ALTO Use Case: Resource Orchestration for Multi-Domain Data Analytics

draft-xiang-alto-exascale-network-optimization-03

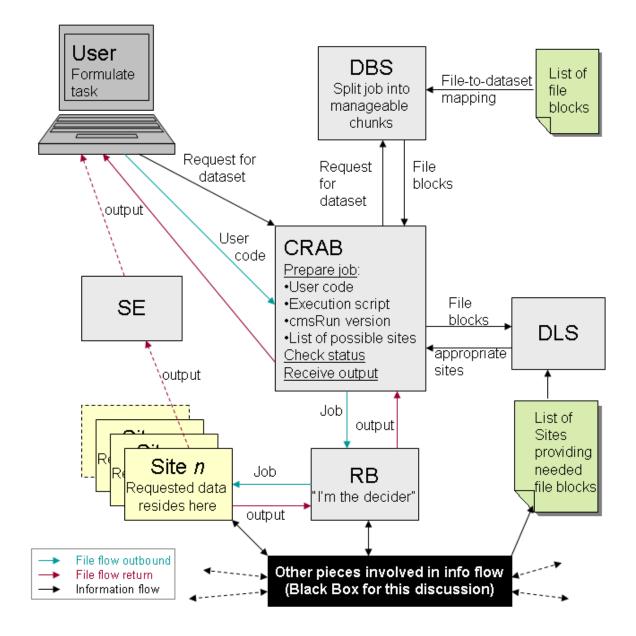
Justas Balcas², Greg Bernstein³, Haizhou Du⁴, Azher Mughal⁵, Harvey Newman¹, **Qiao Xiang**⁶, Y. Richard Yang⁶, Jingxuan Zhang⁴

¹ California Institute of Technology, ² CERN, ³ Grotto Networking,
 ⁴ Tongji University, ⁵ University of Southern California, ⁶ Yale University
 July 20, 2017, IETF99, Prague

Takeaway from IETF98

- ALTO can provide information on different resources to improve the performance of dataset transfers and data analytics applications.
 - In data center networks of the Compact Muon Solenoid (CMS) experiment, network resources are not always the bottleneck.
- ExaO: a multi-resource orchestrator for CMS applications.

- Expand the application scenario
 - Previous: resource orchestration for science applications (ExaO).
 - Current: a unified resource orchestration framework for geodistributed, multi-domain data analytics (Unicorn).
- Describe the Unicorn framework
 - Add resource view extractor, workflow converter, resource demand estimator, entity locator, etc. into the framework.
 - Add the detailed workflow for WG review.
- Restructure the document
 - Update abstract and discussion sections.
 - Add an example to show how ALTO can reveal fine-grained data locality information.
 - Describe how resource view extractor works.


Multi-Domain, Geo-Distributed Data Analytics

- Vision: Different organizations contribute various resources, e.g., sensing, computation, storage and networking resources, to collaboratively collect, share and analyze extremely large amounts of data.
 - Example: the CMS experiment, coalitions between different organizations, cloud exchange, etc.

Multi-Domain, Geo-Distributed Data Analytics

- Goals: production deployments of a new class of intelligent, software-defined global systems which
 - achieves efficient utilization of a large set of distributively-owned, heterogeneous resources;
 - -maintains the autonomy and privacy of resource owners.
- Solution: a unified resource orchestration framework
 - An architecture for general multi-domain, geodistributed data analytics

CMS Data Analysis Work Flow

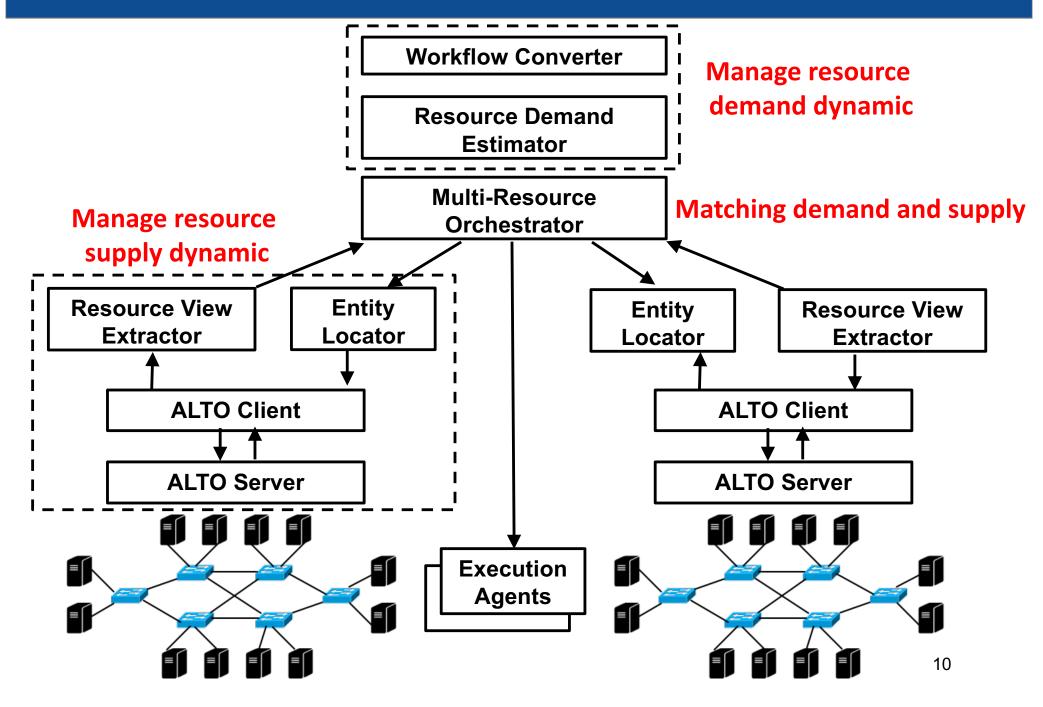
Source: https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookAnalysisWorkFlow

Why ALTO?

- Existing systems (HTCondor, Hadoop, YARN, Mesos, etc.) only provide coarse-grained information on resources, leading to inefficient resource allocation decisions.
- ALTO provides on-demand fine-grained information on different resources to support optimal resource orchestration.

Example

- Job J needs dataset X as input.
- Data center A and B each has a copy of X and can place J in the same rack as X is stored.
- Hadoop:
 - Resource information: $dist_A(J,X) = dist_B(J,X) = 2$
 - Job placement: execute J either at site A or site B
- ALTO:
 - Resource information:
 - $-dist_A(J,X) = dist_B(J,X) = 2$


 $-bw_A(J,X) = 100Mb/s, bw_B(J,X) = 1Gb/s$

• Optimal job placement: execute J at site B

Unified Resource Orchestration (Unicorn)

- Resource supply: use ALTO to provide the view of computing, storage and networking resources from different sites
 - Expand the capability of *abstract network element* (ANE) to provide an abstract view of resources.
- Resource demand: a set of tools for automatic, effective resource demand estimation for data analytics jobs
- Resource orchestration: use the views from ALTO for deep site orchestration among virtualized clusters, storage subsystems and subnets to successfully coschedule CPU, storage and networks.

Unicorn: Architecture

Related ALTO extensions

- ALTO Unified Property (adopted as a WG document)
 - Retrieve properties of entities (e.g., endpoint, ane, etc.) in the cluster
- ALTO Path Vector (adopted as a WG document)
 - Retrieve the properties of a set of ane's shared by a set of data analytics flows
- ALTO Cost Calendar (adopted as a WG document)
 - Retrieve time-dependent endpoint cost
- ALTO Routing State Abstraction
 - Compress the information retrieved by ALTO path vector into a minimal, equivalent view
- ALTO Flow Cost Service
 - Retrieve cost information of flows instead of src-dst endpoint
 pair

Resource View Extractor (RVE)

- Previously called ANE aggregator.
- The ALTO client collects various information about different entities from different ALTO services.
- Current design: RVE works as an independent module instead of an ALTO service.
- It first assembles such information to form a raw resource view.
 - This view may have redundancy.
- It then uses a lightweight algorithm proposed in ALTO-RSA to compress the raw view into a minimal, equivalent view and pass to the orchestrator.

Design Issue: Scalability

- One data analytics job may consist of many low-level tasks. Tasks may have precedence relationships between each other.
- Querying the resource view for each task would cause huge overhead.
- Solution approach: selectively sampling
 - Tasks are often repeated or similar.
 - In one job, only some tasks will become the bottleneck.

Importance to ALTO WG

- Unicorn provides a template architecture for singledomain/multi-domain data center resource optimization, a major use case of ALTO listed in the WG Charter.
- In addition to RFC7285, Unicorn applies several ALTO extensions (WG documents: cost calendar, path vector and unified property map, etc.) to collect resource information from different sites.
- As an informational document, it will provide key insights and experience in the deployment use of ALTO services in a very large and public data analytics project.

Next Steps

Draft

- Continue to document the design and experience of Unicorn.
- Add specific examples of using different ALTO services in the Unicorn framework.

– etc.

Milestones

- Pre-production deployment of Unicorn by IETF 100.
- Production deployment by IETF 102-103.