BIER for EVPN BUM Traffic

draft-zzhang-bier-evpn-00

Jeffrey Zhang
Tony Przygienda
Ali Sajassi
Jorge Rabada

99th IETF, Prague
Overview

• BIER as provider/underlay tunnel for EVPN BUM traffic
 • EVPN-MPLS or EVPN-VXLAN/NVGRE

• Very similar to BIER for MVPN
 • Some text borrowed verbatim from draft-ietf-bier-mvpn
PMSI Tunnel Attribute

• Like with MVPN x-PMSI routes, EVPN IMET routes (RFC 7432) and x-PMSI (draft-ietf-bess-evpn-bum-procedure-updates) carry PMSI Tunnel Attribute (PTA)

• PTA identifies the tunnel advertised in the routes
 • Tunnel Type
 • Tunnel Identifier
 • MPLS Label
 • Flags
PTA with BIER for EVPN

- Tunnel Type: BIER
- Tunnel ID: Subdomain-ID + BFIR Prefix
 - A “BIER tunnel” is considered as an aggregation tunnel
 - One tunnel is used for many BDs
- Label:
 - MPLS label upstream-assigned by BFIR
 - Per Bridge Table (BT) when there is no segmentation
 - Per PMSI in case of segmentation
 - Globally-unique VNI/VSI in case of VXLAN/NVGRE
- Flags
 - Leaf Information Required (LIR) bit
 - Requesting Leaf routes in response to x-PMSI A-D routes
 - Leaf Information Required per Flow (LIR-pF) bit
 - Requesting Leaf A-D routes for more specific flows
Leaf Tracking

- IMET/SMET routes provide explicit tracking functionality
 - IMET routes carry PTA but SMET routes do not

- If it is desired not to use SMET route for every flow, S-PMSI route can solicit Leaf routes for certain flows
 - Only those flows will use selective forwarding while others will use flooding
 - A compromise between optimized forwarding and reduced control plane state
 - Leaf routes can be solicited by one-to-one mapped S-PMSI routes with LIR bit
 - Or, a single S-PMSI route with LIR-pF bit could trigger many Leaf A-D routes
 - E.g, a (C-*,C-G) S-PMSI route with LIR-pF bit triggers individual (C-S,C-G) Leaf A-D routes

- Other use cases of x-PMSI/Leaf routes are documented in
 - draft-ietf-bess-evpn-bum-procedures-update
 - draft-zzhang-bess-mvpn-evpn-cmcast-enhancements
Data Plane & Multi-homing

• VXLAN/NVGRE: BIER Header + VXLAN/NVGRE header + Ether frame
 • No IP/UDP header used; new BIER proto/payload type in BIER header indicates that VXLAN/NVGRE header is following the BIER header
 • split-horizon with local-bias works fine as BFIR-ID in the BIER header identifies the sending PE

• MPLS: BIER Header + PMSI/BT Label [+ ESI label] + Ether frame
 • Notice that two upstream-assigned labels are used if traffic is from a multi-homed ES
Segmentation

• Segmentation may be used in the following situations for MPLS
 • When it is required or desired to use different tunnel types or instances in different AS/areas (regions)
 • For BIER in particular, segmentation may be used to divide a larger BIER domain to multiple smaller sub-domains
 • So that smaller BitString can be used w/o using multiple sets
 • It is recommended that PEs on the same ES be in the same segmentation region
 • Segmentation points update the PTA when re-advertising x-PMSI routes to specify new tunnel type/ID
 • Label switching is done at the segmentation points
 • If tunnel aggregation is used in the next region (e.g., BIER), a new label is assigned and advertised by the segmentation point for the PMSI
• PTA in S-PMSI R1 advertised by PE1: BIER, S1, PE1, L1, LIR
• PTA in S-PMSI R2 advertised by PE1: BIER, S1, PE1, L2, LIR
• PTA in S-PMSI R1 re-advertised by ABR: BIER, S2, ABR, L3, LIR
• PTA in S-PMSI R2 re-advertised by ABR: BIER, S2, ABR, L4, LIR

• PE1 sends BIER packets with BitString including PEs/ABRs in S1
• After ABR decapsulates BIER packets received in S1, L1 or L2 is exposed
• ABR label switches L1 to L3 (or L2 to L4), and then encapsulates with BIER header and send into S2
 • Because of label switching (no ether lookup), different labels must be advertised in the PTA for different routes
Next steps

• Request WG comments
• Polish draft and request adoption afterwards