JUNE 2017 | BEIJING, CHINA

The .pdf version of this slide deck will have missing info, due to use of animations. The original .pptx deck is available here: https://wiki.opnfv.org/download/attachments/10293193/VSPERF-Dataplane-Perf-Cap-Bench.pptx?api=v2

Dataplane Performance, Capacity, and Benchmarking in OPNFV

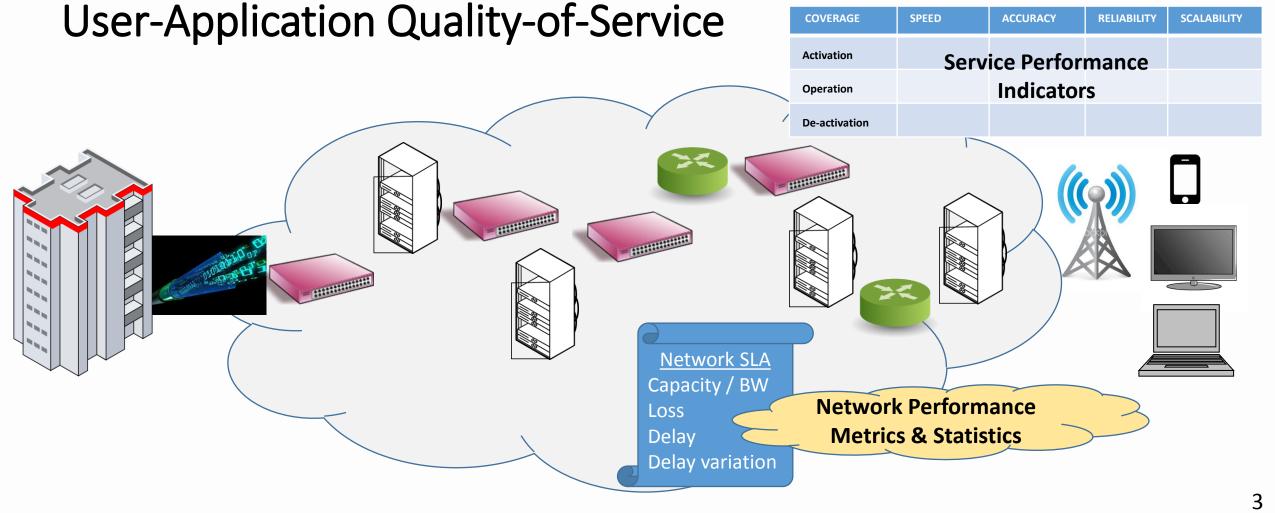
OPNFV

SUMMIT

Trevor Cooper, Intel Corp. Sridhar Rao, Spirent Communications Al Morton, AT&T Labs ... with acknowledgement to VSPERF committers

JUNE 2017 BEIJING, CHINA

Danube reporting



- 1. Dataplane Performance Measurement with VSPERF
- 2. VSPERF Example Results and Analysis
- 3. Moving Ahead with VSPERF

E2E Dataplane Performance Measurement & Analysis ...

VSPERF DUT is an important part of the E2E Data Path

- Virtual Switching technology and NIC offloads
- Physical and virtual ports
- Virtualized Workload

JUNE 2017 BEIJING, CHINA

VSPERF Test Automation

- Source/build SW components
- Set up vSwitch
- Set up workload
- Set up traffic generator
- Execute test cases
- Collect test results
- Log and store data

VM

Logical port

Test Device

(Send&Rcv)

PVVP

Logical port

Physical port

Logical port

Physical port

Physical port

Test Device

(Send&Rcv)

Phy2Phy

Physical port vSw

Test Device

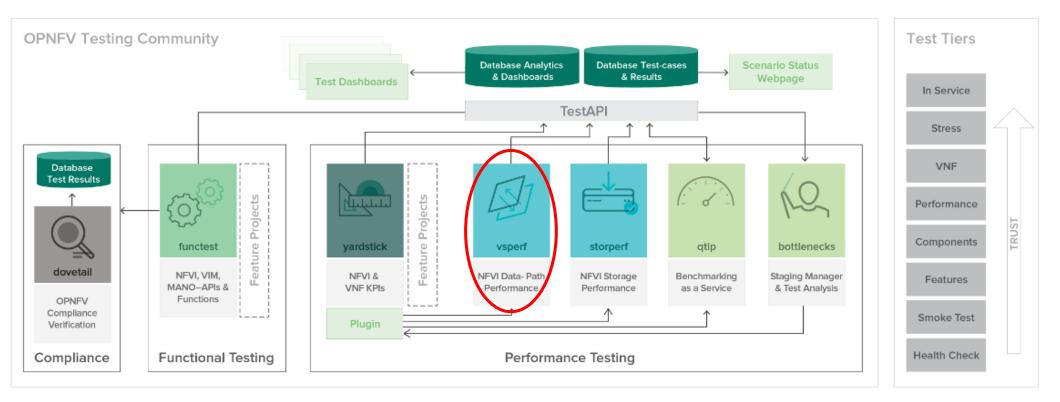
(Send&Rcv)

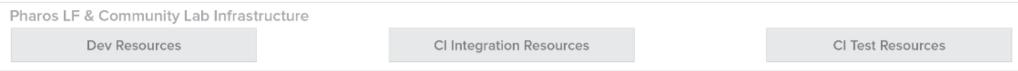
PVP

Logical port

Physical port Generate test statistics & result dashboards / reports

VN


Logical port


Physical port

Logical port

VSPERF and the OPNFV Testing Community

Solution Stack

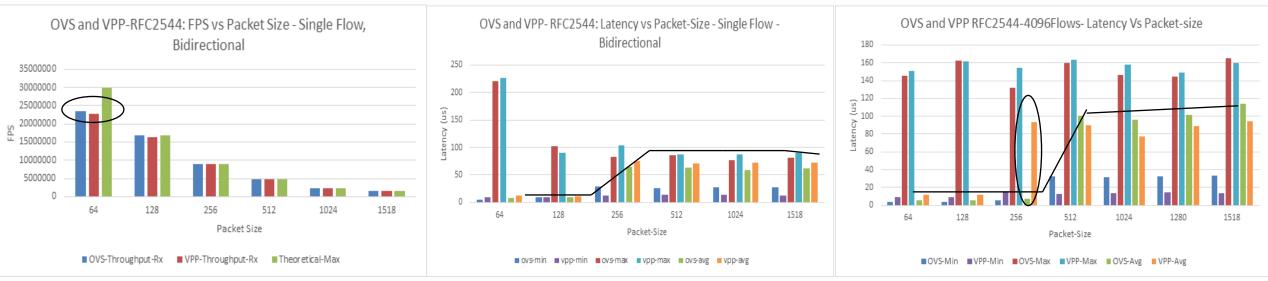
Dataplane Performance Testing Options

Workload (DUT)	Traffic Generator (HW or SW)	Automation code (Test framework)	Daily tests on master and stable branch in OPNFV Lab https://build.opnfv.org/ci/view/vswitchperf/		
 Sample VNFs SampleVNF (vACL, vFW, vCGNAT,) Open source VNF catalogue 	Hardware - commercial • Ixia • Spirent • Xena	Compliance • Dovetail		vswitchperf-daily-danube vswitchperf-daily-master vswitchperf-merge-danube	<u>e</u>
 Test VMs vloop-vnf (dpdk-testpmd, Linux bridge, L2fwd module) Spirent stress-VM Virtual Traffic classifier 	Virtual - commercial • Ixia • Spirent	VIM and MANO NFVbench 		vswitchperf-merge-master	
 Virtual switching OVS OVS-dpdk VPP 	Software - Open Source Pktgen Moongen TREX PROX 	VIM, no MANO • Yardstick • Qtip • Bottleneck	SpecificationsIETF BMWG RFCs for Dataplane PerformanceETSI NFV Test Specifications		
 Physical / virtual interfaces NIC (10GE, 40GE,) Vhost-user Pass-through, SR-IOV 		No VIM or MANO VSPERF Storperf 	Topologies vSwitch SR-IOV etc. 	<pre>/tmp/results_2016-01-19_17-04-26/result_phy2phy_tput_p2p.md - Test ID: phy2phy_tput - Description: LTD.Throughput.RFC2544.PacketLossRatio - Deployment: p2p - Traffic type: rfc2544 - Bidirectional : True</pre>	
HW offloadTSOencrypt/decryptSmartNIC		*Used in test examples presented	 Phy2Phy PVP PVVP (multi-VM) 	Metric throughput_rx_fps throughput_rx_mbps tx_rate_percent throughput_rx_percent min_latency_ns awg_latency_ns awg_latency_ns type packet_size traffic type	Result 22626032.812 11584.529 76.023 75.00 15260.000 138000.000 7392.000 rf2544 64 udp

JUNE 2017 BEIJING, CHINA

VSPERF Example Results and Analysis

Results and Analysis from Recent Tests


Using VSPERF to Analyse:

- 1. OVS and VPP
- 2. Traffic Generators
- 3. Impact of noisy neighbor
- 4. Back2Back frame testing with CI

JUNE 2017 BEIJING, CHINA

Virtual Switches in VSPERF: OVS and VPP

RFC2544, Phy2Phy OVS2.6.90, VPP 17.01DPDK: 16.07.0

Both OVS and VPP (64 B, 1-Flow, bidir), the throughput is ~80% of linerate

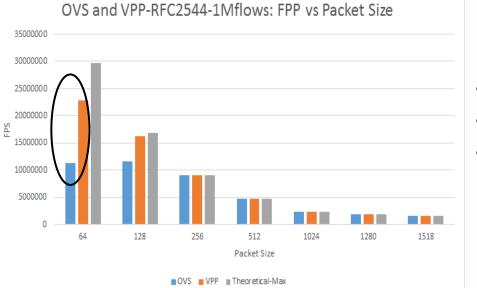
NIC has known processing limits that could be the bottleneck For uni-directional traffic line-rate is achieved for 64B Avg. latency for OVS and VPP varies from 10-90us with minimal (1-9%) difference between them

Average latency jumps significantly after 128 B

For multi-stream, latency variation are:

- Min: 2-30us
- Avg: 5-110us

Inconsistency for 256B with OVS vs VPP


A jump in latency for higher packet-sizes, is seen in almost all cases

S OPNEV

35000000 30000000 25000000 2000000 FPS 1500000 10000000 5000000 0 1518 64 128 256 512 1024 1280 Packet Size, Bytes

OVS and VPP-RFC2544-4096Flows:FPS vs Packet-Size

OVS VPP Theoretical-Max

ERF: OVS and VPP

For multi-stream, 64 and 128B – VPP throughput can go up to 70% higher than OVS. But ...

Inconsistencies

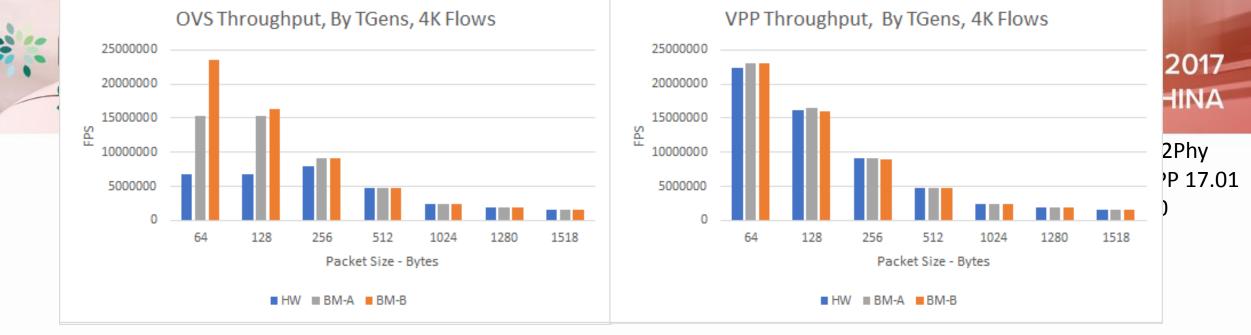
- OVS: 4K flows lower TPUT vs 1M
- Traffic generator results differ

Possible Reasons

- Packet-handling architectures
- Packet construction variation
- Test traffic is fixed size

JUNE 2017 BEIJING, CHINA

RFC2544, Phy2Phy OVS2.6.90, VPP 17.01 DPDK: 16.07.0


Analysis of Cache Miss: [SNAP monitoring tool]

The cache miss of VPP is 6% lower compared to the cachemisses for OVS.

Requires further analysis!

Lessons Learned – OVS and VPP

- Simple performance test-cases (#flows + pps) may not provide meaningful comparisons
 - EANTC Validates Cisco's Network Functions Virtualization (NFV) Infrastructure (Oct 2015)
 - Test case topology is VM to VM ... 0.001% packet loss accepted ... Pass-through connects physical interfaces to VNF ... VPP and OVS use a "single core" ... Software versions – OVS-dpdk 2.4.0, DPDK 2.0, QEMU 2.2.1 ... Processor E5-2698 v3 (Haswell – 16 physical cores), NW adaptor X520-DA2
- Results are use-case dependent
 - Topology and encapsulation impact workloads under-the-hood
 - Realistic and more complex tests (beyond L2) may impact results significantly
 - Measurement methods (searching for max) may impact results
 - DUT always has multiple configuration dimensions
 - Hardware and/or software components can limit performance (but this may not be obvious)
 - Metrics / statistics can be deceiving without proper considerations to above points!

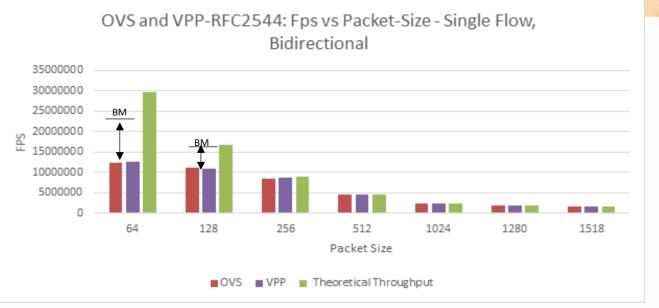
- Software Traffic Generators on bare-metal are comparable to HW reference for larger pkt sizes
- Small pkt sizes show inconsistent results
 - Across different generators
 - Between VPP and OVS
 - For both single and multi-stream scenarios
- For now, in VSPERF, existing baremetal software trafficgens, are unable to provide latency values*

*Running vsperf in "trafficgen-off" mode, it is possible to obtain latency values for some SW TGens.

Traffic Generator as a VM

JUNE 2017 BEIJING, CHINA

2571.


29.61

1280

1096.

2521.84

1518

With TGen-as-a-VM, the throughput is lower (upto 40%) in comparison with baremetal traffic generator.

Mostly restricted to lower packet size.

Reasons Inherent baremetal vs VM differences. Resource allocations.

Processes per packet.

In VSPERF, TGen-a-VM, can provide latency values.

voo-min ovs-max voo-max

256

OVS and VPP RFC2544 - Latency Vs Packet-Size - Single Flow

1585.93

255 255 133

512

Packet Size

8.9

1024

* The latency values (min and avg) can be 10x times the values provided by the hardware trafficgenerator *

[Configuration of NTP servers]

40.19

26.06 28.933

4.24 3.99 18.19 14.66

128

3500

3000

2500

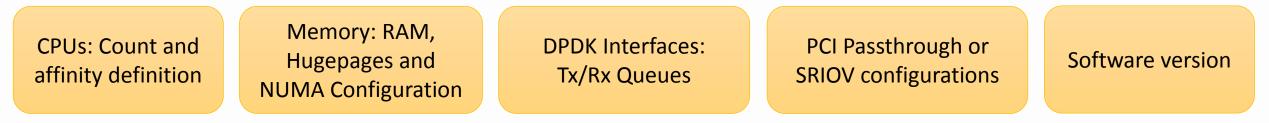
S 2000

At 1500

1000

500

n

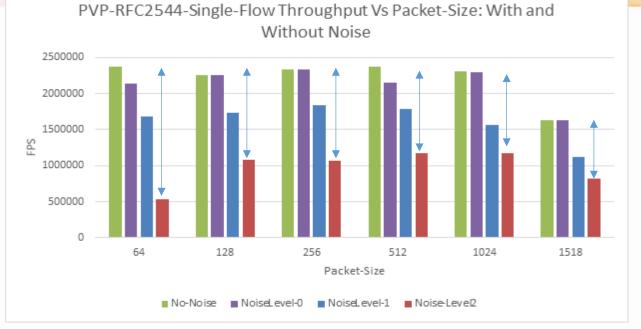

JUNE 2017 BEIJING, CHINA

Software Traffic Generators – Lessons Learned

TG characteristics can impact measurements

- Inconsistent results seen for small packet sizes across TGs
- Packet stream characteristics may impact results ... bursty traffic is more realistic!
- Back2Back tests confirm sensitivity of DUT at small frame sizes
- Switching technology (DUT) are not equally sensitive to packet stream characteristics

Configuration of 'environment' for Software traffic-generators is critical



https://wiki.opnfv.org/display/kvm/Nfv-kvm-tuning

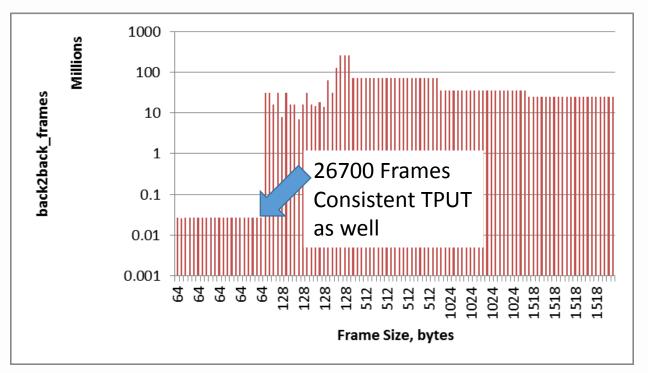
http://dpdk.org/doc/guides/linux_gsg/nic_perf_intel_platform.html

Noisy Neighbor Test

JUNE 2017 BEIJING, CHINA

DUT: VSPERF with OVS and L2FWD VNF.Traffic Generator: Hardware.Noisy Neighbor: Stressor VMTest: RFC2544 Throughput

Level	Last level cache consumption by the noisy neighbor VM
0	Minimal I3 cache consumption (<10%)
1	Average L3 cache consumption (50%)
2	High L3 cache consumption (100%)


CPU affinity configuration and NUMA configuration can protect from majority of Noise.

Consumption of Last-level cache (L3) is key to creating noise*

If the noisy neighbor can thrash the L3-Cache, it can lower the forwarding performance – throughput – upto 80%

Back2Back Frame Testing Analysis

- Seek Maximum burst length (sent with min. spacing, or back-to-back) that can be transmitted through the DUT without loss (est.Buffer size)
- HW Tgen, Phy2Phy, OVS, CI tests on Intel Pod 12, Feb-May 2017

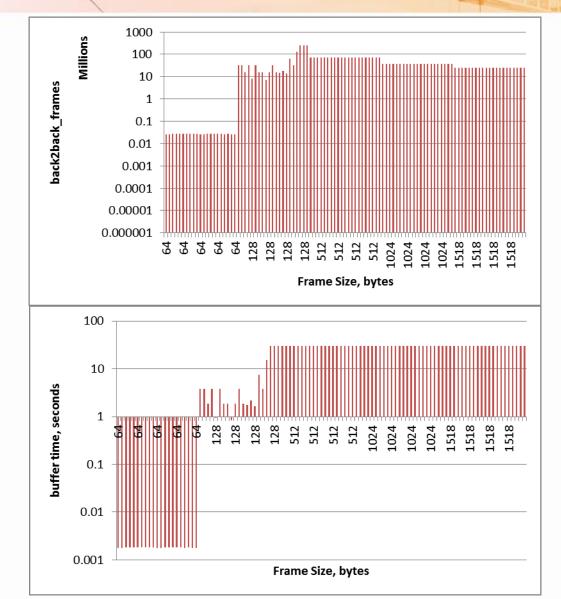
- Model: Tgen->Buff->HeaderProc->Rcv
- Only 64byte Frames are buffered!
- Ave Burst length = 26,700 Frames
- Source of Error: many Frames are processed before buffer overflow

vSw

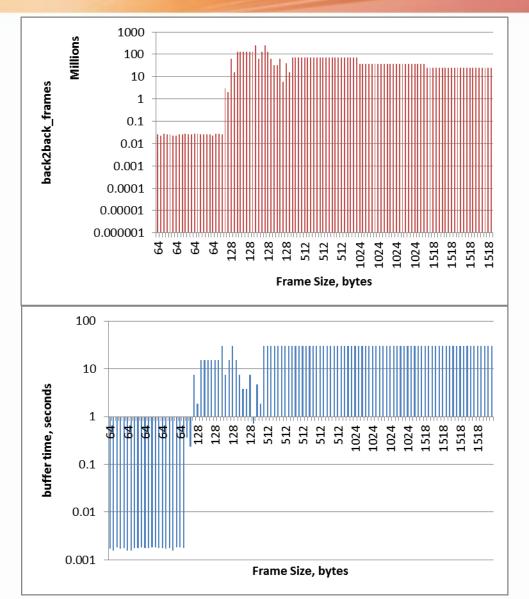
Test Device

(Send&Rcv)

Physical port Physical


port

JUNE 2017


BEIJING, CHINA

- Corr_Buff=5713 frames, or 0.384ms
- Similar results for Intel Pod 3

Backup: Back2Back Frame Test JUNE 2017 UMMIT Backup: Back2Back Frame Test JUNE 2017

Pod 12

Pod 3

JUNE 2017 BEIJING, CHINA

Moving Ahead with VSPERF

More realistic traffic profiles Custom VNFs (dpdk workloads) Comparing virtual switching **STUDIES** More complex topologies (e.g. full mesh) Stress tests (e.g. noisy neighbor) technologies and NFVI setups Additional real-world use-cases (e.g. overlays) Additional test cases (e.g. TCP) New NFVI test specs & metrics (IETF, ETSI NFV) Dashboards and analytics Visualization and Interpretation Correlation of statistics **Display of latency measurements** FEATURES of test results Test environment and DUT configurations Simplification of results Traffic generator capabilities Metrics agents & monitoring systems **OPNFV** scenario support Tool support and integration **INTEGRATION** Additional traffic generators (e.g. 40GE) Installer integration with other OPNFV frameworks CI unit tests for developers Yardstick integration