ALTO Use Case: Resource Orchestration for Multi-Domain Data Analytics

draft-xiang-alto-exascale-network-optimization-03

Justas Balcas2, Greg Bernstein3, Haizhou Du4, Azher Mughal5, Harvey Newman1, Qiao Xiang6, Y. Richard Yang6, Jingxuan Zhang4

1California Institute of Technology, 2CERN, 3Grotto Networking, 4Tongji University, 5University of Southern California, 6Yale University

July 20, 2017, IETF99, Prague
Takeaway from IETF98

• ALTO can provide information on different resources to improve the performance of dataset transfers and data analytics applications.
 – In data center networks of the Compact Muon Solenoid (CMS) experiment, network resources are not always the bottleneck.
• ExaO: a multi-resource orchestrator for CMS applications.
Update in IETF 99

- Expand the application scenario
 - Previous: resource orchestration for science applications (ExaO).
 - Current: a unified resource orchestration framework for geo-distributed, multi-domain data analytics (Unicorn).

- Describe the Unicorn framework
 - Add resource view extractor, workflow converter, resource demand estimator, entity locator, etc. into the framework.
 - Add the detailed workflow for WG review.

- Restructure the document
 - Update abstract and discussion sections.
 - Add an example to show how ALTO can reveal fine-grained data locality information.
 - Describe how resource view extractor works.
Multi-Domain, Geo-Distributed Data Analytics

- **Vision**: Different organizations contribute various resources, e.g., sensing, computation, storage and networking resources, to collaboratively collect, share and analyze extremely large amounts of data.

 - Example: the CMS experiment, coalitions between different organizations, cloud exchange, etc.
Multi-Domain, Geo-Distributed Data Analytics

• **Goals**: production deployments of a new class of intelligent, software-defined global systems which
 – achieves efficient utilization of a large set of distributively-owned, heterogeneous resources;
 – maintains the autonomy and privacy of resource owners.

• **Solution**: a unified resource orchestration framework
 – An architecture for general multi-domain, geo-distributed data analytics
Why ALTO?

• Existing systems (HTCondor, Hadoop, YARN, Mesos, etc.) only provide coarse-grained information on resources, leading to inefficient resource allocation decisions.

• ALTO provides on-demand fine-grained information on different resources to support optimal resource orchestration.
Example

- Job J needs dataset X as input.
- Data center A and B each has a copy of X and can place J in the same rack as X is stored.
- Hadoop:
 - Resource information: $dist_A(J, X) = dist_B(J, X) = 2$
 - Job placement: execute J either at site A or site B
- ALTO:
 - Resource information:
 - $dist_A(J, X) = dist_B(J, X) = 2$
 - $bw_A(J, X) = 100Mb/s, bw_B(J, X) = 1Gb/s$
 - Optimal job placement: execute J at site B
Unified Resource Orchestration (Unicorn)

• **Resource supply**: use ALTO to provide the view of computing, storage and networking resources from different sites
 – Expand the capability of *abstract network element* (ANE) to provide an abstract view of resources.

• **Resource demand**: a set of tools for automatic, effective resource *demand estimation* for data analytics jobs

• **Resource orchestration**: use the views from ALTO for deep site orchestration among virtualized clusters, storage subsystems and subnets to successfully co-schedule CPU, storage and networks.
Unicorn: Architecture

- Workflow Converter
- Resource Demand Estimator
- Multi-Resource Orchestrator
- Manage resource demand dynamic
- Manage resource supply dynamic
- Matching demand and supply

- Resource View Extractor
- Entity Locator
- ALTO Client
- ALTO Server

- Entity Locator
- Resource View Extractor
- ALTO Client
- ALTO Server

- Execution Agents
Related ALTO extensions

- **ALTO Unified Property (adopted as a WG document)**
 - Retrieve properties of entities (e.g., endpoint, ane, etc.) in the cluster

- **ALTO Path Vector (adopted as a WG document)**
 - Retrieve the properties of a set of ane's shared by a set of data analytics flows

- **ALTO Cost Calendar (adopted as a WG document)**
 - Retrieve time-dependent endpoint cost

- **ALTO Routing State Abstraction**
 - Compress the information retrieved by ALTO path vector into a minimal, equivalent view

- **ALTO Flow Cost Service**
 - Retrieve cost information of flows instead of src-dst endpoint pair
Resource View Extractor (RVE)

- Previously called ANE aggregator.
- The ALTO client collects various information about different entities from different ALTO services.
- Current design: RVE works as an independent module instead of an ALTO service.
- It first assembles such information to form a raw resource view.
 - This view may have redundancy.
- It then uses a lightweight algorithm proposed in ALTO-RSA to compress the raw view into a minimal, equivalent view and pass to the orchestrator.
Design Issue: Scalability

- One data analytics job may consist of many low-level tasks. Tasks may have precedence relationships between each other.
- Querying the resource view for each task would cause huge overhead.
- Solution approach: selectively sampling
 - Tasks are often repeated or similar.
 - In one job, only some tasks will become the bottleneck.
Importance to ALTO WG

• Unicorn provides a template architecture for single-domain/multi-domain data center resource optimization, a major use case of ALTO listed in the WG Charter.

• In addition to RFC7285, Unicorn applies several ALTO extensions (WG documents: cost calendar, path vector and unified property map, etc.) to collect resource information from different sites.

• As an informational document, it will provide key insights and experience in the deployment use of ALTO services in a very large and public data analytics project.
Next Steps

• **Draft**
 – Continue to document the design and experience of Unicorn.
 – Add specific examples of using different ALTO services in the Unicorn framework.
 – etc.

• **Milestones**
 – Pre-production deployment of Unicorn by IETF 100.
 – Production deployment by IETF 102-103.