes may be defined in the future.

Table 1: Prefixes and corresponding YANG modules

Note: The RFC Editor will replace XXXX with the number assigned to the RFC once this draft becomes an RFC.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG Module</th>
<th>RFC/Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsm-types</td>
<td>ietf-te-service-mapping-types</td>
<td>[RFCXXXX]</td>
</tr>
<tr>
<td>l1</td>
<td>ietf-l1csm</td>
<td>[L1CSM]</td>
</tr>
<tr>
<td>12vpn-svc</td>
<td>ietf-l2vpn-svc</td>
<td>[L2SM]</td>
</tr>
<tr>
<td>13vpn-svc</td>
<td>ietf-l3vpn-svc</td>
<td>[RFC8299]</td>
</tr>
<tr>
<td>l1-tsm</td>
<td>ietf-l1csm-te-service-mapping</td>
<td>[RFCXXXX]</td>
</tr>
<tr>
<td>12-tsm</td>
<td>ietf-l2sm-te-service-mapping</td>
<td>[RFCXXXX]</td>
</tr>
<tr>
<td>13-tsm</td>
<td>ietf-l3sm-te-service-mapping</td>
<td>[RFCXXXX]</td>
</tr>
<tr>
<td>vn</td>
<td>ietf-actn-vn</td>
<td>[ACTN-VN]</td>
</tr>
<tr>
<td>nw</td>
<td>ietf-network</td>
<td>[RFC8345]</td>
</tr>
<tr>
<td>te-types</td>
<td>ietf-te-types</td>
<td>[TE-Types]</td>
</tr>
<tr>
<td>te-topo</td>
<td>ietf-te-topology</td>
<td>[TE-Topo]</td>
</tr>
<tr>
<td>te</td>
<td>ietf-te</td>
<td>[TE-Tunnel]</td>
</tr>
</tbody>
</table>
New VN/Tunnel Binding - A customer could request a VPN service based on VN/Tunnels that are not shared with other existing or future services. This might be to meet VPN isolation requirements. Further, the YANG model described in Section 5 of this document can be used to describe the mapping between the VPN service and the ACTN VN. The VN (and TE tunnels) could be bound to the VPN and not used for any other VPN.

Under this mode, the following sub-categories can be supported:

1. Hard Isolation with deterministic characteristics: A customer could request a VPN service using a set of TE Tunnels with deterministic characteristics requirements (e.g., no latency variation) and where that set of TE Tunnels must not be shared with other VPN services and must not compete for bandwidth or other network resources with other TE Tunnels.

2. Hard Isolation: This is similar to the above case but without the deterministic characteristics requirements.

3. Soft Isolation: The customer requests a VPN service using a set of TE tunnels which can be shared with other VPN services.

VN/Tunnel Sharing - A customer could request a VPN service where new tunnels (or a VN) do not need to be created for each VPN and can be shared across multiple VPNs. Further, the mapping YANG model described in Section 5 of this document can be used to describe the mapping between the VPN service and the tunnels in use. No modification of the properties of a tunnel (or VN) is allowed in this mode: an existing tunnel can only be selected.

VN/Tunnel Modify - This mode allows the modification of the properties of the existing VN/tunnel (e.g., bandwidth).

2.2. Availability Requirement

Availability is another service requirement or intent that may influence the selection or provisioning of TE tunnels or a VN to support the requested service. Availability is a probabilistic measure of the length of time that a VPN/VN instance functions without a network failure.
The availability level will need to be translated into network specific policies such as the protection/reroute policy associated with a VN or Tunnel. The means by which this is achieved is not in the scope of this draft.

3. YANG Modeling Approach

This section provides how the TE & Service mapping parameters are supported using augmentation of the existing service models (i.e., [LiCSM], [L2SM], and [L3SM]). Figure 1 shows the scope of the Augmented LxSM Model.

```
+--------------+ +----------------------------+ +----------+
| LxSM |o-------| | | ACTN VN |
+--------------+ augment| | +----------+
| | +----------+
+--------------+ | Augmented LxSM Model | | TE-topo |
| TE & Service |------->| | +----------+
| Mapping Types| import | | | TE-tunnel|
+--------------+ | | | TE-tunnel|
+----------------------------+ reference +----------+
```

**Figure 1. Augmented LxSM Model**

The Augmented LxSM model (where x=1,2,3) augments the basic LxSM model while importing the common TE & Service related parameters (defined in Section 2) grouping information from TE & Service Mapping Types. The TE & Service Mapping Types (ietf-te-service-mapping-types) module is the repository of all common groupings imported by each augmented LxSM model. Any future service models would import this grouping file.

The role of the augmented LxSm service model is to expose the mapping relationship between service models and TE models so that VN/VPN service instantiations provided by the underlying TE networks can be viewed outside of the MDSC, for example by an operator who is diagnosing the behavior of the network. It also allows for the customers to access operational state information about how their services are instantiated with the underlying VN, TE topology or TE tunnels provided that the MDSC operator is willing to share that information. This mapping will facilitate a seamless service management operation with underlay-TE network visibility.
As seen in Figure 1, the augmented LxSM service model records a mapping between the customer service models and the ACTN VN YANG model. Thus, when the MDSC receives a service request it creates a VN that meets the customer’s service objectives with various constraints via TE-topology model [TE-topo], and this relationship is recorded by the Augmented LxSM Model. The model also supports a mapping between a service model and TE-topology or a TE-tunnel.

3.1. Forward Compatibility

The YANG module defined in this document supports three existing service models via augmenting while sharing the common TE & Service Mapping Types.

It is possible that new service models will be defined at some future time and that it will be desirable to map them to underlying TE constructs in the same way as the three existing models are augmented.

4. L3VPN Architecture in the ACTN Context

Figure 2 shows the architectural context of this document referencing the ACTN components and interfaces.
There are three main entities in the ACTN architecture and shown in Figure 2.

. CNC: The Customer Network Controller is responsible for generating service requests. In the context of an L3VPN, the CNC uses the Augmented L3SM to express the service request and communicate it to the network operator.

. MDSC: This entity is responsible for coordinating a L3VPN service request (expressed via the Augmented L3SM) with the IP/MPLS PNC and the Transport PNC. For TE services, one of the key responsibilities of the MDSC is to coordinate with both the IP PNC and the Transport PNC for the mapping of the Augmented L3VPN Service Model to the ACTN VN model. In the VN/TE-tunnel binding case, the MDSC will need to coordinate with the Transport PNC to dynamically create the TE-tunnels in the transport network as
needed. These tunnels are added as links in the IP/MPLS Layer topology. The MDSC coordinates with IP/MPLS PNC to create the TE-tunnels in the IP/MPLS layer, as part of the ACTN VN creation.

. PNC: The Provisioning Network Controller is responsible for configuring and operating the network devices. Figure 2 shows two distinct PNCs.

  o IP/MPLS PNC (PNC1): This entity is responsible for device configuration to create PE-PE L3VPN tunnels for the VPN customer and for the configuration of the L3VPN VRF on the PE nodes. Each network element would select a tunnel based on the configuration.

  o Transport PNC (PNC2): This entity is responsible for device configuration for TE tunnels in the transport networks.

There are four main interfaces shown in Figure 2.

  o CM1: The CNC-MDSC Interface is used to communicate service requests from the customer to the operator. The requests may be expressed as Augmented VPN service requests (L2SM, L3SM), as connectivity requests (L1CSM), or as virtual network requests (ACTN VN).

  o MPI: The MDSC-PNC Interface is used by the MDSC to orchestrate networks under the control of PNCs. The requests on this interface may use TE tunnel models, TE topology models, VPN network configuration models or layer one connectivity models.

  o SBI: The Southbound Interface is used by the PNC to control network devices and is out of scope for this document.

  o The TE Service Mapping Model as described in this document can be used to see the mapping between service models and VN models and TE Tunnel/Topology models. That mapping may occur in the CNC if a service request is mapped to a VN request. Or it may occur in the MDSC where a service request is mapped to a TE tunnel, TE topology, or VPN network configuration model. The TE Service Mapping Model may be read from the CNC or MDSC to understand how the mapping has been made and to see the purpose for which network resources are used.

As shown in Figure 2, the MDSC may be used recursively. For example, the CNC might map a L3SM request to a VN request that it sends to a recursive MDSC.

The high-level control flows for one example are as follows:

1. A customer asks for an L3VPN between CE1 and CE2 using the Augmented L3SM model.
2. The MDSC considers the service request and local policy to determine if it needs to create a new VN or any TE Topology, and if that is the case, ACTN VN YANG [ACTN-VN-YANG] is used to configure a new VN based on this VPN and map the VPN service to the ACTN VN. In case an existing tunnel is to be used, each device will select which tunnel to use and populate this mapping information.

3. The MDSC interacts with both the IP/MPLS PNC and the Transport PNC to create a PE-PE tunnel in the IP network mapped to a TE tunnel in the transport network by providing the inter-layer access points and tunnel requirements. The specific service information is passed to the IP/MPLS PNC for the actual VPN configuration and activation.

   a. The Transport PNC creates the corresponding TE tunnel matching with the access point and egress point.
   b. The IP/MPLS PNC maps the VPN ID with the corresponding TE tunnel ID to bind these two IDs.

4. The IP/MPLS PNC creates/updates a VRF instance for this VPN customer. This is not in the scope of this document.

4.1. Service Mapping

Augmented L3SM and L2SM can be used to request VPN service creation including the creation of sites and corresponding site network access connection between CE and PE. A VPN-ID is used to identify each VPN service ordered by the customer. The ACTN VN can be used further to establish PE-to-PE connectivity between VPN sites belonging to the same VPN service. A VN-ID is used to identify each virtual network established between VPN sites.

Once the ACTN VN has been established over the TE network (maybe a new VN, maybe modification of an existing VN, or maybe the use of an unmodified existing VN), the mapping between the VPN service and the ACTN VN service can be created.

4.2. Site Mapping

The elements in Augmented L3SM and L2SM define site location parameters and constraints such as distance and access diversity that can influence the placement of network attachment points (i.e., virtual network access points (VNAP)). To achieve this, a central directory can be set up to establish the mapping between location parameters and constraints and network attachment point location. Suppose multiple attachment points are matched, the management
system can use constraints or other local policy to select the best candidate network attachment points.

After a network attachment point is selected, the mapping between VPN site and VNAP can be established as shown in Table 1.

<table>
<thead>
<tr>
<th>Site</th>
<th>Network Access</th>
<th>Location</th>
<th>Access Diversity</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Address, Postal Code, State, City, Country Code)</td>
<td>(Constraint-Type, Group-id, Target Group-id)</td>
<td></td>
</tr>
<tr>
<td>SITE1</td>
<td>ACCESS1</td>
<td>(,,US,NewYork,)</td>
<td>(10, PE-Diverse, 10)</td>
<td>PE1</td>
</tr>
<tr>
<td>SITE2</td>
<td>ACCESS2</td>
<td>(,,CN,Beijing,)</td>
<td>(10, PE-Diverse, 10)</td>
<td>PE2</td>
</tr>
<tr>
<td>SITE3</td>
<td>ACCESS3</td>
<td>(,,UK,London,)</td>
<td>(12, same-PE, 12)</td>
<td>PE4</td>
</tr>
<tr>
<td>SITE4</td>
<td>ACCESS4</td>
<td>(,,FR,Paris,)</td>
<td>(20, Bearer-Diverse, 20)</td>
<td>PE7</td>
</tr>
</tbody>
</table>

Table 1: Mapping Between VPN Site and VNAP

5. YANG Data Trees

module: ietf-l1csm-te-service-mapping
augment /l1:l1-connectivity/l1:services/l1:service:
  +-rw te-service-mapping!
augment /l1:l1-connectivity/l1:services/l1:service:
  +-rw te-mapping
    +-rw map-type? identityref
    +-rw availability-type? identityref
    +-rw (te)?
      +-:(actn-vn)
        +-rw actn-vn-ref? -> /vn:actn/vn/vn-list/vn-id
      +-:(te-topo)
        +-rw vn-topology-id? te-types:te-topology-id
        +-rw abstract-node? -> /nw:networks/network/node/node-id
      +-:(te-tunnel)
        +-rw te-tunnel-list* te:tunnel-ref
augment /l1:l1-connectivity/l1:services/l1:service/l1:endpoint-1:
  +-rw (te)?
    +-:(actn-vn)
module: ietf-l2sm-te-service-mapping
augment /l2vpn-svc:l2vpn-svc/l2vpn-svc:vpn-services/l2vpn-svc:vpn-service:
  +rw te-service-mapping
  +rw te-mapping
    +rw map-type?  identityref
    +rw availability-type?  identityref
    +rw (te)?
      +-(actn-vn)
        |  +rw actn-vn-ref?  -> /vn:actn/vn/vn-list/vn-id
        +-(te-topo)
          |  +rw vn-topology-id?  te-types:te-topology-id
          |  +rw abstract-node?  -> /nw:networks/network/node/node-id
          +-(te-tunnel)
            +rw te-tunnel-list*  te:tunnel-ref
  accesses/l2vpn-svc:site-network-access:
    +rw (te)?
      +-(actn-vn)
        |  +rw actn-vn-ref?  -> /vn:actn/ap/access-point-list/access-point-id
        +-(te)
          +rw ltp?  te-types:te-tp-id

module: ietf-l3sm-te-service-mapping
augment /l3vpn-svc:l3vpn-svc/l3vpn-svc:vpn-services/l3vpn-svc:vpn-service:
  +rw te-service-mapping!
augment /l3vpn-svc:l3vpn-svc/l3vpn-svc:vpn-services/l3vpn-svc:vpn-service:
  +rw te-mapping
    +rw map-type?  identityref
    +rw availability-type?  identityref
    +rw (te)?
      +-(actn-vn)
        |  +rw actn-vn-ref?  -> /vn:actn/vn/vn-list/vn-id
        +-(te-topo)
          |  +rw vn-topology-id?  te-types:te-topology-id
          +rw vn-topology-id?  te-types:te-topology-id
        +-(actn-vn)
          |  +rw actn-vn-ref?  -> /vn:actn/ap/access-point-list/access-point-id
          +-(te-topo)
            +rw vn-topology-id?  te-types:te-topology-id

6. YANG Data Models

The YANG codes are as follows:

```yang
<CODE BEGINS> file "ietf-te-service-mapping-types@2018-10-05.yang"
module ietf-te-service-mapping-types {
 prefix "tsm";

 import ietf-te-types {
 prefix "te-types";
 }

 import ietf-network {
 prefix "nw";
 }

 import ietf-te {
 prefix "te";
 }

 import ietf-actn-vn {
 prefix "vn";
 }

 organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "Editor: Young Lee <leeyoung@huawei.com>
 Dhruv Dhody <dhruv.ietf@gmail.com>
 Qin Wu <bill.wu@huawei.com>";
```
This module contains a YANG module for TE & Service mapping parameters and policies as a common grouping applicable to various service models (e.g., L1CSM, L2SM, L3SM, etc.).

revision 2018-10-05 {
  description
    "initial version.";
  reference
    "TBD";
}

/*
* Identity for map-type
*/
identity map-type {
  description
    "Base identity from which specific map types are derived.";
}

identity new {
  base map-type;
  description
    "The new VN/tunnels are binded to the service.";
}

identity detnet-hard-isolation {
  base new;
  description
    "Hard isolation with deterministic characteristics.";
}

identity hard-isolation {
  base new;
  description
    "Hard isolation.";
}

identity soft-isolation {
  base new;
  description
    "Soft-isolation.";
}

identity select {
  base map-type;
  description
    "Identity for map-type:
    
    * new: the new VN/tunnels are binded to the service.
    * detnet-hard-isolation: hard isolation with deterministic characteristics.
    * hard-isolation: hard isolation.
    * soft-isolation: soft isolation.
    
    The identities are derived from the base identity and are used to specify the mapping of services to network resources."
}
"The VPN service selects an existing tunnel with no
modification.";

identity modify {
  base map-type;
  description
    "The VPN service selects an existing tunnel and allows
to modify the properties of the tunnel (e.g., b/w)";
}

/*
 * Identity for availability-type
 */
identity availability-type {
  description
    "Base identity from which specific map types are
derived.";
}

identity level-1 {
  base availability-type;
  description
    "level 1: 99.9999%";
}

identity level-2 {
  base availability-type;
  description
    "level 2: 99.999%";
}

identity level-3 {
  base availability-type;
  description
    "level 3: 99.99%";
}

identity level-4 {
  base availability-type;
  description
    "level 4: 99.9%";
}

identity level-5 {
  base availability-type;
  description
    "level 5: 99%";
}
/*
 * Groupings
 */
grouping te-ref {
  description
  "The reference to TE.";
  choice te {
    description
    "The TE";
    case actn-vn {
      leaf actn-vn-ref {
        type leafref {
          path "'/vn:actn/vn:vn/vn:vn-list/vn:vn-id";
        }
        description
        "The reference to ACTN VN";
      }
    }
    case te-topo {
      leaf vn-topology-id{
        type te-types:te-topology-id;
        description
        "An identifier to the TE Topology Model
         where the abstract nodes and links of
         the Topology can be found for Type 2
         VNS";
      }
      leaf abstract-node {
        type leafref {
          path "'/nw:networks/nw:network/nw:node/
          + 'nw:node-id";
        }
        description
        "a reference to the abstract node in TE
         Topology";
      }
    }
    case te-tunnel {
      leaf-list te-tunnel-list {
        type te:tunnel-ref;
        description
        "Reference to TE Tunnels";
      }
    }
  }
}
grouping te-endpoint-ref {
  description
  "The reference to TE endpoints.";
  choice te {
    description
    "The TE";
    case actn-vn {
      leaf actn-vn-ref {
        type leafref {
          path "/vn:actn/vn:ap/vn:access-point-list" + "/vn:access-point-id";
        }
        description
        "The reference to ACTN VN";
      }
    }
    case te {
      leaf ltp {
        type te-types:te-tp-id;
        description
        "Reference LTP in the TE-topology";
      }
    }
  }
}

grouping te-mapping {
  description
  "Mapping between Services and TE";
  container te-mapping {
    description
    "Mapping between Services and TE";
    leaf map-type {
      type identityref {
        base map-type;
      }
      description
      "Isolation Requirements, Tunnel Bind or Tunnel Selection";
    }
    leaf availability-type {
      type identityref {
        base availability-type;
      }
      description
      
    }
  }
}
module ietf-11csm-te-service-mapping {  namespace "urn:ietf:params:xml:ns:yang:ietf-11csm-te-service-mapping";  prefix "tm";  import ietf-te-service-mapping-types {  prefix "tsm-types";  }  import ietf-11csm {  prefix "l1";  }  organization  "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group";  contact  "Editor: Young Lee <leeyoung@huawei.com>  Dhruv Dhody <dhruv.ietf@gmail.com>  Qin Wu <bill.wu@huawei.com>";  description  "This module contains a YANG module for the mapping of  Layer 1 Connectivity Service Module (L1CSM) to the TE and VN ";  revision 2018-10-05 {  description  "initial version.";  reference  "TBD";  }  /*  * Configuration data nodes
augment "/l1:l1-connectivity/l1:services/l1:service" {
  description
  "l1csm augmented to include TE parameters and mapping";
  container te-service-mapping {
    presence "indicates l1 service to te mapping";
    description
    "Container to augment l1csm to TE parameters and mapping";
  }
}

augment "/l1:l1-connectivity/l1:services/l1:service" {
  description
  "This augment is only valid for TE mapping --
  te mapping is added";
  uses tsm-types:te-mapping;
}

augment "/l1:l1-connectivity/l1:services/l1:service/l1:endpoint-1" {
  description
  "This augment is only valid for TE mapping --
  endpoint-1 te-reference is added";
  uses tsm-types:te-endpoint-ref;
}

augment "/l1:l1-connectivity/l1:services/l1:service/l1:endpoint-2" {
  description
  "This augment is only valid for TE mapping --
  endpoint-2 te-reference is added";
  uses tsm-types:te-endpoint-ref;
}

<CODE ENDS>

<CODE BEGINS> file "ietf-l2sm-te-service-mapping@2018-10-05.yang"

module ietf-l2sm-te-service-mapping {
  prefix "tm";
  import ietf-te-service-mapping-types {

prefix "tsm-types";
}

import ietf-l2vpn-svc {
  prefix "l2vpn-svc";
}

organization
  "IETF Traffic Engineering Architecture and Signaling (TEAS)
  Working Group";

contact
  "Editor: Young Lee <leeyoung@huawei.com>
   Dhruv Dhody <dhruv.ietf@gmail.com>
   Qin Wu <bill.wu@huawei.com>");

description
  "This module contains a YANG module for the mapping of
   Layer 2 Service Model (L1CSM) to the TE and VN ";

revision 2018-10-05 {
  description
    "initial version."
  reference
    "TBD"
}

/*
 * Configuration data nodes
 */
augment "/l2vpn-svc:l2vpn-svc/l2vpn-svc:vpn-services/l2vpn-svc:vpn-service" {
  description
    "L2SM augmented to include TE parameters and mapping"
  container te-service-mapping {
    presence "indicates L2 service to TE mapping"
    description
      "Container to augment L2SM to TE parameters and mapping"
  }
}

augment "/l2vpn-svc:l2vpn-svc/l2vpn-svc:vpn-services/l2vpn-svc:vpn-service" {
  description
    "This augment is only valid for TE mapping --
     TE mapping is added"
  uses tsm-types:te-mapping;
}

augment "/l2vpn-svc:l2vpn-svc/l2vpn-svc:sites/l2vpn-svc:site"
+"/l2vpn-svc:site-network-accesses/l2vpn-svc:site-network-access" {
    description
    "This augment is only valid for TE mapping --
    network-access te-reference is added";
    uses tsm-types:te-endpoint-ref;
}

</CODE ENDS>

</CODE BEGINS> file "ietf-l3sm-te-service-mapping@2018-10-05.yang"

module ietf-l3sm-te-service-mapping {
    prefix "tm";

    import ietf-te-service-mapping-types {
        prefix "tsm-types";
    }

    import ietf-l3vpn-svc {
        prefix "l3vpn-svc";
    }

    organization
        "IETF Traffic Engineering Architecture and Signaling (TEAS)
        Working Group";

    contact
        "Editor: Young Lee <leeyoung@huawei.com>
        Dhruv Dhody <dhruv.ietf@gmail.com>
        Qin Wu <bill.wu@huawei.com>";

    description
        "This module contains a YANG module for the mapping of
        Layer 3 Service Model (L3SM) to the TE and VN";

    revision 2018-10-05 {
        description
            "initial version.";
    }

    Lee, et al. Expires April 2018
7. Security

The configuration, state, and action data defined in this document are designed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF protocol operations and content.
A number of configuration data nodes defined in this document are writable/deletable (i.e., "config true") These data nodes may be considered sensitive or vulnerable in some network environments.

8. IANA Considerations

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

---
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
---

---
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
---

---
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
---

---
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
---

This document registers the following YANG modules in the YANG Module.
Names registry [RFC7950]:

---
name: ietf-te-service-mapping-types
9. Acknowledgements

We thank Diego Caviglia and Igor Bryskin for useful discussions and motivation for this work.

10. References

10.1. Informative References


11. Contributors

Adrian Farrel
Old Dog Consulting

Lee, et al. Expires April 2018
Email: adrian@olddog.co.uk

Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com

Authors’ Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277-5838
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies
Email: dhruv.ietf@gmail.com

Daniele Ceccarelli
Ericsson
Torshamnsgatan,48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com

Jeff Tantsura
Nuage
EMail: jefftant@gmail.com

Giuseppe Fioccola
Telecom Italia
Email: giuseppe.fioccola@telecomitalia.it

Qin Wu
Huawei
Email: bill.wu@huawei.com
Abstract

This document defines a YANG data model for layer 3 traffic engineering topologies.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.

Liu, et al. Expires May 3, 2018
1. Introduction

This document defines a YANG [RFC7950] data model for describing the relationship between a layer 3 network topology [I-D.ietf-l2rs-yang-l3-topology] and a TE topology [I-D.ietf-teas-yang-te-topo].

When traffic engineering is enabled on a layer 3 network topology, there will be a corresponding TE topology. The TE topology may or may not be congruent to the layer 3 network topology. When such a congruent TE topology exists, there will be a one-to-one association between the one modeling element in the layer 3 topology to another element in the TE topology. When such a congruent TE topology does not exist, the association will not be one-to-one. This YANG data model allows both cases.
1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, [RFC2119].

The following terms are defined in [RFC7950] and are not redefined here:

- augment
- data model
- data node

2. Modeling Considerations

2.1. Relationship Between Layer 3 Topology and TE topology

In general, layer 3 network topology model and TE topology model can be used independently. When traffic engineering is enabled on a layer 3 network topology, there will be associations between objects in layer 3 network topologies and objects in TE topologies. The properties of these relations are:

- The associations are between objects of the same class, i.e. node to node or link to link.
- The multiplicity of such an association is: 0..1 to 0..1. An object in a layer 3 network may have zero or one associated object in the corresponding TE network.

2.2. Relationship Modeling

YANG data type leafref is used to model the association relationship between a layer 3 network topology and a TE topology. YANG must statements are used to enforce the referenced objects are in the topologies of proper type.

3. Model Structure

3.1. Layer 3 TE Topology Module

The model tree structure of the layer 3 TE topology module is as shown below:
3.2. Packet Switching TE Topology Module

This is an augmentation to base TE topology model.

module: ietf-te-topology-packet
    augment /nd:networks/nd:node/tet:te
        /tet:te-node-attributes/tet:connectivity-matrices:
            +--rw performance-metric
                +--rw measurement
                    +--rw unidirectional-delay?        uint32
                    +--rw unidirectional-min-delay?    uint32
                    +--rw unidirectional-max-delay?    uint32
                    +--rw unidirectional-delay-variation?    uint32
                    +--rw unidirectional-packet-loss?    decimal64
                    +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
                    +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
                    +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
++-rw normality
  |- ++-rw unidirectional-delay?
te-types:performance-metric-normality
  |- ++-rw unidirectional-min-delay?
te-types:performance-metric-normality
  |- ++-rw unidirectional-max-delay?
te-types:performance-metric-normality
  |- ++-rw unidirectional-delay-variation?
te-types:performance-metric-normality
  |- ++-rw unidirectional-packet-loss?
te-types:performance-metric-normality
  |- ++-rw unidirectional-residual-bandwidth?
te-types:performance-metric-normality
  |- ++-rw unidirectional-available-bandwidth?
te-types:performance-metric-normality
  |- ++-rw unidirectional-utilized-bandwidth?
te-types:performance-metric-normality
++-rw throttle
  |- ++-rw unidirectional-delay-offset?  uint32
  |- ++-rw measure-interval?            uint32
  |- ++-rw advertisement-interval?      uint32
  |- ++-rw suppression-interval?        uint32
  |- ++-rw threshold-out
    |- ++-rw unidirectional-delay?       uint32
    |- ++-rw unidirectional-min-delay?   uint32
    |- ++-rw unidirectional-max-delay?   uint32
    |- ++-rw unidirectional-delay-variation?  uint32
    |- ++-rw unidirectional-packet-loss? decimal64
    |- ++-rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
  |- ++-rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
  |- ++-rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
++-rw threshold-in
  |- ++-rw unidirectional-delay?        uint32
  |- ++-rw unidirectional-min-delay?    uint32
  |- ++-rw unidirectional-max-delay?    uint32
  |- ++-rw unidirectional-delay-variation?  uint32
  |- ++-rw unidirectional-packet-loss?  decimal64
  |- ++-rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
  |- ++-rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
  |- ++-rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
++-rw threshold-accelerated-advertisement
  |- ++-rw unidirectional-delay?    uint32
++--rw unidirectional-min-delay?  uint32
++--rw unidirectional-max-delay?  uint32
++--rw unidirectional-delay-variation?  uint32
++--rw unidirectional-packet-loss?  decimal64
++--rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
++--rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
++--rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
augment /nd:nets/nd:network/nd:node/tet:te
/tet:node-attributes/tet:connectivity-matrices
/tet:connectivity-matrix:
  ++--rw performance-metric
    ++--rw measurement
      ++--rw unidirectional-delay?  uint32
      ++--rw unidirectional-min-delay?  uint32
      ++--rw unidirectional-max-delay?  uint32
      ++--rw unidirectional-delay-variation?  uint32
      ++--rw unidirectional-packet-loss?  decimal64
      ++--rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
    ++--rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
    ++--rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
  ++--rw normality
    ++--rw unidirectional-delay?
    te-types:performance-metric-normality
    ++--rw unidirectional-min-delay?
    te-types:performance-metric-normality
    ++--rw unidirectional-max-delay?
    te-types:performance-metric-normality
    ++--rw unidirectional-delay-variation?
    te-types:performance-metric-normality
    ++--rw unidirectional-packet-loss?
    te-types:performance-metric-normality
    ++--rw unidirectional-residual-bandwidth?
    te-types:performance-metric-normality
    ++--rw unidirectional-available-bandwidth?
    te-types:performance-metric-normality
    ++--rw unidirectional-utilized-bandwidth?
    te-types:performance-metric-normality
  ++--rw throttle
    ++--rw unidirectional-delay-offset?  uint32
    ++--rw measure-interval?  uint32
    ++--rw advertisement-interval?  uint32
    ++--rw suppression-interval?  uint32

++--ro performance-metric
  ++--ro measurement
    ++--ro unidirectional-delay? uint32
    ++--ro unidirectional-min-delay? uint32
    ++--ro unidirectional-max-delay? uint32
    ++--ro unidirectional-delay-variation? uint32
    ++--ro unidirectional-packet-loss? decimal64
    ++--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
  ++--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
  ++--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-delay? uint32
++--ro unidirectional-min-delay? uint32
++--ro unidirectional-max-delay? uint32
++--ro unidirectional-delay-variation? uint32
++--ro unidirectional-packet-loss? decimal64
++--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-delay? uint32
++--ro unidirectional-min-delay? uint32
++--ro unidirectional-max-delay? uint32
++--ro unidirectional-delay-variation? uint32
++--ro unidirectional-packet-loss? decimal64
++--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-delay? uint32
++--ro unidirectional-min-delay? uint32
++--ro unidirectional-max-delay? uint32
++--ro unidirectional-delay-variation? uint32
++--ro unidirectional-packet-loss? decimal64
++--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
++--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
rt-types:bandwidth-ieee-float32
  +--ro unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
  +--ro unidirectional-delay?
  +--ro normality
  te-types:performance-metric-normality
    +--ro unidirectional-min-delay?
    te-types:performance-metric-normality
    +--ro unidirectional-max-delay?
    te-types:performance-metric-normality
    +--ro unidirectional-delay-variation?
    te-types:performance-metric-normality
    +--ro unidirectional-packet-loss?
    te-types:performance-metric-normality
    +--ro unidirectional-residual-bandwidth?
    te-types:performance-metric-normality
    +--ro unidirectional-available-bandwidth?
    te-types:performance-metric-normality
    +--ro unidirectional-utilized-bandwidth?
    te-types:performance-metric-normality
    +--ro throttle
      +--ro unidirectional-delay-offset?  uint32
      +--ro measure-interval?  uint32
      +--ro advertisement-interval?  uint32
      +--ro suppression-interval?  uint32
      +--ro threshold-out
        +--ro unidirectional-delay?  uint32
        +--ro unidirectional-min-delay?  uint32
        +--ro unidirectional-max-delay?  uint32
        +--ro unidirectional-delay-variation?  uint32
        +--ro unidirectional-packet-loss?  decimal64
        +--ro unidirectional-residual-bandwidth?
    rt-types:bandwidth-ieee-float32
    +--ro unidirectional-available-bandwidth?
    rt-types:bandwidth-ieee-float32
    +--ro unidirectional-utilized-bandwidth?
    rt-types:bandwidth-ieee-float32
    +--ro threshold-in
      +--ro unidirectional-delay?  uint32
      +--ro unidirectional-min-delay?  uint32
      +--ro unidirectional-max-delay?  uint32
      +--ro unidirectional-delay-variation?  uint32
      +--ro unidirectional-packet-loss?  decimal64
      +--ro unidirectional-residual-bandwidth?
    rt-types:bandwidth-ieee-float32
    +--ro unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
   +--ro threshold-accelerated-advertisement
       +--ro unidirectional-delay? uint32
       +--ro unidirectional-min-delay? uint32
       +--ro unidirectional-max-delay? uint32
       +--ro unidirectional-delay-variation? uint32
       +--ro unidirectional-packet-loss? decimal64
       +--ro unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
   +--ro unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
   +--ro unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
   augment /nd:networks/nd:network/nd:node/tet:te
         /tet:information-source-entry/tet:connectivity-matrices
         /tet:connectivity-matrix:
             +--ro performance-metric
                 +--ro measurement
                     +--ro unidirectional-delay? uint32
                     +--ro unidirectional-min-delay? uint32
                     +--ro unidirectional-max-delay? uint32
                     +--ro unidirectional-delay-variation? uint32
                     +--ro unidirectional-packet-loss? decimal64
                     +--ro unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
   | +--ro unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
   | +--ro unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
   +--ro normality
       +--ro unidirectional-delay?
te-types:performance-metric-normality
   | +--ro unidirectional-min-delay?
te-types:performance-metric-normality
   | +--ro unidirectional-max-delay?
te-types:performance-metric-normality
   | +--ro unidirectional-delay-variation?
te-types:performance-metric-normality
   | +--ro unidirectional-packet-loss?
te-types:performance-metric-normality
   | +--ro unidirectional-residual-bandwidth?
te-types:performance-metric-normality
   | +--ro unidirectional-available-bandwidth?
te-types:performance-metric-normality
   | +--ro unidirectional-utilized-bandwidth?
te-types:performance-metric-normality
   +--ro throttle
       +--ro unidirectional-delay-offset? uint32
---ro measure-interval? uint32
---ro advertisement-interval? uint32
---ro suppression-interval? uint32
---ro threshold-out
  | ---ro unidirectional-delay? uint32
  | ---ro unidirectional-min-delay? uint32
  | ---ro unidirectional-max-delay? uint32
  | ---ro unidirectional-delay-variation? uint32
  | ---ro unidirectional-packet-loss? decimal64
  | ---ro unidirectional-residual-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-available-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-utilized-bandwidth?
    rt-types:bandwidth-ieee-float32
---ro threshold-in
  | ---ro unidirectional-delay? uint32
  | ---ro unidirectional-min-delay? uint32
  | ---ro unidirectional-max-delay? uint32
  | ---ro unidirectional-delay-variation? uint32
  | ---ro unidirectional-packet-loss? decimal64
  | ---ro unidirectional-residual-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-available-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-utilized-bandwidth?
    rt-types:bandwidth-ieee-float32
---ro threshold-accelerated-advertisement
  | ---ro unidirectional-delay? uint32
  | ---ro unidirectional-min-delay? uint32
  | ---ro unidirectional-max-delay? uint32
  | ---ro unidirectional-delay-variation? uint32
  | ---ro unidirectional-packet-loss? decimal64
  | ---ro unidirectional-residual-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-available-bandwidth?
    rt-types:bandwidth-ieee-float32
  | ---ro unidirectional-utilized-bandwidth?
    rt-types:bandwidth-ieee-float32
---rw performance-metric
  | ---rw measurement
    | ---rw unidirectional-delay? uint32
    | ---rw unidirectional-min-delay? uint32
    | ---rw unidirectional-max-delay? uint32
    | ---rw unidirectional-delay-variation? uint32
    | ---rw unidirectional-packet-loss? decimal64
	++--rw normality				
		++--rw unidirectional-delay? te-types:performance-metric-normality			
			++--rw unidirectional-min-delay? te-types:performance-metric-normality		
				++--rw unidirectional-max-delay? te-types:performance-metric-normality	
					++--rw unidirectional-delay-variation? te-types:performance-metric-normality
			++--rw unidirectional-residual-bandwidth?		
				++--rw unidirectional-available-bandwidth?	
					++--rw unidirectional-utilized-bandwidth?
	++--rw throttle				
		++--rw unidirectional-delay-offset? uint32			
		++--rw measure-interval? uint32			
		++--rw advertisement-interval? uint32			
		++--rw suppression-interval? uint32			
		++--rw threshold-out			
			++--rw unidirectional-delay? uint32		
				++--rw unidirectional-min-delay? uint32	
					++--rw unidirectional-max-delay? uint32
	++--rw threshold-in				
			++--rw unidirectional-delay? uint32		
				++--rw unidirectional-min-delay? uint32	
					++--rw unidirectional-max-delay? uint32
+--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32					
+--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32					

+-rw threshold-accelerated-advertisement
  +--rw unidirectional-delay? uint32
  +--rw unidirectional-min-delay? uint32
  +--rw unidirectional-max-delay? uint32
  +--rw unidirectional-delay-variation? uint32
  +--rw unidirectional-packet-loss? decimal64
  +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32

++-rw unidirectional-available-bandwidth?
++-rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32


++-rw performance-metric
  +-rw measurement
    | +--rw unidirectional-delay? uint32
    | +--rw unidirectional-min-delay? uint32
    | +--rw unidirectional-max-delay? uint32
    | +--rw unidirectional-delay-variation? uint32
    | +--rw unidirectional-packet-loss? decimal64
    | +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32

| +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
| +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32

++-rw normality
  te-types:performance-metric-normality
    | +--rw unidirectional-min-delay? te-types:performance-metric-normality
    | +--rw unidirectional-max-delay? te-types:performance-metric-normality
    | +--rw unidirectional-delay-variation? te-types:performance-metric-normality
    | +--rw unidirectional-residual-bandwidth? te-types:performance-metric-normality

| +--rw unidirectional-available-bandwidth? te-types:performance-metric-normality
| +--rw unidirectional-utilized-bandwidth? te-types:performance-metric-normality
te-types:performance-metric-normality
  +--rw throttle
  +--rw unidirectional-delay-offset?         uint32
  +--rw measure-interval?                   uint32
  +--rw advertisement-interval?             uint32
  +--rw suppression-interval?               uint32
  +--rw threshold-out
    |  +--rw unidirectional-delay?            uint32
    |  +--rw unidirectional-min-delay?        uint32
    |  +--rw unidirectional-max-delay?        uint32
    |  +--rw unidirectional-delay-variation?  uint32
    |  +--rw unidirectional-packet-loss?      decimal64
    |  +--rw unidirectional-residual-bandwidth?
    |    rt-types:bandwidth-ieee-float32
    |    +--rw unidirectional-available-bandwidth?
    |    |    rt-types:bandwidth-ieee-float32
    |    |    +--rw unidirectional-utilized-bandwidth?
    |    |    rt-types:bandwidth-ieee-float32
    |    +--rw threshold-in
    |    +--rw unidirectional-delay?            uint32
    |    +--rw unidirectional-min-delay?        uint32
    |    +--rw unidirectional-max-delay?        uint32
    |    +--rw unidirectional-delay-variation?  uint32
    |    +--rw unidirectional-packet-loss?      decimal64
    |    +--rw unidirectional-residual-bandwidth?
    |    rt-types:bandwidth-ieee-float32
    |    +--rw unidirectional-available-bandwidth?
    |    |    rt-types:bandwidth-ieee-float32
    |    |    +--rw unidirectional-utilized-bandwidth?
    |    |    rt-types:bandwidth-ieee-float32
    +--rw threshold-accelerated-advertisement
      +--rw unidirectional-delay?            uint32
      +--rw unidirectional-min-delay?        uint32
      +--rw unidirectional-max-delay?        uint32
      +--rw unidirectional-delay-variation?  uint32
      +--rw unidirectional-packet-loss?      decimal64
      +--rw unidirectional-residual-bandwidth?
      rt-types:bandwidth-ieee-float32
      +--rw unidirectional-available-bandwidth?
      |    rt-types:bandwidth-ieee-float32
      |    +--rw unidirectional-utilized-bandwidth?
      |    rt-types:bandwidth-ieee-float32
      +--rw performance-metric
        +--rw measurement
          +--rw unidirectional-delay?            uint32
          +--rw unidirectional-min-delay?        uint32
++rw unidirectional-max-delay?  uint32
++rw unidirectional-delay-variation?  uint32
++rw unidirectional-packet-loss?  decimal64
++rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
  ++rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
  ++rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
++rw normality
  ++rw unidirectional-delay?
types:performance-metric-normality
  ++rw unidirectional-min-delay?
types:performance-metric-normality
  ++rw unidirectional-max-delay?
types:performance-metric-normality
  ++rw unidirectional-delay-variation?
types:performance-metric-normality
  ++rw unidirectional-packet-loss?
types:performance-metric-normality
  ++rw unidirectional-residual-bandwidth?
types:performance-metric-normality
  ++rw unidirectional-available-bandwidth?
types:performance-metric-normality
  ++rw unidirectional-utilized-bandwidth?
types:performance-metric-normality
++rw throttle
  ++rw unidirectional-delay-offset?  uint32
  ++rw measure-interval?  uint32
  ++rw advertisement-interval?  uint32
  ++rw suppression-interval?  uint32
  ++rw threshold-out
    ++rw unidirectional-delay?  uint32
    ++rw unidirectional-min-delay?  uint32
    ++rw unidirectional-max-delay?  uint32
    ++rw unidirectional-delay-variation?  uint32
    ++rw unidirectional-packet-loss?  decimal64
    ++rw unidirectional-residual-bandwidth?
rt-types:bandwidth-ieee-float32
  ++rw unidirectional-available-bandwidth?
rt-types:bandwidth-ieee-float32
  ++rw unidirectional-utilized-bandwidth?
rt-types:bandwidth-ieee-float32
++rw threshold-in
  ++rw unidirectional-delay?  uint32
  ++rw unidirectional-min-delay?  uint32
  ++rw unidirectional-max-delay?  uint32
  ++rw unidirectional-delay-variation?  uint32
| +--rw unidirectional-packet-loss? decimal64 |
| +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw threshold-accelerated-advertisement |
| +--rw unidirectional-delay? uint32 |
| +--rw unidirectional-min-delay? uint32 |
| +--rw unidirectional-max-delay? uint32 |
| +--rw unidirectional-delay-variation? uint32 |
| +--rw unidirectional-packet-loss? decimal64 |
| +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32 |
| augment /nd:networks/nd:network/lnk:link/tet:te/tet:te-link-attributes: |
| +--rw performance-metric |
| +--rw measurement |
| +--rw unidirectional-delay? uint32 |
| +--rw unidirectional-min-delay? uint32 |
| +--rw unidirectional-max-delay? uint32 |
| +--rw unidirectional-delay-variation? uint32 |
| +--rw unidirectional-packet-loss? decimal64 |
| +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32 |
| +--rw normality |
| +--rw unidirectional-delay? te-types:performance-metric-normality |
| +--rw unidirectional-min-delay? te-types:performance-metric-normality |
| +--rw unidirectional-max-delay? te-types:performance-metric-normality |
| +--rw unidirectional-delay-variation? te-types:performance-metric-normality |
| +--rw unidirectional-residual-bandwidth? te-types:performance-metric-normality |
| +--rw unidirectional-available-bandwidth? te-types:performance-metric-normality |
te-types:performance-metric-normality
  +--rw unidirectional-utilized-bandwidth?

| te-types:performance-metric-normality |
|  +--rw throttle |
+--rw unidirectional-delay-offset?   uint32
+--rw measure-interval?             uint32
+--rw advertisement-interval?      uint32
+--rw suppression-interval?        uint32
+--rw threshold-out
  +--rw unidirectional-delay?       uint32
  +--rw unidirectional-min-delay?   uint32
  +--rw unidirectional-max-delay?   uint32
  +--rw unidirectional-delay-variation? uint32
  +--rw unidirectional-packet-loss? decimal64
  +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
 rt-types:bandwidth-ieee-float32
  +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
  +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
  +--rw threshold-in
    +--rw unidirectional-delay?       uint32
    +--rw unidirectional-min-delay?   uint32
    +--rw unidirectional-max-delay?   uint32
    +--rw unidirectional-delay-variation? uint32
    +--rw unidirectional-packet-loss? decimal64
    +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
    +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
    +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
    +--rw threshold-accelerated-advertisement
      +--rw unidirectional-delay?       uint32
      +--rw unidirectional-min-delay?   uint32
      +--rw unidirectional-max-delay?   uint32
      +--rw unidirectional-delay-variation? uint32
      +--rw unidirectional-packet-loss? decimal64
      +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
      +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
      +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
      +--rw threshold-accelerated-advertisement
        +--rw unidirectional-delay?       uint32
        +--rw unidirectional-min-delay?   uint32
        +--rw unidirectional-max-delay?   uint32
        +--rw unidirectional-delay-variation? uint32
        +--rw unidirectional-packet-loss? decimal64
        +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
 rt-types:bandwidth-ieee-float32
  +--rw unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32
  +--rw unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32
+--rw threshold-accelerated-advertisement
  +--rw unidirectional-delay?       uint32
  +--rw unidirectional-min-delay?   uint32
  +--rw unidirectional-max-delay?   uint32
  +--rw unidirectional-delay-variation? uint32
  +--rw unidirectional-packet-loss? decimal64
  +--rw unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32
+rw unidirectional-available-bandwidth?
+rw unidirectional-utilized-bandwidth?
+rw threshold-accelerated-advertisement
  +--ro performance-metric
  +--ro measurement
+--ro unidirectional-delay?         uint32
+--ro unidirectional-min-delay?     uint32
+--ro unidirectional-max-delay?     uint32
+--ro unidirectional-delay-variation? uint32
+--ro unidirectional-packet-loss?   decimal64
+--ro unidirectional-residual-bandwidth?
  rt-types:bandwidth-ieee-float32
  +--ro unidirectional-available-bandwidth?
  rt-types:bandwidth-ieee-float32
  +--ro unidirectional-utilized-bandwidth?
  rt-types:bandwidth-ieee-float32
  +--ro normality
    +--ro unidirectional-delay?         uint32
    +--ro unidirectional-min-delay?     uint32
    +--ro unidirectional-max-delay?     uint32
    +--ro unidirectional-delay-variation? uint32
    +--ro unidirectional-packet-loss?   decimal64
    +--ro unidirectional-residual-bandwidth?
    +--ro available-bandwidth?
    te-types:performance-metric-normality
      +--ro min-delay?
      te-types:performance-metric-normality
      +--ro max-delay?
      te-types:performance-metric-normality
      +--ro delay-variation?
      te-types:performance-metric-normality
      +--ro packet-loss?
      te-types:performance-metric-normality
    +--ro utilized-bandwidth?
    te-types:performance-metric-normality
  +--ro throttle
    +--ro unidirectional-delay-offset?  uint32
    +--ro measure-interval?            uint32
    +--ro advertisement-interval?      uint32
    +--ro suppression-interval?        uint32
    +--ro threshold-out
      +--ro unidirectional-delay?         uint32
      +--ro unidirectional-min-delay?     uint32
      +--ro unidirectional-max-delay?     uint32
      +--ro unidirectional-delay-variation? uint32
      +--ro unidirectional-packet-loss?   decimal64
      +--ro unidirectional-residual-bandwidth?
    +--ro threshold-in
      +--ro unidirectional-delay?         uint32
      +--ro unidirectional-min-delay?     uint32
4. YANG Modules

4.1. Layer 3 TE Topology Module

<CODE BEGINS> file "ietf-l3-te-topology@2017-07-03.yang"
module ietf-l3-te-topology {  
  yang-version 1.1;  
  prefix "l3tet";  
}  

import ietf-network {
  prefix "nd";
}
import ietf-network-topology {
  prefix "lnk";
}
import ietf-l3-unicast-topology {
  prefix "l3t";
}
import ietf-te-topology {
  prefix "tet";
}
organization "TBD";
contact "TBD";
description "L3 TE Topology model";
revision 2017-07-03 {
  description "Initial revision";
  reference "TBD";
}

grouping l3-te-topology-type {
  description "Identifies the L3 TE topology type.";
  container l3-te {
    presence "indicates L3 TE Topology";
    description "Its presence identifies the L3 TE topology type.";
  }
}

augment "/nd:networks/nd:network/nd:network-types/" + "l3t:l3-unicast-topology" {
  description "Defines the L3 TE topology type.";
  uses l3-te-topology-type;
}

daugment "/nd:networks/nd:network/l3t:l3-topology-attributes" {
  when "./nd:network-types/l3t:l3-unicast-topology/l3-te" {
    description "Augment only for L3 TE topology";
  }
  description "Augment topology configuration";
  uses l3-te-topology-attributes;
}

augment "/nd:networks/nd:network/nd:node/l3t:l3-node-attributes" {
    when "../../nd:network-types/l3t:l3-unicast-topology/l3-te" {
        description "Augment only for L3 TE topology";
    }
    description "Augment node configuration";
    uses l3-te-node-attributes;
}

augment "/nd:networks/nd:network/nd:node/lnk:termination-point/" + "l3t:l3-termination-point-attributes" {
    when "../../../nd:network-types/l3t:l3-unicast-topology/" + "l3-te" {
        description "Augment only for L3 TE topology";
    }
    description "Augment termination point configuration";
    uses l3-te-tp-attributes;
}

augment "/nd:networks/nd:network/lnk:link/l3t:l3-link-attributes" {
    when "../../../nd:network-types/l3t:l3-unicast-topology/l3-te" {
        description "Augment only for L3 TE topology";
    }
    description "Augment link configuration";
    uses l3-te-link-attributes;
}

grouping l3-te-topology-attributes {
    description "L3 TE topology scope attributes";
    container l3-te-topology-attributes {
        must "/nd:networks/nd:network/
            + "[nd:network-id = current()/network-ref]/nd:network-types/"
            + "tet:te-topology" {
                error-message
                "The referenced network must be a TE topology.";
                description
                "The referenced network must be a TE topology.";
            }
        description "Containing TE topology references";
        uses nd:network-ref;
    } // l3-te-topology-attributes
} // l3-te-topology-attributes

grouping l3-te-node-attributes {
    description "L3 TE node scope attributes";
    container l3-te-node-attributes {
        must "/nd:networks/nd:network/
            + "[nd:network-id = current()/network-ref]/nd:network-types/"
            + "tet:te-topology" {

error-message
   "The referenced network must be a TE topology."
   description
   "The referenced network must be a TE topology."

// l3-te-node-attributes

// l3-te

// group l3-te-node-attributes

description "Containing TE node references"
uses nd:node-ref;

// l3-te

// group l3-te-tp-attributes

description "L3 TE termination point scope attributes"
container l3-te-tp-attributes {
   must "/nd:networks/nd:network"
   + "[nd:network-id = current()/network-ref]/nd:network-types/"
   + "tet:te-topology" {
      error-message
      "The referenced network must be a TE topology."
      description
      "The referenced network must be a TE topology."
   }
   description "Containing TE termination point references"
uses lnk:tp-ref;
}

// group l3-te-tp-attributes

// group l3-te-link-attributes

description "L3 TE link scope attributes"
container l3-te-link-attributes {
   must "/nd:networks/nd:network"
   + "[nd:network-id = current()/network-ref]/nd:network-types/"
   + "tet:te-topology" {
      error-message
      "The referenced network must be a TE topology."
      description
      "The referenced network must be a TE topology."
   }
   description "Containing TE link references"
uses lnk:link-ref;
}

// group l3-te-link-attributes

<CODE ENDS>
4.2. Packet Switching TE Topology Module

```yang
<CODE BEGINS> file "ietf-te-topology-packet@2017-10-29.yang"
module ietf-te-topology-packet {
 yang-version 1;
 prefix "tet-pkt";

 import ietf-network {
 prefix "nd";
 }

 import ietf-network-topology {
 prefix "lnk";
 }

 import ietf-routing-types {
 prefix "rt-types";
 }

 import ietf-te-topology {
 prefix "tet";
 }

 import ietf-te-types {
 prefix "te-types";
 }

 organization
 "Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>

 WG Chair: Lou Berger
 <mailto:lberger@labn.net>

 WG Chair: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>

 Editors: Xufeng Liu
 <mailto:Xufeng_Liu@jabil.com>
 Igor Bryskin
```

description "TE topology model";

revision 2017-10-29 {
  description "Initial revision";
  reference "TBD";
}

/*
* Features
*/

feature te-performance-metric {
  description "This feature indicates that the system supports TE performance metric.";
}

/*
* Groupings
*/

grouping packet-switch-capable-container {
  description "The container of packet switch capable attributes.";
  container packet-switch-capable {
    description "Interface has packet-switching capabilities.";
    leaf minimum-lsp-bandwidth {
      type rt-types:bandwidth-ieee-float32;
    }
  }
}
leaf interface-mtu {
  type uint16;
  description
    "Interface MTU."
}
}
}

  + "tet:te-node-attributes/tet:connectivity-matrices" {
    description
      "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
      if-feature te-performance-metric;
    }
  }
}

  + "tet:te-node-attributes/tet:connectivity-matrices/"
  + "tet:connectivity-matrix" {
    description
      "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
      if-feature te-performance-metric;
    }
  }
}

  + "tet:information-source-entry/tet:connectivity-matrices" {
    description
      "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
      if-feature te-performance-metric;
    }
  }
}

  + "tet:information-source-entry/tet:connectivity-matrices/"
  + "tet:connectivity-matrix" {

description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}

/*/ Augmentations to tunnel-termination-point */
  + "tet:tunnel-termination-point/
  + "tet:local-link-connectivities" {
  description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}
}

  + "tet:tunnel-termination-point/
  + "tet:local-link-connectivities/
  + "tet:local-link-connectivity" {
  description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}
}

/*/ Augmentations to te-link-attributes */
augment "/nd:nets/tet:te/tet:templates/
  + "tet:link-template/tet:te-link-attributes" {
  when "tet:interface-switching-capability "
  + "[tet:switching-capability = \"te-types:switching-psc1\"]" {
  description "Valid only for PSC";
  }
  description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}
}

augment "/nd:nets/nd:network/lnk:link/tet:te/
  + "tet:te-link-attributes" {
  when "tet:interface-switching-capability "
  + "[tet:switching-capability = \"te-types:switching-psc1\"]" {
  description "Valid only for PSC";

description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}

augment "/nd:networks/nd:network/lnk:link/tet:te/"
  + "tet:information-source-entry" {
    when "tet:interface-switching-capability"
      + "[tet:switching-capability = 'te-types:switching-psc1']"
    { description "Valid only for PSC";
    }
  }

description
"Parameters for PSC TE topology."
uses te-types:performance-metric-container {
  if-feature te-performance-metric;
}

/* Augmentations to interface-switching-capability */
augment "/nd:networks/tet:te/tet:templates/"
  + "tet:link-template/tet:te-link-attributes/"
  + "tet:interface-switching-capability" {
    when "tet:switching-capability = 'te-types:switching-psc1'"
    { description "Valid only for PSC";
    }
  }

description
"Parameters for PSC TE topology."
uses packet-switch-capable-container;

augment "/nd:networks/nd:network/lnk:link/tet:te/"
  + "tet:link-attributes/"
  + "tet:interface-switching-capability" {
    when "tet:switching-capability = 'te-types:switching-psc1'"
    { description "Valid only for PSC";
    }
  }

description
"Parameters for PSC TE topology."
uses packet-switch-capable-container;

augment "/nd:networks/nd:network/lnk:link/tet:te/"
  + "tet:information-source-entry/"
  + "tet:interface-switching-capability" {
    when "tet:switching-capability = 'te-types:switching-psc1'"
    { description "Valid only for PSC";
    }
  }

/* Augmentations to interface-switching-capability */
description "Valid only for PSC";
}
description
"Parameters for PSC TE topology."
uses packet-switch-capable-container;
}

5. IANA Considerations

RFC Ed.: In this section, replace all occurrences of ’XXXX’ with the actual RFC number (and remove this note).

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

This document registers the following YANG modules in the YANG Module Names registry [RFC6020]:

6. Security Considerations

The configuration, state, action and notification data defined in this document are designed to be accessed via the NETCONF protocol [RFC6241]. The data-model by itself does not create any security implications. The security considerations for the NETCONF protocol are applicable. The NETCONF protocol used for sending the data supports authentication and encryption.

7. References

7.1. Normative References

7.2. Informative References


Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

The YANG modules ietf-l3-te-topology and ietf-te-topology-packet defined in this document are designed to be used in conjunction with implementations that support the Network Management Datastore Architecture (NMDA) defined in [I-D.ietf-netmod-revised-datastores]. In order to allow implementations to use the model even in cases when NMDA is not supported, the following companion modules, ietf-l3-te-topology-state and ietf-te-topology-packet-state, are defined as state models, which mirror the modules ietf-l3-te-topology and ietf-te-topology-packet defined earlier in this document. However, all data nodes in the companion module are non-configurable, to represent the applied configuration or the derived operational states.

The companion modules, ietf-l3-te-topology-state and ietf-te-topology-packet-state, are redundant and SHOULD NOT be supported by implementations that support NMDA.

As the structure of the companion modules mirrors that of the corresponding NMDA models, the YANG trees of the companion modules are not depicted separately.

A.1. Layer 3 TE Topology State Module

<CODE BEGINS> file "ietf-l3-te-topology-state@2017-07-03.yang"
module ietf-l3-te-topology-state {
  yang-version 1.1;
  prefix "l3tet-s";

  import ietf-l3-te-topology {
    prefix "l3tet";
  }
  import ietf-network-state {
    prefix "nd-s";
  }
  import ietf-network-topology-state {
    prefix "lnk-s";
  }
  import ietf-l3-unicast-topology-state {
    prefix "l3t-s";
  }

  organization "TBD";
  contact "TBD";
  description "L3 TE Topology model";
}<CODE ENDES>
revision 2017-07-03 {

description "Initial revision";
reference "TBD";
}

augment "/nd-s:networks/nd-s:network/nd-s:network-types/"
+ "l3t-s:l3-unicast-topology" {

description
"Defines the L3 TE topology type.";
uses l3tet:l3-te-topology-type;
}

augment "/nd-s:networks/nd-s:network/"
+ "l3-t-s:l3-topology-attributes" {

when "..../nd-s:network-types/l3t-s:l3-unicast-topology/l3-te" {

description "Augment only for L3 TE topology";
}

description "Augment topology configuration";
uses l3tet:l3-te-topology-attributes;
}

augment "/nd-s:networks/nd-s:network/nd-s:node/"
+ "l3-t-s:l3-node-attributes" {

when "../..../nd-s:network-types/l3t-s:l3-unicast-topology/l3-te" {

description "Augment only for L3 TE topology";
}

description "Augment node configuration";
uses l3tet:l3-te-node-attributes;
}

augment "/nd-s:networks/nd-s:network/nd-s:node/termination-point/"
+ "l3t-s:l3-termination-point-attributes" {

when "../../..../nd-s:network-types/l3t-s:l3-unicast-topology/" + "l3-te" {

description "Augment only for L3 TE topology";
}

description "Augment termination point configuration";
uses l3tet:l3-te-tp-attributes;
}

augment "/nd-s:networks/nd-s:network/lnk-s:link/"
+ "l3t-s:l3-link-attributes" {

when "../../../nd-s:network-types/l3t-s:l3-unicast-topology/l3-te" {

description "Augment only for L3 TE topology";
}

description "Augment link configuration";

A.2. Packet Switching TE Topology State Module

<CODE BEGINS> file "ietf-te-topology-packet-state@2017-10-29.yang"
module ietf-te-topology-packet-state {  
yang-version 1;  
namespace  
prefix "tet-pkt-s";  
import ietf-te-topology-packet {  
  prefix "tet-pkt";  
}  
import ietf-network-state {  
  prefix "nd-s";  
}  
import ietf-network-topology-state {  
  prefix "lnk-s";  
}  
import ietf-te-topology-state {  
  prefix "tet-s";  
}  
import ietf-te-types {  
  prefix "te-types";  
}  
organization  
  "Traffic Engineering Architecture and Signaling (TEAS) Working Group";  
contact  
  *WG Web: <http://tools.ietf.org/wg/teas/>  
  WG List: <mailto:teas@ietf.org>  
  WG Chair: Lou Berger  
    <mailto:lberger@labn.net>
description "TE topology model";

revision 2017-10-29 {
  description "Initial revision";
  reference "TBD";
}

/*
 * Augmentations
 */
/* Augmentations to connectivity-matrix */
augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
  + "tet-s:te-node-attributes/tet-s:connectivity-matrices" {
    description
      "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
      if-feature tet-pkt:te-performance-metric;
    }
  }

augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
  + "tet-s:te-node-attributes/tet-s:connectivity-matrices/"
  + "tet-s:connectivity-matrix" {
    description
      "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
      if-feature tet-pkt:te-performance-metric;
    }
  }

augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
   + "tet-s:information-source-entry/"
   + "tet-s:connectivity-matrices" {
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
       if-feature tet-pkt:te-performance-metric;
    }
   }

augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
   + "tet-s:information-source-entry/"
   + "tet-s:connectivity-matrices/"
   + "tet-s:connectivity-matrix" {
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
       if-feature tet-pkt:te-performance-metric;
    }
   }

/* Augmentations to tunnel-termination-point */
augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
   + "tet-s:tunnel-termination-point/"
   + "tet-s:local-link-connectivities" {
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
       if-feature tet-pkt:te-performance-metric;
    }
   }

augment "/nd-s:networks/nd-s:network/nd-s:node/tet-s:te/"
   + "tet-s:tunnel-termination-point/"
   + "tet-s:local-link-connectivities/"
   + "tet-s:local-link-connectivity" {
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
       if-feature tet-pkt:te-performance-metric;
    }
   }

/* Augmentations to te-link-attributes */
augment "/nd-s:networks/tet-s:te/tet-s:templates/"
+ "tet-s:link-template/tet-s:te-link-attributes" {
    when "tet-s:interface-switching-capability "
    + "[tet-s:switching-capability = 'te-types:switching-psc1']" {
        description "Valid only for PSC";
    }
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
        if-feature tet-pkt:te-performance-metric;
    }
}

augment "/nd-s:networks/nd-s:network/lnk-s:link/tet-s:te/"
    + "tet-s:te-link-attributes" {
    when "tet-s:interface-switching-capability "
    + "[tet-s:switching-capability = 'te-types:switching-psc1']" {
        description "Valid only for PSC";
    }
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
        if-feature tet-pkt:te-performance-metric;
    }
}

augment "/nd-s:networks/nd-s:network/lnk-s:link/tet-s:te/"
    + "tet-s:information-source-entry" {
    when "tet-s:interface-switching-capability "
    + "[tet-s:switching-capability = 'te-types:switching-psc1']" {
        description "Valid only for PSC";
    }
    description
    "Parameters for PSC TE topology.";
    uses te-types:performance-metric-container {
        if-feature tet-pkt:te-performance-metric;
    }
}

/* Augmentations to interface-switching-capability */
augment "/nd-s:networks/tet-s:site/tet-s:templates/"
    + "tet-s:link-template/tet-s:te-link-attributes/"
    + "tet-s:interface-switching-capability" {
    when "tet-s:switching-capability = 'te-types:switching-psc1' " {
        description "Valid only for PSC";
    }
    description
    "Parameters for PSC TE topology.";
    uses tet-pkt:packet-switch-capable-container;
augment "/nd-s:networks/nd-s:network/lnk-s:link/tet-s:te/
    + "tet-s:te-link-attributes/"
    + "tet-s:interface-switching-capability" {
        when "tet-s:switching-capability = 'te-types:switching-psc1' " {
            description "Valid only for PSC";
        }
        description
            "Parameters for PSC TE topology.";
        uses tet-pkt:packet-switch-capable-container;
    }

augment "/nd-s:networks/nd-s:network/lnk-s:link/tet-s:te/
    + "tet-s:information-source-entry/"
    + "tet-s:interface-switching-capability" {
        when "tet-s:switching-capability = 'te-types:switching-psc1' " {
            description "Valid only for PSC";
        }
        description
            "Parameters for PSC TE topology.";
        uses tet-pkt:packet-switch-capable-container;
    }

Authors’ Addresses

Xufeng Liu
Jabil
8281 Greensboro Drive, Suite 200
McLean VA 22102
USA

EMail: Xufeng_Liu@jabil.com

Igor Bryskin
Huawei Technologies

EMail: Igor.Bryskin@huawei.com
Vishnu Pavan Beeram
Juniper Networks
EMail: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc
EMail: tsaad@cisco.com

Himanshu Shah
Ciena
EMail: hshah@ciena.com

Oscar Gonzalez de Dios
Telefonica
EMail: oscar.gonzalezdedios@telefonica.com
YANG Data Model for SR and SR TE Topologies
draft-liu-teas-yang-sr-te-topo-04

Abstract

This document defines a YANG data model for Segment Routing (SR)
topology and Segment Routing (SR) traffic engineering (TE) topology.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

1. Introduction

This document defines a YANG [RFC7950] data model for describing the presentations of Segment Routing (SR) topology and Segment Routing (SR) traffic engineering (TE) topology.

1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, [RFC2119].

The following terms are defined in [RFC7950] and are not redefined here:

- augment
- data model
2. Modeling Considerations

2.1. Segment Routing (SR) topology

The Layer 3 network topology model is discussed in [I-D.ietf-i2rs-yang-l3-topology]. The Segment Routing (SR) topology model proposed in this document augments and uses the ietf-l3-unicast-igp-topology module defined in [I-D.ietf-i2rs-yang-l3-topology]. SR related attributes are covered in the ietf-sr-topology model.

```
+------------------+
| Layer 3 Network Topology |
| ietf-l3-unicast-topology |
+------------------+
| |
| V
+------------------+
| SR Topology |
| ietf-sr-topology |
+------------------+
```

2.2. Segment Routing (SR) TE topology

When traffic engineering is enabled on an SR topology, there will be associations between objects in SR topologies and objects in TE topologies. An SR TE topology is both an SR topology and a layer 3 TE topology. Multiple inheritance is used to achieve such relations.

```
+------------------+
| SR Topology |
| ietf-sr-topology |
+------------------+
\ / \ /
\ / \ /
\ / \ /
V V
+------------------+
| SR TE Topology |
| |
+------------------+
```

```
+------------------+
| L3 TE Topology |
| ietf-l3-te-topology |
+------------------+
| |
| V
+------------------+
| |
| |
```


Each type of topologies is indicated by "network-types" defined in [I-D.ietf-i2rs-yang-network-topo]. For the three types of topologies above, the data representations are:

L3 Topology:
/nd:networks/nd:network/nd:network-types/l3-unicast-topology

L3 TE Topology:
/nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te

SR Topology:

SR TE Topology: (multiple inheritance)
/nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te

2.3. Relations to ietf-segment-routing

[I-D.ietf-spring-sr-yang]defines ietf-segment-routing that is a model intended to be used on network elements to configure or operate segment routing; ietf-sr-topology defined in this document is intended to be used on a controller for the network-wide operations such as path computation.

SR topology model shares many modeling constructs defined in ietf-segment-routing. The module ietf-sr-topology uses the types and groupings defined in ietf-segment-routing.

2.4. Open Items

a. Protection on link: The feature of link protection will be modeled in the next revision.

b. Link bundle: The feature of link bundle will be modeled in the next revision.

3. Model Structure

The model tree structure of the Segment Routing (SR) topology module is as shown below:
module: ietf-sr-topology

augment /nw:networks/nw:network/nw:network-types
/l3t:l3-unicast-topology:
  +--rw sr!

augment /nw:networks/nw:network/l3t:l3-topology-attributes:
  +--rw sr
  |  +--rw srgb* [lower-bound upper-bound]
  |     +--rw lower-bound    uint32
  |     +--rw upper-bound    uint32

augment /nw:networks/nw:network/nw:node/l3t:l3-node-attributes:
  +--rw sr
  |  +--rw srgb* [lower-bound upper-bound]
  |     +--rw lower-bound    uint32
  |     +--rw upper-bound    uint32
  |  +--rw srlb* [lower-bound upper-bound]
  |      +--rw lower-bound    uint32
  |      +--rw upper-bound    uint32
  +--rw node-capabilities
     |  +--rw transport-planes* [transport-plane]
     |     +--rw transport-plane    identityref
     |     +--rw readable-label-stack-depth?   uint8
     +--ro information-source?         enumeration
     +--ro information-source-state
     +--ro credibility-preference?   uint16

augment /nw:networks/nw:network/nw:node/l3t:l3-node-attributes
/l3t:prefix:
  +--rw sr!
     |  +--rw value-type?     enumeration
     |  +--rw start-sid      uint32
     |  +--rw range?         uint32
     |  +--rw algorithm?     identityref
     |  +--rw last-hop-behavior?   enumeration
     | {sid-last-hop-behavior}?
     |     +--rw is-local?    boolean

augment /nw:networks/nw:network/nw:node/nt:termination-point
/l3t:termination-point-attributes:
  +--rw sr
  |  +--rw sid?          uint32
  |  +--rw value-type?   enumeration
  |  +--rw is-local?     boolean
  |  +--rw is-part-of-set?  boolean
  |  +--ro is-on-lan?    boolean
  |  +--ro information-source?         enumeration
  |  +--ro information-source-state
  +--ro credibility-preference?   uint16
4. YANG Module

<CODE BEGINS> file "ietf-sr-topology@2017-10-30.yang"
module ietf-sr-topology {
    yang-version 1.1;
    prefix "srt";

    import ietf-network {
        prefix "nw";
    }
    import ietf-network-topology {
        prefix "nt";
    }
    import ietf-l3-unicast-topology {
        prefix "l3t";
    }
    import ietf-segment-routing-common {
        prefix "sr-cmn";
    }

    organization "TBD";
    contact "TBD";
    description "L3 TE Topology model";

    revision 2017-10-30 {
        description "Initial revision";
        reference "TBD";
    }

    grouping sr-topology-type {
        description
            "Identifies the SR topology type.";
        container sr {
            presence "Indicates SR Topology";
            description
                "Its presence identifies the SR topology type.";
        }
    }

    augment "/nw:networks/nw:network/nw:network-types/"
        + "l3t:l3-unicast-topology" {
            description
                "Defines the SR topology type.";
            uses sr-topology-type;
        }

augment "/nw:networks/nw:network/l3t:13-topology-attributes" {
    when "./nw:network-types/l3t:13-unicast-topology/sr" {
        description "Augment only for SR topology.";
    }
    description "Augment topology configuration";
    uses sr-topology-attributes;
}

augment "/nw:networks/nw:network/nw:node/l3t:13-node-attributes" {
    when "./nw:network-types/l3t:13-unicast-topology/sr" {
        description "Augment only for SR topology.";
    }
    description "Augment node configuration.";
    uses sr-node-attributes;
}

augment "/nw:networks/nw:network/nw:node/l3t:13-node-attributes" + "/l3t:prefix" {
    when "./nw:network-types/l3t:13-unicast-topology/sr" {
        description "Augment only for SR topology.";
    }
    description "Augment node prefix.";
    uses sr-node-prefix-attributes;
}

augment "/nw:networks/nw:network/nw:node/nt:termination-point/" + "/l3t:termination-point-attributes" {
    when "./nw:network-types/l3t:13-unicast-topology/" + "/sr" {
        description "Augment only for SR topology.";
    }
    description "Augment termination point configuration";
    uses sr-tp-attributes;
}

augment "/nw:networks/nw:network/nt:link/l3t:13-link-attributes" {
    when "./nw:network-types/l3t:13-unicast-topology/sr" {
        description "Augment only for SR topology.";
    }
    description "Augment link configuration.";
    uses sr-link-attributes;
}

grouping sr-topology-attributes {
    description "SR topology scope attributes.";
    container sr {
        description "Containing SR attributes.";
    }
}
uses sr-cmn:srgb-cfg;
} // sr
} // sr-topology-attributes

grouping information-source-attributes {
  description "The attributes identifying source that has provided the related information, and the source credibility.";
  leaf information-source {
    type enumeration {
      enum "unknown" {
        description "The source is unknown.";
      }
      enum "locally-configured" {
        description "Configured entity.";
      }
      enum "ospfv2" {
        description "OSPFv2.";
      }
      enum "ospfv3" {
        description "OSPFv3.";
      }
      enum "isis" {
        description "ISIS.";
      }
      enum "system-processed" {
        description "System processed entity.";
      }
      enum "other" {
        description "Other source.";
      }
    }
    config false;
    description "Indicates the source of the information.";
  }
  container information-source-state {
    config false;
    description "The container contains state attributes related to the information source.";
    leaf credibility-preference {
      type uint16;
      description "The preference value to calculate the traffic engineering database credibility value used for tie-break selection between different information-source values.";
    }
  }
}
Higher value is more preferable.";
}
)
} // information-source-attributes

// sr-node-attributes

grouping sr-node-attributes {
    description "SR node scope attributes.";
    container sr {
        description "Containing SR attributes.";
        uses sr-cmn:srgb-cfg;
        uses sr-cmn:srlb-cfg;
        uses sr-cmn:node-capabilities;
        // Operational state data
        uses information-source-attributes;
    } // sr
} // sr-node-attributes

// sr-node-prefix-attributes

grouping sr-node-prefix-attributes {
    description "Containing SR attributes for a prefix.";
    container sr {
        presence "Presence indicates SR is enabled.";
        description "Containing SR attributes for a prefix.";
        uses sr-cmn:prefix-sid-attributes;
        uses sr-cmn:last-hop-behavior;
        leaf is-local {
            type boolean;
            description "'true' if the SID is local.";
        }
    } // sr
} // sr-node-prefix-attributes

// sr-tp-attributes

grouping sr-tp-attributes {
    description "SR termination point scope attributes";
} // sr-tp-attributes

// sr-link-attributes

grouping sr-link-attributes {
    description "SR link scope attributes";
    container sr {
        description "Containing SR attributes.";
        leaf sid {
            type uint32;
            description "SID.";
        }
    }
} // sr-link-attributes
uses sr-cmn:sid-value-type;
leaf is-local {
  type boolean;
  description
    "'true' if the SID is local."
}
leaf is-part-of-set {
  type boolean;
  config false;
  description
    "'true' if the SID is part of a set."
}
leaf is-on-lan {
  type boolean;
  config false;
  description
    "'true' if on a lan."
}
uses information-source-attributes;
} // sr
} // sr-link-attributes

5. IANA Considerations

RFC Ed.: In this section, replace all occurrences of 'XXXX' with the actual RFC number (and remove this note).

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

--------------------------------------------------------------------
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------

This document registers the following YANG modules in the YANG Module Names registry [RFC6020]:
6. Security Considerations

The configuration, state, action and notification data defined in this document are designed to be accessed via the NETCONF protocol [RFC6241]. The data-model by itself does not create any security implications. The security considerations for the NETCONF protocol are applicable. The NETCONF protocol used for sending the data supports authentication and encryption.

7. References

7.1. Normative References


7.2. Informative References

[I-D.ietf-i2rs-yang-network-topo]
Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A Data Model for Network Topologies",
draft-ietf-i2rs-yang-network-topo-17 (work in progress), October 2017.

[I-D.ietf-i2rs-yang-l3-topology]
Clemm, A., Medved, J., Varga, R., Liu, X.,
Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model for Layer 3 Topologies",
draft-ietf-i2rs-yang-l3-topology-12 (work in progress), October 2017.

[I-D.ietf-teas-yang-te-topo]
Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Dios, "YANG Data Model for TE Topologies",

[I-D.ietf-spring-sr-yang]
Litkowski, S., Qu, Y., Sarkar, P., and J. Tantsura, "YANG Data Model for Segment Routing",
Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

The YANG module ietf-sr-topology defined in this document is designed to be used in conjunction with implementations that support the Network Management Datastore Architecture (NMDA) defined in [I-D.ietf-netmod-revised-datastores]. In order to allow implementations to use the model even in cases when NMDA is not supported, the following companion module, ietf-sr-topology-state, is defined as state model, which mirrors the module ietf-sr-topology defined earlier in this document. However, all data nodes in the companion module are non-configurable, to represent the applied configuration or the derived operational states.

The companion module, ietf-sr-topology-state, is redundant and SHOULD NOT be supported by implementations that support NMDA.

As the structure of the companion module mirrors that of the corresponding NMDA model, the YANG tree of the companion module is not depicted separately.

A.1. SR Topology State Module

<CODE BEGINS> file "ietf-sr-topology-state@2017-10-30.yang"
module ietf-sr-topology-state {  
  yang-version 1.1;  
  prefix "srt-s";

  import ietf-sr-topology {  
    prefix "srt";
  }

  import ietf-network-state {  
    prefix "nw-s";
  }

  import ietf-network-topology-state {  
    prefix "nt-s";
  }

  import ietf-l3-unicast-topology-state {  
    prefix "l3t-s";
  }

  import ietf-segment-routing-common {  
    prefix "sr-cmn";
  }

  organization "TBD";
  contact "TBD";
  description "L3 TE Topology model";

</CODE>
augment "/nw-s:networks/nw-s:network/nw-s:network-types/" + "l3t-s:l3-unicast-topology" {
  description
    "Defines the SR topology type.";
  uses srt:sr-topology-type;
}

	augment "/nw-s:networks/nw-s:network/" + "l3t-s:l3-topology-attributes" {
  when "../nw-s:network-types/l3t-s:l3-unicast-topology/sr" {
    description "Augment only for SR topology.";
  }
  description "Augment topology configuration";
  uses srt:sr-topology-attributes;
}

	augment "/nw-s:networks/nw-s:network/nw-s:node/" + "l3t-s:l3-node-attributes" {
  when "../../../nw-s:network-types/l3t-s:l3-unicast-topology/sr" {
    description "Augment only for SR topology.";
  }
  description "Augment node configuration.";
  uses srt:sr-node-attributes;
}

	augment "/nw-s:networks/nw-s:network/nw-s:node/" + "l3t-s:l3-node-attributes/l3t-s:prefix" {
  when "../../../../nw-s:network-types/l3t-s:l3-unicast-topology/sr" {
    description "Augment only for SR topology.";
  }
  description "Augment node prefix.";
  uses srt:sr-node-prefix-attributes;
}

	augment "/nw-s:networks/nw-s:network/nw-s:node/" + "nt-s:termination-point/" + "l3t-s:l3-termination-point-attributes" {
  when "../../../nw-s:network-types/l3t-s:l3-unicast-topology/" + "sr" {
    description "Augment only for SR topology.";
  }
  description "Augment termination point configuration";
  uses srt:sr-tp-attributes;
}
augment "/nw-s:networks/nw-s:network/nt-s:link/"
  + "l3t-s:l3-link-attributes" {
    when "../../nw-s:network-types/l3t-s:l3-unicast-topology/sr" {
      description "Augment only for SR topology.";
    }
    description "Augment link configuration.";
    uses srt:sr-link-attributes;
  }

grouping sr-topology-attributes {
  description "SR topology scope attributes.";
  container sr {
    description "Containing SR attributes.";
    uses sr-cmn:srgb-cfg;
  } // sr
} // sr-topology-attributes

<CODE ENDS>
Extending YANG for events, actions, and finite state machine
draft-sambo-opsawg-ccamp-supasupanyang-fsm-00

Abstract

Network operators and service providers are facing the challenge of deployment of systems from different vendors while looking for a trade-off among transmission performance, network device reuse, and capital expenditure without the need of being tied to single vendor equipment. The deployment and operation of more dynamic and programmable transport optical network infrastructures can be driven by adopting model-driven and software-defined control and management paradigms. In this context, YANG enables to compile a set of consistent vendor-neutral data models for optical networks and components based on actual operational needs emerging from heterogeneous use cases. This document extends YANG from data to functional modeling in order to describe events, operations, and finite state machine of YANG-defined network elements. The proposed models can be applied in the context of optical networks to pre-instruct data plane devices (e.g., an optical transponder) on the actions to be performed (e.g., code adaptation) in case some events, such as physical layer degradations, occur.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
1. Introduction

Networks are evolving toward more programmability, flexibility, and multi-vendor interoperability. Multi-vendor interoperability can be applied in the context of nodes, i.e. a node composed of components provided by different vendors (named white box) is assembled under the same control system. This way, operators can optimize costs and network performance without the need of being tied to single vendor equipment. NETCONF protocol RFC6241 [RFC6241] based on YANG data modeling language RFC6020 [RFC6020] is emerging as a candidate Software Defined Networking (SDN) enabled protocol. First, NETCONF supports both control and management functionalities, thus permits high programmability. Then, YANG enables data modeling in a vendor-neutral way. Some recent works have provided YANG models to describe attributes of links (e.g., identification), nodes (e.g., connectivity matrix), media channels, and transponders (e.g., supported forward error correction - FEC) of networks ([I-D.ietf-i2rs-yang-network-topo] [I-D.vergara-ccamp-flexigrid-yang] [I-D.zhang-ccamp-l1-topo-yang]), also including optical technologies. Such draft mainly refers to elastic optical networks (EONs), i.e. optical networks based on flexible grid where circuits with different bandwidth requirements are switched. EONs are expected to employ flexible transponders, i.e. transponders supporting multiple bit rates, multiple modulation formats, and multiple codes. Such transponders permits the (re-) configuration of the bit rate value based on traffic requirements, as well as the configuration of the modulation format and code based on the physical characteristics of a path (e.g., quadrature phase shift keying is more robust than 16 quadrature amplitude modulation). This document extends YANG from data to functional modeling in order to describe events, operations, and finite state machine of YANG-defined network elements. Such models can be applied to a case of transponder reconfiguration in EONs. In particular, the model enables a centralized remote network controller (managed by a network operator) to instruct a transponder controller about the actions to perform when certain events (e.g., failures) occur. The actions to be taken and the events can be re-programmed on the device.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [RFC2119].
3. Terminology

ABNO: Application-Based Network Operations
BER: Bit Error Rate
EON: Elastic Optical Network
FEC: Forward Error Correction
FSM: Finite State Machine
NETCONF: Network Configuration Protocol
OAM: Operation Administration and Maintenance
SDN: Software Defined Network
YANG: Yet Another Network Generator

4. Example of application

Flexible transponders enable several settings of transmission parameters’ configuration, through the support of multiple modulation formats and forward error correction (FEC) schemes. This way, transmission parameters can be (re-)configured based on the physical layer conditions. The YANG model presented in this draft enables to pre-program reconfiguration settings of data plane devices in case of failures or physical layer degradations. In particular, soft failures are assumed. Soft failures imply transmission performance degradation, in turns a bit error rate (BER) increase, e.g. due to the ageing of some network devices. Without loosing generality, the ABNO architecture is assumed for the control and management of EONs (RFC7491 [RFC7491]). Considering the state of the art, when pre-FEC BER passes above a predefined threshold, it is expected that an alarm is sent to the OAM Handler, which communicates with the ABNO controller that may trigger an SDN controller (that could be the Provisioning Manager of ABNO RFC7491 [RFC7491]) for computing new transmission parameters. The involved ABNO modules are shown in the simplified ABNO architecture of Fig. 1. Then, transponders are reconfigured. When alarms related to several connections impacted by the soft failure are generated, this procedure may be particularly time consuming. The related workflow for transponder reconfiguration is shown in Fig. 2. The proposed model enables an SDN controller to instruct the transponder about reconfiguration of new transmission parameters values if a soft failure occurs. This can be done before the failure occurs (e.g., during the connection instantiation phase or during the connection service), so that data plane devices can
promptly reconfigure themselves without querying the SDN controller to trigger an on-demand recovery. This is expected to speed up the recovery process from soft failures. The related flow chart is shown in Fig. 3.

Figure 1: Assumed ABNO functional modules
Figure 2: Flow chart of the expected state-of-the-art approach
5. Extending YANG for events and reactions

The model extends YANG to define a list of events associated with specific reactions. The related code and tree are shown in the Appendix.

<event>: this element defines an event and it is composed by a set of leaves’ attributes as follows.
<name>: this attribute defines the name of the event.
<type>: this attribute defines the type of the event from a pool of possible event types predefined inside the YANG model. Together with the <name> attribute, it uniquely identifies the event.
<description>: this optional attribute is a "string" describing the event
<filters>: this leaf is a list that enhances the description of an event. Given that an event does not necessary means a particular degradation or faults, this list can be used to define thresholds to express a measure
of the event.
<filter>: this leaf of <filters> defines a threshold to characterize the event.
<filter-id>: this leaf of <filters> define the identifier number associated with the <filter> attribute.
<reaction>: this attribute defines a list of operations to take if the event occurs.
<operations>: this list defines the set of operations that have to be taken if the event occurs.
<id>: this leaf of <operations> defines the identifier number of an operation.
<type>: this leaf of <operations> defines the type of an operation.
<simple>: this leaf defines (differently from <conditional> detailed below) an operation that has to be directly executed.
<execute>: this attribute recalls an RPC encapsulating the effective task (operation) to be executed by the data plane hardware.
<next-operation>: this attribute defines the identification number of a next operation that has to be taken.
<conditional>: this leaf enables a check ("true" or "false") to be verified before executing the operation. Based on the check, the proper attributes <execute> and <next-operation> are considered.
<statement>: this leaf of <conditional> defines the condition to be verified before executing the operation.
<true>: this leaf of <conditional> defines a result of the check associated to <statement>. Proper <execute> and <next-operation> attributes are associated with this result of the check.
>false>: this leaf of <conditional> defines a result of the check associated to <statement>. Proper <execute> and <next-operation> attributes are
6. Extending YANG for finite state machine (FSM)

This model extends the one of the events and reactions by adding the state information and state transition. More precisely, the model defines a list of states associated with events. Each state has a description attribute and it is identified through an id. Each state includes a list of events as defined in the event model, with the additional next-state attribute, which points to the next state. The related code and tree are shown in the Appendix.

<current-state>: it defines the current state of the FSM.
<states>: this element defines the FSM as follows.
<state>: this list defines all the FSM states.
  <id>: this leaf attribute of <state> defines the identifier of the state
  <name>: this leaf attribute of <state> defines the name of the state
  <description>: this leaf is a "string" describing the state
  <events>: this attribute is the one described in the previous section. In particular, this attribute defines a list of events that may induce a transition to another state in the FSM.
  <next-state>: this attribute is included in the model <events> and defines the next state of FSM when an operation is executed.

7. Implementation for the considered use case of application

The models defined in this document are an extension of YANG through functions, events, and FSM, besides data modeling. These models can be used to enable a centralized network controller, managed by a network operator, to instruct data plane hardware on its reconfiguration if some events, such as a failure or physical layer degradation, occur. As an example, an optical signal impacted by a soft failure (i.e., a physical layer degradation inducing a pre-forward error correction bit error rate increase - pre-FEC) can be maintained by adapting the FEC of the signal itself. This action to be taken and, more in general operations to be executed depending on critical events, can be (re-) programmed on the transponder by (re-) sending a NETCONF <edit-config> message to the device controller including a FSM defined by the YANG model. Such a system has the main goal to speed up the reaction of the network to certain events/
faults and to alleviate the workload of the centralized controller. The speed up derives from the fact that the centralized controller is able to pre-compute and pre-configure on the network devices the actions to take when an event occurs taking into account a global view and knowledge of the network. In this way, the device is already aware of the actions to be locally applied to reconfigure a connection, avoiding to inform the controller and to wait for the response indicating what to do. Consequently, part of the workload is also removed from the centralized controller. When the reaction is successfully completed in the data plane, the centralized controller can be notified about the faults and the taken action. A flexible transponder supporting two FEC types, 7% and 20%, is considered. A two-states FSM is also assumed. The states have <name> attribute set to "Steady" and "Fec-Baud-Adapt", respectively. In the "Steady" state, the signal is in a healthy condition, adopting a 7% FEC, with a pre-FEC BER below an assigned threshold of 9 x 10^{-4}. A transition from this state can be triggered by the event with <name>=BER_CHANGE and <filter-type>=9 x 10^{-4}, thus expressing a change of the pre-FEC BER above the threshold. In case the pre-FEC BER exceeds 9 x 10^{-4} due to a soft failure, the state machine evolves to the "Fec-Baud-Adapt" state and an adaptation to a more robust FEC of 20% (executed by the attribute <execute>) is performed. The system can return to the "Steady" state if the pre-FEC BER goes below another pre-defined threshold and the FEC is reconfigured to 7%.

8. Appendix

This appendix reports the YANG models code and the related tree.

8.1. YANG model for events and actions - Tree
8.2. YANG model for FSM - Tree
module events {
    namespace "http://sssup.it/events";
    prefix ev;

    import ietf-yang-push {
        prefix yp;
    }

    organization
        "Scuola Superiore Sant’Anna Network and Services Laboratory";

    contact
        " Editor: Matteo Dallaglio"
}
<mailto:m.dallaglio@sssup.it>

description
"This module contains a YANG definitions of events and generic reactions.";

revision 2016-03-15 {
  description "Initial Revision.";
  reference
    "RFC xxxx: A YANG data model for the description of events and reactions";
}

// identity statements

identity EVENT {
  description "Base for all types of event";
}

identity ON_CHANGE {
  base EVENT;
  description
    "The event when the database changes.";
}

// typedef statements

typedef event-type {
  type identityref {
    base EVENT;
  }
}

typedef event-id-type {
  type uint32;
}

// grouping statements

grouping operation-block {
  leaf id {
    type event-id-type;
  }
  leaf type {
    type enumeration {
      enum CONDITIONAL_OP;
      enum SIMPLE_OP;
    }
  }
}
grouping execution-top {
    anyxml execute {
        description "Represent the action to perform";
    }
    leaf next-operation {
        type event-id-type;
        description "the id of the next operation to execute";
    }
}

container conditional {
    when "../type = 'CONDITIONAL_OP'";
    leaf statement {
        type string;
        mandatory true;
        description "The statement to be evaluated before execution. E.g. if a=b";
    }
    container true {
        uses execution-top;
    }
    container false {
        uses execution-top;
    }
}

container simple {
    when "../type = 'SIMPLE_OP'";
    description "Simple execution of an action without checking any condition";
    uses execution-top;
}

grouping operation-top {
    list operation {
        key "id";
        ordered-by user;
        uses operation-block;
    }
}

grouping on-change {
description
  "Event occurring when a modification of one or more objects occurs";

container filters {
  description
    "This container contains a list of configurable filters that can be applied to subscriptions. This facilitates the reuse of complex filters once defined.";
  list filter {
    key "filter-id";
    description
      "A list of configurable filters that can be applied to subscriptions.";
    leaf filter-id {
      type yp:filter-id;
      description
        "An identifier to differentiate between filters.";
    }
    uses yp:datatree-filter;
  }
}

grouping event-top {
  leaf name {
    type string;
    mandatory true;
  }

  leaf type {
    type event-type;
    mandatory true;
  }

  leaf description {
    type string;
  }

  // list of all possible events
  uses on-change {
    when "type = 'ON_CHANGE'";
  }

  container reaction {
    uses operation-top;
  }
}
grouping events-top {
    container events {
        list event {
            key "name type";
            uses event-top;
        }
    }
}

// data definition statements
uses events-top;

// extension statements

// feature statements

// augment statements

// rpc statements

// notification statements

 }//module events

8.4.  YANG model for FSM - Code

module finite-state-machine {
    namespace "http://sssup.it/fsm";
    prefix fsm;

    import events {
        prefix ev;
    }

    organization
        "Scuola Superiore Sant’Anna Network and Services Laboratory";

    contact
        " Editor: Matteo Dallaglio
            <mailto:m.dallaglio@sssup.it>
            ";

    description
        "This module contains a YANG definitions of a generic finite state
revision 2016-03-15 {
  description "Initial Revision.";
  reference
  "RFC xxxx:";
}

// identity statements
// typedef statements
typedef state-id-type {
  type uint32;
}

// grouping statements
grouping state-top {
  leaf id {
    type state-id-type;
  }

  leaf name {
    type string;
  }

  leaf description {
    type string;
  }
}

grouping next-state-top {
  leaf next-state {
    type leafref {
      path "././././././././././././states/state/id";
    }
    description "Id of the next state";
  }
}

uses ev:events-top {
  augment "events/event/reaction/operation/conditional/true" {
    uses next-state-top;
  }

  augment "events/event/reaction/operation/conditional/false" {
    uses next-state-top;
  }
}
augment "events/event/reaction/operation/simple" {
  //uses next-state-top;
  leaf next-state {
    type leafref {
      path "../../../../../states/state/id";
    }
    description "Id of the next state";
  }
}

grouping states-top {
  leaf current-state {
    type leafref {
      path "../states/state/id";
    }
  }
  container states {
    list state {
      key "id";
      uses state-top;
    }
  }
}

// data definition statements

uses states-top;

// extension statements
// feature statements
// augment statements.
// rpc statements
// notification statements
8.5. Example of values for the YANG model

<table>
<thead>
<tr>
<th>FIELD NAME</th>
<th>YANG DATA TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current State</td>
<td>leafref</td>
<td>&quot;an existing state id in the FSM&quot;</td>
</tr>
<tr>
<td>State id</td>
<td>uint32</td>
<td>1</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Steady</td>
</tr>
<tr>
<td>description</td>
<td>string</td>
<td>&quot;whatever string&quot;</td>
</tr>
<tr>
<td>State event name</td>
<td>string</td>
<td>&quot;whatever string&quot;</td>
</tr>
<tr>
<td>type</td>
<td>enum</td>
<td>BER_CHANGE</td>
</tr>
<tr>
<td>description</td>
<td>string</td>
<td>&quot;whatever string&quot;</td>
</tr>
<tr>
<td>State filter id</td>
<td>uint32</td>
<td>2</td>
</tr>
<tr>
<td>filter-type</td>
<td>anyxml or xpath</td>
<td>BER&gt;0.0009</td>
</tr>
<tr>
<td>reaction id</td>
<td>uint32</td>
<td>3</td>
</tr>
<tr>
<td>type</td>
<td>enum</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>statement</td>
<td>string</td>
<td>&quot;whatever string&quot;</td>
</tr>
<tr>
<td>execute</td>
<td>anyxml</td>
<td>&quot;this recalls an RFC where the FEC value is expressed&quot;</td>
</tr>
<tr>
<td>next-operation</td>
<td>uint32</td>
<td>NULL</td>
</tr>
<tr>
<td>next-state</td>
<td>leafref</td>
<td>&quot;an existing state id in the FSM&quot;</td>
</tr>
</tbody>
</table>

9. Acknowledgements

This work has been partially supported by the European Commission through the H2020 ORCHESTRA (Optical peRformance monitoring enabling dynamic networks using a Holistic cross-layEr, Self-configurable Truly flexible approach, grant agreement no: H2020-645360) project. The views expressed here are those of the authors only. The European Commission is not liable for any use that may be made of the information in this document.
10. Security Considerations

TBD

11. References

11.1. Normative References


11.2. Informative References


Authors’ Addresses

Nicola Sambo
Scuola Superiore Sant’Anna
Via Moruzzi 1
Pisa 56124
Italy
Email: nicola.sambo@sssup.it

Matteo Dallaglio
Scuola Superiore Sant’Anna
Via Moruzzi 1
Pisa 56124
Italy
Email: matteo.dallaglio@sssup.it

Piero Castoldi
Scuola Superiore Sant’Anna
Via Moruzzi 1
Pisa 56124
Italy
Email: piero.castoldi@sssup.it

Giuseppe Fioccola
Telecom Italia
Via Reiss Romoli, 274
Torino 10148
Italy
Email: giuseppe.fioccola@telecomitalia.it

Andrea Di Giglio
Telecom Italia
Via Reiss Romoli, 274
Torino 10148
Italy
Email: andrea.digiglio@telecomitalia.it
Abstract

This document describes the YANG data model for OTN Tunnels.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 26, 2017.
1. Introduction

OTN transport networks can carry various types of client services. In many cases, the client signal is carried over an OTN tunnel across connected domains in a multi-domain network. These OTN services can either be transported or switched in the OTN network. If an OTN tunnel is switched, then additional parameters need to be provided to create a Mux OTN service.

This document provides YANG model for creating OTN tunnel. The model augments the TE Tunnel model, which is an abstract model to create TE Tunnels.
2. Terminology and Notations

A simplified graphical representation of the data model is used in this document. The meaning of the symbols in the YANG data tree presented later in this draft is defined in [I-D.ietf-netmod-rfc6087bis]. They are provided below for reference.

- Brackets "[" and "]" enclose list keys.
- Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only).
- Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and leaf-list.
- Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":").
- Ellipsis ("...") stands for contents of subtrees that are not shown.

3. Model Overview

3.1. Mux Service in Multi-Domain OTN Network

```
+----------+ +----------+
| | | |
| XX | | XX |
| | | |
| +----+ | | +----+ |
| X | | X |
| +-----+ | | +-----+ |
| XX | | XX |
| | | |
| | | |
+----------+ X +----------+
| | | |
| XX | | XX |
| | | |
| +----+ | | +----+ |
| X | | X |
| +-----+ | | +-----+ |
| XX | | XX |
| | | |
| | | |
```

Same OTN Service attributes:
1. Client Signal
2. Tributary Port Number
3. Tributary Slot Granularity
4. Tributary Slots

Figure 1: OTN Mux Service in a multi-domain network topology

Figure 1 shows a multi-domain OTN network with three domains. In this example, user wants to setup an end-to-end OTN service that passes through Domain-2. In order to create an OTN mux service in Domain-2, user will need to specify the exact details of the client side LO-ODU on NE2 and NE3, so that these service endpoints can be paired with the LO-ODU endpoints on NE1 and NE4, respectively.

Let’s assume that ODU4 is the client side HO-ODU on NE2 and NE3, and the client signal is ODU2. User will need to specify the OTN client signal (ODU2 in this example), the Tributary Port Number (TPN), Tributary Slot Granularities (TSG) and tributary slots to be used. As shown in the figure above, these service parameters must be the same between NE1 and NE2, and NE3 and NE4.

Once the OTN Mux service is setup in Domain-2, the incoming signal from either NE1 and/or NE4 will be switched inside Domain-2, and delivered to NE at the other end.

3.2. Bookended and Non-BookEnded OTN Tunnel

OTN tunnel model provides support for both bookended and non-bookended OTN tunnels.

For bookended tunnels, the same client signal is present on source and destination endpoints. For example, ODU2e bookended tunnel will have the same ODU2e client signal at both source and destination endpoints.

For non-bookended tunnels, different client signals are present on source and destination endpoints. For example, the client signal can be ODU2e on the source endpoint and the handoff at the destination can be 10GbE-LAN client signal.

3.3. Network and Client side tunnel services

The OTN tunnel model provides support for both network to network and client to client tunnels. For network to network tunnel, network termination points on source and destination node represent source and destination endpoints. For client to client tunnel, client termination points on source and destination node represent source and destination endpoints.

If a client to client tunnel needs to use one or more HO (or server) network to network tunnels, ERO and routing constraints, defined in the base TE model, can be used to route the client tunnel over one or more server tunnels.
3.4. OTN Tunnel YANG Tree

module: ietf-otn-tunnel
    augment /te:te/te:tunnels/te:tunnel/te:config:
        +--rw payload-treatment?       enumeration
        +--rw src-client-signal?       identityref
        +--rw src-tpn?                uint16
        +--rw src-tsg?                identityref
        +--rw src-tributary-slot-count?  uint16
        +--rw src-tributary-slots
            |  +--rw values*   uint8
        +--rw dst-client-signal?       identityref
        +--rw dst-tpn?                uint16
        +--rw dst-tsg?                identityref
        +--rw dst-tributary-slot-count?  uint16
        +--rw dst-tributary-slots
            +--rw values*   uint8

    augment /te:te/te:tunnels/te:tunnel/te:state:
        +--ro payload-treatment?       enumeration
        +--ro src-client-signal?       identityref
        +--ro src-tpn?                uint16
        +--ro src-tsg?                identityref
        +--ro src-tributary-slot-count?  uint16
        +--ro src-tributary-slots
            |  +--ro values*   uint8
        +--ro dst-client-signal?       identityref
        +--ro dst-tpn?                uint16
        +--ro dst-tsg?                identityref
        +--ro dst-tributary-slot-count?  uint16
        +--ro dst-tributary-slots
            +--ro values*   uint8

3.5. OTN Tunnel YANG Code

    <CODE BEGINS>file "ietf-otn-tunnel@2017-05-25.yang"

    module ietf-otn-tunnel {
        yang-version 1.1;

        namespace "urn:ietf:params:xml:ns:yang:ietf-otn-tunnel";
        prefix "otn-tunnel";

        import ietf-te { prefix "te"; }
        import ietf-transport-types { prefix "tran-types"; }
        //import yang-ext { prefix ext; revision-date 2013-07-09; }

organization
"IETF CCAMP Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/ccamp/>
WG List: <mailto:ccamp@ietf.org>

Editor: Haomian Zheng
<mailto:zhenghaomian@huawei.com>

Editor: Zheyu Fan
<mailto:fanzheyu2@huawei.com>

Editor: Anurag Sharma
<mailto:ansha@google.com>

Editor: Rajan Rao
<mailto:rrao@infinera.com>

Editor: Sergio Belotti
<mailto:sergio.belotti@nokia.com>

Editor: Victor Lopez
<mailto:victor.lopezalvarez@telefonica.com>

Editor: Yunbo Li
<mailto:liyunbo@chinamobile.com>";

description
"This module defines a model for OTN Tunnel Services.";

revision "2017-05-25" {
  description
  "Revision 0.3";
  reference
  "draft-sharma-ccamp-otn-tunnel-model-02.txt";
}

grouping otn-tunnel-endpoint {
  description "Parameters for OTN tunnel.";

  leaf payload-treatment {
    type enumeration {
      enum switching;
      enum transport;
    }
    default switching;
    description

"Treatment of the incoming payload. Payload can either be switched, or transported as is."

leaf src-client-signal {
  type identityref {
    base tran-types:client-signal;
  }
  description
  "Client signal at the source endpoint of the tunnel."
}

leaf src-tpn {
  type uint16 {
    range "0..4095";
  }
  description
  "Tributary Port Number. Applicable in case of mux services.";
  reference
  "RFC7139: GMPLS Signaling Extensions for Control of Evolving G.709 Optical Transport Networks.";
}

leaf src-tsg {
  type identityref {
    base tran-types:tributary-slot-granularity;
  }
  description
  "Tributary slot granularity. Applicable in case of mux services.";
  reference
  "G.709/Y.1331, February 2016: Interfaces for the Optical Transport Network (OTN)";
}

leaf src-tributary-slot-count {
  type uint16;
  description
  "Number of tributary slots used at the source."
}

container src-tributary-slots {
  description
  "A list of tributary slots used by the client service. Applicable in case of mux services.";
  leaf-list values {
    ...
type uint8;
description
   "Tributary tributary slot value.";
reference
   "G.709/Y.1331, February 2016: Interfaces for the
   Optical Transport Network (OTN)";
}
}

leaf dst-client-signal {
  type identityref {
    base tran-types:client-signal;
  }
  description
     "Client signal at the destination endpoint of
     the tunnel.";
}

leaf dst-tpn {
  type uint16 {
    range "0..4095";
  }
  description
     "Tributary Port Number. Applicable in case of mux
     services.";
  reference
     "RFC7139: GMPLS Signaling Extensions for Control of
     Evolving G.709 Optical Transport Networks.";
}

leaf dst-tsg {
  type identityref {
    base tran-types:tributary-slot-granularity;
  }
  description
    "Tributary slot granularity. Applicable in case of
    mux services.";
  reference
    "G.709/Y.1331, February 2016: Interfaces for the
    Optical Transport Network (OTN)";
}

leaf dst-tributary-slot-count {
  type uint16;
  description
    "Number of tributary slots used at the destination.";
}
container dst-tributary-slots {
  description
    "A list of tributary slots used by the client service. Applicable in case of mux services."
  leaf-list values {
    type uint8;
    description
      "Tributary slot value."
    reference
      "G.709/Y.1331, February 2016: Interfaces for the Optical Transport Network (OTN)"
  }
}

Note: Comment has been given to authors of TE Tunnel model to add tunnel-types to the model in order to identify the technology type of the service.

grouping otn-service-type {
  description
    "Identifies the OTN Service type."
  container otn-service {
    presence "Indicates OTN Service."
    description
      "Its presence identifies the OTN Service type."
  }
} // otn-service-type

augment "/te:te/te:tunnels/te:tunnel/te:tunnel-types" {
  description
    "Introduce OTN service type for tunnel."
  ext:augment-identifier otn-service-type-augment;
  uses otn-service-type;
}
*/

Note: Comment has been given to authors of TE Tunnel model to add list of endpoints under config to support P2MP tunnel.
*/
augment "/te:te/te:tunnels/te:tunnel/te:config" {
  description
    "Augment with additional parameters required for OTN service."
  //ext:augment-identifier otn-tunnel-endpoint-config-augment;
  uses otn-tunnel-endpoint;
}
augment "/te:te:te:tunnels/te:tunnel/te:state" {
  description
    "Augment with additional parameters required for OTN service.";
  //ext:augment-identifier otn-tunnel-endpoint-state-augment;
  uses otn-tunnel-endpoint;
}

/*
* Note: Comment has been given to authors of TE Tunnel model to add tunnel-lifecycle-event to the model. This notification is reported for all lifecycle changes (create, delete, and update) to the tunnel or lsp.
* augment "/te:tunnel-lifecycle-event" {
  description
    "OTN service event";
  uses otn-service-type;
  uses otn-tunnel-params;

  list endpoint {
    key
      "endpoint-address tp-id";
    description
      "List of Tunnel Endpoints.";
    uses te:tunnel-endpoint;
    uses otn-tunnel-params;
  }
} */
</CODE ENDS>

3.6. Transport Types YANG Code

<CODE BEGINS> file "ietf-transport-types@2017-05-25.yang"

module ietf-transport-types {
  namespace "urn:ietf:params:xml:ns:yang:ietf-transport-types";
  prefix "tran-types";

  organization "IETF CCAMP Working Group";
  contact "WG Web: <http://tools.ietf.org/wg/ccamp/>

This module defines transport types.

Revision 0.3

Reference

draft-sharma-ccamp-otn-tunnel-model-02.txt

Identity tributary-slot-granularity

Tributary slot granularity.

Reference

G.709/Y.1331, February 2016: Interfaces for the Optical Transport Network (OTN)

Identity tsg-1.25G

1.25G tributary slot granularity.

Identity tsg-2.5G
base tributary-slot-granularity;
description
"2.5G tributary slot granularity."
}

identity tributary-protocol-type {

description
"Base identity for protocol framing used by tributary signals.";
}

identity prot-OTU1 {
base tributary-protocol-type;
description
"OTU1 protocol (2.66G)";
}

identity prot-OTU1e {
base tributary-protocol-type;
description
"OTU1e type (11.04G)";
}

identity prot-OTU1f {
base tributary-protocol-type;
description
"OTU1f type (11.27G)";
}

identity prot-OTU2 {
base tributary-protocol-type;
description
"OTU2 type (10.70G)";
}

identity prot-OTU2e {
base tributary-protocol-type;
description
"OTU2e type (11.09G)";
}

identity prot-OTU2f {
base tributary-protocol-type;
description
"OTU2f type (11.31G)";
}
identity prot-OTU3 {
    base tributary-protocol-type;
    description
    "OTU3 type (43.01G)";
}

identity prot-OTU3e1 {
    base tributary-protocol-type;
    description
    "OTU3e1 type (44.57G)";
}

identity prot-OTU3e2 {
    base tributary-protocol-type;
    description
    "OTU3e2 type (44.58G)";
}

identity prot-OTU4 {
    base tributary-protocol-type;
    description
    "OTU4 type (111.80G)";
}

identity prot-OTUCn {
    base tributary-protocol-type;
    description
    "OTUCn type (beyond 100G)";
}

identity prot-ODU0 {
    base tributary-protocol-type;
    description
    "ODU0 protocol (1.24G).";
}

identity prot-ODU1 {
    base tributary-protocol-type;
    description
    "ODU1 protocol (2.49G).";
}

identity prot-ODU1e {
base tributary-protocol-type;
  description
    "ODU1e protocol (10.35G).";
}

identity prot-ODU1f {
  base tributary-protocol-type;
  description
    "ODU1f protocol (10.56G).";
}
*/

identity prot-ODU2 {
  base tributary-protocol-type;
  description
    "ODU2 protocol (10.03G).";
}

identity prot-ODU2e {
  base tributary-protocol-type;
  description
    "ODU2e protocol (10.39G).";
}
*/

identity prot-ODU2f {
  base tributary-protocol-type;
  description
    "ODU2f protocol (10.60G).";
}
*/

identity prot-ODU3 {
  base tributary-protocol-type;
  description
    "ODU3 protocol (40.31G).";
}
*/

identity prot-ODU3e1 {
  base tributary-protocol-type;
  description
    "ODU3e1 protocol (41.77G).";
}

identity prot-ODU3e2 {
  base tributary-protocol-type;
  description
"ODU3e2 protocol (41.78G).";
}
*/

identity prot-ODU4 {
    base tributary-protocol-type;
    description
        "ODU4 protocol (104.79G).";
}

identity prot-ODUFlex-cbr {
    base tributary-protocol-type;
    description
        "ODU Flex CBR protocol for transporting constant bit rate signal.";
}

identity prot-ODUFlex-gfp {
    base tributary-protocol-type;
    description
        "ODU Flex GFP protocol for transporting stream of packets using Generic Framing Procedure.";
}

identity prot-ODUCn {
    base tributary-protocol-type;
    description
        "ODUCn protocol (beyond 100G).";
}

identity prot-1GbE {
    base tributary-protocol-type;
    description
        "1G Ethernet protocol";
}

identity prot-10GbE-LAN {
    base tributary-protocol-type;
    description
        "10G Ethernet LAN protocol";
}

identity prot-40GbE {
    base tributary-protocol-type;
    description
        "40G Ethernet protocol";
}
identity prot-100GbE {
    base tributary-protocol-type;
    description "100G Ethernet protocol";
}

identity client-signal {
    description "Base identity from which specific client signals for the tunnel are derived.";
}

identity client-signal-1GbE {
    base client-signal;
    description "Client signal type of 1GbE";
}

identity client-signal-10GbE-LAN {
    base client-signal;
    description "Client signal type of 10GbE LAN";
}

identity client-signal-10GbE-WAN {
    base client-signal;
    description "Client signal type of 10GbE WAN";
}

identity client-signal-40GbE {
    base client-signal;
    description "Client signal type of 40GbE";
}

identity client-signal-100GbE {
    base client-signal;
    description "Client signal type of 100GbE";
}

identity client-signal-OC3_STM1 {
    base client-signal;
    description "Client signal type of OC3 & STM1";
}
identity client-signal-OC12_STM4 {
    base client-signal;
    description
    "Client signal type of OC12 & STM4";
}
identity client-signal-OC48_STM16 {
    base client-signal;
    description
    "Client signal type of OC48 & STM16";
}
identity client-signal-OC192_STM64 {
    base client-signal;
    description
    "Client signal type of OC192 & STM64";
}
identity client-signal-OC768_STM256 {
    base client-signal;
    description
    "Client signal type of OC768 & STM256";
}
identity client-signal-ODU0 {
    base client-signal;
    description
    "Client signal type of ODU0 (1.24G)";
}
identity client-signal-ODU1 {
    base client-signal;
    description
    "ODU1 protocol (2.49G)";
}
identity client-signal-ODU2 {
    base client-signal;
    description
    "Client signal type of ODU2 (10.03G)";
}
identity client-signal-ODU2e {
    base client-signal;
    description
    "Client signal type of ODU2e (10.39G)";
}
identity client-signal-ODU3 {
    base client-signal;
    description
        "Client signal type of ODU3 (40.31G)";
}

identity client-signal-ODU3e2 {
    base client-signal;
    description
        "Client signal type of ODU3e2 (41.78G)";
}

identity client-signal-ODU4 {
    base client-signal;
    description
        "Client signal type of ODU4 (104.79G)";
}

identity client-signal-ODUFlex-cbr {
    base client-signal;
    description
        "Client signal type of ODU Flex CBR";
}

identity client-signal-ODUFlex-gfp {
    base client-signal;
    description
        "Client signal type of ODU Flex GFP";
}

identity client-signal-ODUCn {
    base client-signal;
    description
        "Client signal type of ODUCn (beyond 100G).";
}

identity client-signal-FC400 {
    base client-signal;
    description
        "Client signal type of Fibre Channel FC400.";
}

identity client-signal-FC800 {
    base client-signal;
    description
        "Client signal type of Fibre Channel FC800.";
}
identity client-signal-FICON-4G {
    base client-signal;
    description "Client signal type of Fibre Connection 4G."
}

identity client-signal-FICON-8G {
    base client-signal;
    description "Client signal type of Fibre Connection 8G."
}

4. Security Considerations
   TBD.

5. IANA Considerations
   TBD.

6. Acknowledgements
   TBD.

7. Contributors

   Dieter Beller
   Nokia
   Email: dieter.beller@nokia.com
   Yanlei Zheng
   China Unicom
   Email: zhengyl@dimpt.com
   Xian Zhang
   Huawei Technologies
   Email: zhang.xian@huawei.com
   Lei Wang
   China Mobile
   Email: wangleiyj@chinamobile.com
   Oscar Gonzalez de Dios
8. Normative References

[I-D.ietf-netmod-rfc6087bis]
Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", draft-ietf-netmod-rfc6087bis-12 (work in progress), March 2017.


Authors’ Addresses

Haomian Zheng
Huawei Technologies
F3 R&D Center, Huawei Industrial Base, Bantian, Longgang District
Shenzhen, Guangdong  518129
P.R.China

Email: zhenghaomian@huawei.com

Zheyu Fan
Huawei Technologies
F3 R&D Center, Huawei Industrial Base, Bantian, Longgang District
Shenzhen, Guangdong  518129
P.R.China

Email: fanzheyu2@huawei.com

Anurag Sharma
Google
1600 Amphitheatre Parkway
Mountain View, CA  94043
USA

Email: ansha@google.com
CCDR Scenario, Simulation and Suggestion
draft-wang-teas-ccdr-05.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 24, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

This document describes the scenarios, simulation and suggestions for the "Centrally Control Dynamic Routing (CCDR)" architecture, which integrates the merit of traditional distributed protocols (IGP/BGP), and the power of centrally control technologies (PCE/SDN) to provide one feasible traffic engineering solution in various complex scenarios for the service provider.

Traditional MPLS-TE solution is mainly used in static network planning scenario and is difficult to meet the QoS assurance requirements in real-time traffic network. With the emerge of SDN concept and related technologies, it is possible to simplify the complexity of distributed control protocol, utilize the global view of network condition, give more efficient solution for traffic engineering in various complex scenarios.

Table of Contents

1. Introduction ................................................ 2
2. CCDR Scenarios. ............................................. 3
   2.1. Qos Assurance for Hybrid Cloud-based Application....... 3
   2.2. Increase link utilization based on tidal phenomena...... 4
   2.3. Traffic engineering for IDC/MAN asymmetric link........ 5
   2.4. Network temporal congestion elimination. ............... 6
3. CCDR Simulation. ............................................ 6
   3.1. Topology Simulation..................................... 6
   3.2. Traffic Matrix Simulation............................... 7
   3.3. CCDR End-to-End Path Optimization ...................... 7
   3.4. Network temporal congestion elimination ................ 8
4. CCDR Deployment Consideration................................ 9
5. Security Considerations..................................... 10
6. IANA Considerations ........................................ 10
7. Conclusions ................................................ 10
8. References .................................................. 10
   8.1. Normative References................................... 10
   8.2. Informative References................................. 10
9. Contributors: .............................................. 11
10. Acknowledgments .......................................... 11

1. Introduction

Internet network is composed mainly tens of thousands of routers that run distributed protocol to exchange the reachability information between them. The path for the destination network is mainly calculated and controlled by the traditional IGP protocols. These distributed protocols are robust enough to support the current...
evolution of Internet but has some difficulties when the application requires the end-to-end QoS performance, or the service provider wants to maximize the links utilization within their network.

MPLS-TE technology is one perfect solution for the finely planned network but it will put heavy burden on the router when we use it to solve the dynamic QoS assurance requirements within real time traffic network.

SR (Segment Routing) is another prominent solution that integrates some merits of traditional distributed protocol and the advantages of centrally control mode, but it requires the underlying network, especially the provider edge router to do label push and pop action in-depth, and need some complex solutions for co-exist with the Non-SR network. Finally, it can only maneuver the end-to-end path for MPLS and IPv6 traffic via different mechanisms.

The advantage of MPLS is mainly for traffic isolation, such as the L2/L3 VPN service deployments, but most of the current application requirements are only for high performances end-to-end QoS assurance. Without the help of centrally control architecture, the service provider almost can’t make such SLA guarantees upon the real time traffic situation.

This draft gives some scenarios that the centrally control dynamic routing (CCDR) architecture can easily solve, without adding more extra burdening on the router. It also gives the PCE algorithm results under the similar topology, traffic pattern and network size to illustrate the applicability of CCDR architecture. Finally, it gives some suggestions for the implementation and deployment of CCDR.

2. CCDR Scenarios.

The following sections describe some scenarios that the CCDR architecture is suitable for deployment.

2.1. QoS Assurance for Hybrid Cloud-based Application.

With the emerge of cloud computing technologies, enterprises are putting more and more services on the public oriented service infrastructure, but keep still some core services within their network. The bandwidth requirements between the private cloud and the public cloud are occasionally and the background traffic between these two sites varied from time to time. Enterprise cloud
applications just want to invoke the network capabilities to make the end-to-end QoS assurance on demand. Otherwise, the traffic should be controlled by the distributed protocol.

CCDR, which integrates the merits of distributed protocol and the power of centrally control, is suitable for this scenario. The possible solution architecture is illustrated below:

```
+------------------------+
| Cloud Based Application|
+------------------------+
 | |
 | PCE |
 | |
 //---------------\ \
 \\ //\
Private Cloud Site Distributed Control Network Public Cloud Site
 \\ //\
 \-------------------//
```

Fig.1 Hybrid Cloud Communication Scenario

By default, the traffic path between the private cloud site and public cloud site will be determined by the distributed control network. When some applications require the end-to-end QoS assurance, it can send these requirements to PCE, let PCE compute one e2e path which is based on the underlying network topology and the real traffic information, to accommodate the application’s bandwidth requirements. The proposed solution can refer the draft [draft-wang-teas-pce-native-ip]. Section 4 describes the detail simulation process and the results.

2.2. Increase link utilization based on tidal phenomena.

Currently, the network topology within MAN is generally in star mode as illustrated in Fig.2, with the different devices connect different customer types. The traffic pattern of these customers demonstrates some tidal phenomena that the links between the CR/BRAS and CR/SR will experience congestion in different periods because the subscribers under BRAS often use the network at night and the dedicated line users under SR often use the network during the daytime. The uplink between BRAS/SR and CR must satisfy the maximum traffic pattern between them and this causes the links underutilization.
Fig. 2 STAR-style network topology within MAN

If we can consider link the BRAS/SR with local loop, and control the MAN with the CCDR architecture, we can exploit the tidal phenomena between BRAS/CR and SR/CR links, increase the efficiency of them.

Fig. 3 Increase the link utilization via CCDR

2.3. Traffic engineering for IDC/MAN asymmetric link

The operator’s networks are often comprised by tens of different domains, interconnected with each other, form very complex topology that illustrated in Fig. 4. Due to the traffic pattern to/from MAN and IDC, the links between them are often in asymmetric style. It is almost impossible to balance the utilization of these links via the distributed protocol, but this unbalance phenomenon can be overcome via the CCDR architecture.
2.4. Network temporal congestion elimination.

In more general situation, there are often temporal congestion periods within part of the service provider’s network. Such congestion phenomena will appear repeatedly and if the service provider has some methods to mitigate it, it will certainly increase the satisfaction degree of their customer. CCDR is also suitable for such scenario that the traditional distributed protocol will process most of the traffic forwarding and the controller will schedule some traffic out of the congestion links to lower the utilization of them. Section 4 describes the simulation process and results about such scenario.

3. CCDR Simulation.

The following sections describe the topology, traffic matrix, end-to-end path optimization and congestion elimination in CCDR simulation.

3.1. Topology Simulation.

The network topology mainly contains nodes and links information. Nodes used in simulation have two types: core nodes and edge nodes. The core nodes are fully linked to each other. The edge nodes are connected only with some of the core nodes. Fig.5 is a topology example of 4 core nodes and 5 edge nodes. In CCDR simulation, 100 core nodes and 400 edge nodes are generated.
3.2. Traffic Matrix Simulation.

The traffic matrix is generated based on the link capacity of topology. It can result in many kinds of situations, such as congestion, mild congestion and non-congestion.

In CCDR simulation, the traffic matrix is 500*500. About 20% links are overloaded when the Open Shortest Path First (OSPF) protocol is used in the network.

3.3. CCDR End-to-End Path Optimization

The CCDR end-to-end path optimization is to find the best end-to-end path which is the lowest in metric value and each link of the path is far below link’s threshold. Based on the current state of the network, PCE within CCDR architecture combines the shortest path algorithm with penalty theory of classical optimization and graph theory.

Given background traffic matrix which is unscheduled, when a set of new flows comes into the network, the end-to-end path optimization finds the optimal paths for them. The selected paths bring the least congestion degree to the network.

The link utilization increment degree (UID) when the new flows are added into the network is shown in Fig.6. The first graph in Fig.6 is the UID with OSPF and the second graph is the UID with CCDR end-to-end path optimization. The average UID of graph one is more than 30%. After path optimization, the average UID is less than 5%. The results show that the CCDR end-to-end path optimization has an eye-catching decreasing in UID relative to the path chosen based on OSPF.
3.4. Network temporal congestion elimination

Different degree of network congestion is simulated. The congestion degree (CD) is defined as the link utilization beyond its threshold.

The CCDR congestion elimination performance is shown in Fig. 7. The first graph is the congestion degree before the process of congestion elimination. The average CD of all congested links is more than 10%. The second graph shown in Fig. 7 is the congestion degree after congestion elimination process. It shows only 12 links among totally 20,000 links exceed the threshold, and all the congestion degree is less than 3%. Thus, after schedule of the traffic in congestion paths, the degree of network congestion is greatly eliminated and the network utilization is in balance.
4. CCDR Deployment Consideration.

With the above CCDR scenarios and simulation results, we can know it is necessary and feasible to find one general solution to cope with various complex situations for the most complex optimal path computation in centrally manner based on the underlay network topology and the real time traffic.
[draft-wang-teas-native-ip] gives the principle solution for above scenarios, such thoughts can be extended to cover requirements that are more concretes in future.

5. Security Considerations
TBD

6. IANA Considerations
TBD

7. Conclusions
TBD

8. References

8.1. Normative References


8.2. Informative References

[I-D. draft-ietf-teas-pcecc-use-cases]
Quintin Zhao, Robin Li, Boris Khasanov et al. "The Use Cases for Using PCE as the Central Controller(PCECC) of LSPs
https://tools.ietf.org/html/draft-ietf-teas-pcecc-use-cases-00
March,2017

<A.Wang et.> Expires July 24, 2018 [Page 10]
9. Contributors:

Tingting Yuan  
Beijing University of Posts and Telecommunications  
yuantingting@bupt.edu.cn

Qiong Sun  
sunqiong.bri@chinatelecom.cn

Xiaoyan Wei  
China Telecom Shanghai Company  
weixiaoyan@189.cn

Dingyuan Hu  
Beijing University of Posts and Telecommunications  
hdy@bupt.edu.cn

10. Acknowledgments

TBD
Authors’ Addresses

Aijun Wang  
China Telecom  
Beiqijia Town, Changping District  
Beijing, China  
Email: wangaj.bri@chinatelecom.cn

Xiaohong Huang  
Beijing University of Posts and Telecommunications  
No.10 Xitucheng Road, Haidian District  
Beijing, China  
EMail: huangxh@bupt.edu.cn

Caixia Kou  
Beijing University of Posts and Telecommunications  
No.10 Xitucheng Road, Haidian District  
Beijing, China  
koucx@lsec.cc.ac.cn

Lu Huang  
China Mobile  
32 Xuanwumen West Ave, Xicheng District  
Beijing 100053  
China  
Email: hlisname@yahoo.com

Penghui Mi  
Tencent  
Tencent Building, Kejizhongyi Avenue,  
Hi-techPark, Nanshan District, Shenzhen 518057, P.R.China  
Email kevinmi@tencent.com
Applicability of YANG models for Abstraction and Control of Traffic Engineered Networks
draft-zhang-teas-actn-yang-05

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

Zhang, et al. Expires December 30, 2017
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 30, 2017.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Abstract

Abstraction and Control of TE Networks (ACTN) refers to the set of virtual network operations needed to orchestrate, control and manage large-scale multi-domain TE networks, so as to facilitate network programmability, automation, efficient resource sharing, and end-to-end virtual service aware connectivity and network function virtualization services.

This document explains how the different types of YANG models defined in the Operations and Management Area and in the Routing Area are applicable to the ACTN framework. This document also shows how the ACTN architecture can be satisfied using classes of data model that have already been defined, and discusses the applicability of specific data models that are under development. It also highlights where new data models may need to be developed.

Table of Contents

1. Introduction ..................................................3
2. Abstraction and Control of TE Networks (ACTN) Architecture.....3
3. Service Models....................................................5
4. Service Model Mapping to ACTN ..................................6
1. Introduction

Abstraction and Control of TE Networks (ACTN) describes a method for operating a Traffic Engineered (TE) network (such as an MPLS-TE network or a layer 1 transport network) to provide connectivity and virtual network services for customers of the TE network. The services provided can be tuned to meet the requirements (such as traffic patterns, quality, and reliability) of the applications hosted by the customers. More details about ACTN can be found in Section 2.

Data models are a representation of objects that can be configured or monitored within a system. Within the IETF, YANG [RFC6020] is the language of choice for documenting data models, and YANG models have been produced to allow configuration or modelling of a variety of network devices, protocol instances, and network services. YANG data models have been classified in [Netmod-Yang-Model-Classification] and [Service-YANG].

This document shows how the ACTN architecture can be satisfied using classes of data model that have already been defined, and discusses the applicability of specific data models that are under development. It also highlights where new data models may need to be developed.

2. Abstraction and Control of TE Networks (ACTN) Architecture

[ACTN-Requirements] describes the high-level ACTN requirements. [ACTN-Frame] describes the architecture model for ACTN including the
entities (Customer Network Controller (CNC), Multi-domain Service Coordinator (MDSC), and Physical Network Controller (PNC)) and their interfaces.

Figure 1 depicts a high-level control and interface architecture for ACTN and is a reproduction of Figure 3 from [ACTN-Frame]. A number of key ACTN interfaces exist for deployment and operation of ACTN-based networks. These are highlighted in Figure 1 (ACTN Interfaces) below:

The interfaces and functions are described below (without modifying the definitions) in [ACTN-Frame]:

---

Figure 1 : ACTN Interfaces
The CNC-MDSC Interface (CMI) is an interface between a Customer Network Controller and a Multi Domain Service Controller. The interface will communicate the service request or application demand. A request will include specific service properties, for example, services type, bandwidth and constraint information. These constraints SHOULD be measurable by MDSC and therefore visible to CNC via CMI. The CNC can also request the creation of the virtual network based on underlying physical resources to provide network services for the applications. The CNC can provide the end-point information/characteristics, traffic matrix specifying specific customer constraints. The MDSC may also report potential network topology availability if queried for current capability from the Customer Network Controller.

The MDSC-PNC Interface (MPI) is an interface between a Multi Domain Service Coordinator and a Physical Network Controller. It allows the MDSC to communicate requests to create/delete connectivity or to modify bandwidth reservations in the physical network. In multi-domain environments, each PNC is responsible for a separate domain. The MDSC needs to establish multiple MPIs, one for each PNC and perform coordination between them to provide cross-domain connectivity.

The South-Bound Interface (SBI) is the provisioning interface for creating forwarding state in the physical network, requested via the Physical Network Controller. The SBI is not in the scope of ACTN, however, it is included in this document so that it can be compared to models in [Service-Yang].

3. Service Models

[Service-YANG] introduces a reference architecture to explain the nature and usage of service YANG models in the context of service orchestration. Figure 2 below depicts this relationship and is a reproduction of Figure 2 from [Service-YANG]. Four models depicted in Figure 2 are defined as follows:

- Customer Service Model: A customer service model is used to describe a service as offer or delivered to a customer by a network operator.
- Service Delivery Model: A service delivery model is used by a network operator to define and configure how a service is provided by the network.
- Network Configuration Model: A network configuration model is used by a network orchestrator to provide network-level configuration model to a controller.
Device Configuration Model: A device configuration model is used by a controller to configure physical network elements.

4. Service Model Mapping to ACTN

YANG models coupled with the RESTCONF/NETCONF protocol [Netconf][Restconf] provides solutions for the ACTN framework. This section explains which types of YANG models apply to each of the ACTN interfaces.
Refer to Figure 5 of [ACTN-Frame] for details of the mapping between ACTN functions and service models. In summary, the following mappings are held between and Service Yang Models and the ACTN interfaces.

- Customer Service Model <-> CMI
- Network Configuration Model <-> MPI
- Device Configuration Model <-> SBI

### 4.1. Customer Service Models in the ACTN Architecture (CMI)

Customer Service Models, which are used between a customer and a service orchestrator as in [Service-YANG], should be used between the CNC and MDSC (e.g., CMI) serving as providing a simple intent-like model/interface.

Among the key functions of Customer Service Models on the CMI is the service request. A request will include specific service properties, including: service type and its characteristics, bandwidth, constraint information, and end-point characteristics.

The following table provides a list of functions needed to build the CMI. They are mapped with Customer Service Models.

<table>
<thead>
<tr>
<th>Function</th>
<th>Yang Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Service Request</td>
<td>[Transport-Service-Model]</td>
</tr>
<tr>
<td>VN Service Request &amp; Instantiation</td>
<td>[ACTN-VN-YANG]</td>
</tr>
<tr>
<td>VN Path Computation Request</td>
<td>[ACTN-VN-YANG]*</td>
</tr>
<tr>
<td>VN Performance Monitoring Telemetry</td>
<td>[ACTN-PM-Telemetry]**</td>
</tr>
<tr>
<td>Topology Abstraction</td>
<td>[TE-topology]</td>
</tr>
</tbody>
</table>

*VN Path computation request in the CMI context means network path computation request based on customer service connectivity request constraints prior to the instantiation of a VN creation.

**ietf-actn-te-kpi-telemetry model describes performance telemetry for ACTN VN model. This module also allows autonomic traffic engineering scaling intent configuration mechanism on the VN level. Scale in/out criteria might be used for network autonomies in order the controller to react to a certain set of variations in monitored parameters. Moreover, this module also provides mechanism to define
aggregated telemetry parameters as a grouping of underlying VN level telemetry parameters.

4.2. Service Delivery Models in ACTN Architecture

The Service Delivery Models where the service orchestration and the network orchestration could be implemented as separate components as seen in [Service-YANG]. This is also known as Network Service Models. On the other hand, from an ACTN architecture point of view, the service delivery model between the service orchestrator and the network orchestrator is an internal interface between sub-components of the MDSC in a single MDSC model.

In the MDSC hierarchical model where there are multiple MDSCs, the interface between the top MDSC and the bottom MDSC can be mapped to service delivery models.

4.3. Network Configuration Models in ACTN Architecture (MPI)

The Network Configuration Models is used between the network orchestrator and the controller in [Service-YANG]. In ACTN, this model is used primarily between a MDSC and a PNC. The Network Configuration Model can be also used for the foundation of more advanced models, like hierarchical MDSCs (see Section 4.5)

The Network Configuration Model captures the parameters which are network wide information.

The following table provides a list of functions needed to build the MPI. They are mapped with Network Configuration Yang Models. Note that various Yang models are work in progress.

<table>
<thead>
<tr>
<th>Function</th>
<th>Yang Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Scheduling</td>
<td>[Schedule]</td>
</tr>
<tr>
<td>Path computation</td>
<td>[PATH_COMPUTATION-API]*</td>
</tr>
<tr>
<td>Path Provisioning</td>
<td>[TE-Tunnel]**</td>
</tr>
<tr>
<td>Topology Abstraction</td>
<td>[TE-topology]</td>
</tr>
<tr>
<td>Tunnel PM Telemetry</td>
<td>[ACTN-PM-Telemetry]***</td>
</tr>
<tr>
<td>Service Provisioning</td>
<td>TBD****</td>
</tr>
<tr>
<td>OTN Topology Abstraction</td>
<td>[OTN-YANG]</td>
</tr>
<tr>
<td>WSON Topology Abstraction</td>
<td>[WSON-YANG]</td>
</tr>
<tr>
<td>Flexi-grid Topology Abstraction</td>
<td>[Flexi-YANG]</td>
</tr>
<tr>
<td>ODU Tunnel Model</td>
<td>[ODU-Tunnel]</td>
</tr>
</tbody>
</table>
Related draft is presenting use cases for path computation API, and Yang related model is foreseen to be added.

Note that path provisioning function is provided by ietf-te module in [TE-Tunnel].

ietf-actn-te-kpi-telemetry model describes performance telemetry for TE-tunnel model. This module also allows autonomic traffic engineering scaling intent configuration mechanism on the TE-tunnel level. Various conditions can be set for auto-scaling based on the telemetry data.

This function needs to be investigated further. This can be a part of [TE-Tunnel] which is to be determined. Service provisioning is an optional function that builds on top the path provisioning one.

Path provisioning and Topology abstraction functions are mandatory in any case, while Path Computation may be mandatory or optional depending on the type of topology abstraction used. Details of this topic are discussed in [ACTN-Abstraction].

Telemetry may also be an optional function.

4.4. Device Models in ACTN Architecture (SBI)

For the device YANG models are used for per-device configuration purpose, they can be used between the PNC and the physical network/devices. Note that SBI is not in the scope of ACTN. This section is provided to give some examples of YANG-based Device Models. An example of Device Models is ietf-te-device yang module defined in [TE-tunnel].
5. Examples of Using Different Types of YANG Models

5.1. Simple Connectivity Examples

The data model in [Transport-Service-Model] provides an intent-like connectivity service model which can be used in connection-oriented networks.

It would be used as follows in the ACTN architecture:

- A CNC uses this service model to specify the two client nodes that are to be connected, and also indicates the amount of traffic (i.e., the bandwidth required) and payload type. What may be additionally specified is the SLA that describes the required quality and resilience of the service.

- The MDSC uses the information in the request to pick the right network (domain) and also to select the provider edge nodes corresponding to the customer edge nodes.

If there are multiple domains, then the MDSC needs to coordinate across domains to set up network tunnels to deliver a service. Thus coordination includes, but is not limited to, picking the right domain sequence to deliver a service. Before it can perform such functions, it needs to get the topology information from each PNC, using topology YANG models such as [te-topology]. The topology reported from PNC to MDSC can either be abstract or non-abstract.

Additionally, an MDSC can initiate the creation of a tunnel (or tunnel segment) in order to fulfill the service request from CNC based on path computation upon the overall topology information it synthesized from different PNCs. The based model that can cater this purpose is the te-tunnel model specified in [te-tunnel].

- Then, the PNC needs to decide the explicit route of such a tunnel or tunnel segment (in case of multiple domains), and create such a tunnel using protocols such as PCEP and RSVP-TE or using per-hop configuration.

5.2. VN service example

The service model defined in [ACTN-VN-YANG] describes a virtual network (VN) as a service which is a set of multiple connectivity services:
A CNC will request VN to the MDSC by specifying a list of VN members. Each VN member specifies either a single connectivity service, or a source with multiple potential destination points in the case that the precise destination sites are to be determined by MDSC.

- In the first case, the procedure is the same as the connectivity service, except that in this case, there is a list of connections requested.

- In the second case, where the CNC requests the MDSC to select the right destination out of a list of candidates, the MDSC needs to choose the best candidate and reply with the chosen destination for a given VN member. After this is selected, the connectivity request setup procedure is the same as in the connectivity-as-a-service example.

After the VN is set up, a successful reply message is sent from MDSC to CNC, indicating the VN is ready. This message can also be achieved by using the model defined in [ACTN-VN-YANG].

5.3. Data Center-Interconnection Example

This section describes more concretely how existing YANG models described in Section 4 map to an ACTN data center interconnection use case. Figure 3 shows a use-case which shows service policy-driven Data Center selection and is a reproduction of Figure A.1 from [ACTN-Info].
Figure 3: Service Policy-driven Data Center Selection
Figure 3 shows how VN policies from the CNC (Global Data Center Operation) are incorporated by the MDSC to support multi-destination applications. Multi-destination applications refer to applications in which the selection of the destination of a network path for a given source needs to be decided dynamically to support such applications.

Data Center selection problems arise for VM mobility, disaster recovery and load balancing cases. VN’s policy plays an important role for virtual network operation. Policy can be static or dynamic. Dynamic policy for data center selection may be placed as a result of utilization of data center resources supporting VMs. The MDSC would then incorporate this information to meet the objective of this application.

5.3.1. CMI (CNC-MDSC Interface)

[ACTN-VN-YANG] is used to express the definition of a VN, its VN creation request, the service objectives (metrics, QoS parameters, etc.), dynamic service policy when VM needs to be moved from one Data Center to another Data Center, etc. This service model is used between the CNC and the MDSC (CMI). The CNC in this use-case is an external entity that wants to create a VN and operates on the VN.

5.3.2. MPI (MDSC-PNC Interface)

The Network Configuration Model is used between the MDSC and the PNCs. Based on the Customer Service Model’s request, the MDSC will need to translate the service model into the network configuration model to instantiate a set of multi-domain connections between the prescribed sources and the destinations. The MDSC will also need to dynamically interact with the CNC for dynamic policy changes initiated by the CNC. Upon the determination of the multi-domain connections, the MDSC will need to use the network configuration model such as [TE-Tunnel] to interact with each PNC involved on the path. [TE-Topology] is used to for the purpose of underlying domain network abstraction from the PNC to the MDSC.

5.3.3. PDI (PNC-Device interface)

The Device Model can be used between the PNC and its underlying devices that are controlled by the PNC. The PNC will need to trigger signaling using any mechanisms it employs (e.g. [RSVP-TE-YANG]) to provision its domain path segment. There can be a plethora of choices how to control/manage its domain network. The PNC is responsible to abstract its domain network resources and update it
to the MDSC. Note that this interface is not in the scope of ACTN. This section is provided just for an illustration purpose.

6. Security

This document is an informational draft. When the models mentioned in this draft are implemented, detailed security consideration will be given in such work.

How security fits into the whole architecture has the following components:

- the use of Restconf security between components

- the use of authentication and policy to govern which services can be requested by different parties.

- how security may be requested as an element of a service and mapped down to protocol security mechanisms as well as separation (slicing) of physical resources)

7. Acknowledgements

We thank Adrian Farrel for providing useful comments and suggestions for this draft.

8. References

8.1. Informative References


9. Contributors

Contributor’s Addresses

Dhruv Dhody
Huawei Technologies
Email: dhruv.ietf@gmail.com

Xian Zhang
Huawei Technologies
Email: zhang.xian@huawei.com
Authors' Addresses

Young Lee
Huawei Technologies
5340 Legacy Drive
Plano, TX 75023, USA
Phone: (469)277-5838
Email: leeyoung@huawei.com

Haomian Zheng
Huawei Technologies
Email: zhenghaomian@huawei.com

Daniele Ceccarelli
Ericsson
Torshamngatan, 48
Stockholm, Sweden
Email: daniele.ceccarelli@ericsson.com

Bin Yeong Yoon
ETRI
Email: byyun@etri.re.kr

Oscar Gonzalez de Dios
Telefonica
Email: oscar.gonzalezdedios@telefonica.com

Jong Yoon Shin
SKT
Email: jongyoon.shin@sk.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com