Diffie-Hellman mod

$630(427!+1)+1$

Andrew Allen and Dan Brown, BlackBerry
CFRG, Prague, 2017 July 18
Gordon’s attack and current countermeasures

 • A backdoor embedded into a Diffie-Hellman prime
 • Hidden vulnerability to special number field sieve (SNFS) attack

 • Realistic 1024-bit prime example

• Countermeasures that seem to work okay:
 • Derive p from π or e [Gordon]
 • IPSec, TLS (e.g. RFC 7919): fixed DH primes use Gordon’s methods.
 • Derive p (and q) using pseudorandom hash [NIST]
 • Bonus: hash or π looks random, reduces risk of other special weakness?
Benefits of $p=630(427!+1)+1$

- Compact description has only little room for **trapdoor**
 - Even **more compact** than using e, π or hash
 - E.g. RFC 7919, ffdhe3072: $p=2^{3072}-2^{3008}+([e2^{2942}]+2625351)2^{64}-1$
 - (39 symbols by adding ^ for exponentiation, instead of 13).

- Diffie-Hellman **secure** as discrete log:
 - $q-1$ a product $1*2*3*...*427$ of small numbers ($p=hq+1$)
 - den Boer proof nearly optimal (among SNFS-resistant primes)
 - Such a reduction (e.g. den Boer) **out of reach** for current primes?

- 3000+ bits: can **protect** 128-bit keys (AES, etc.)

- Small cofactor 630 **resists** small-subgroup attacks effectively
Heuristics about $630(427!+1)+1$

• Heuristic: factorials are **special** in sense they are **NOT** small polynomials evaluated at small inputs
 • Else factoring would be easy
 • Write floor(\sqrt{n})! as polynomial, evaluate mod n. Take gcd. [BBS?]
 • Weakly suggests that $630(427!+1)+1$ not vulnerable to SNFS

• Heuristic: p has many zero bits in binary expansion
 • Suggests Diffie-Hellman using p ought to be a bit faster than random prime (due to faster **Barrett reduction**)
Extra slides

• On den Boer’s reductions
• Why use classic DH at all?
• General background review
 • Diffie-Hellman key exchange
 • Special number field sieve
Diffie-Hellman needs more than discrete log!

- DLP: \(g^x \mod p \rightarrow x \)
- DHP: \(g^x, g^y \mod p \rightarrow g^{xy} \mod p \)
- If \(q-1 \) smooth (product of small numbers), then den Boer showed

 Diffie-Hellman problem (DHP) is nearly as hard as
discrete log problem (DLP)

- Gordon/NIST primes usually have \(q-1 \) random \(\rightarrow \) not smooth
 - Factor of size \(q^{2/3} \) usually expected
 - den Boer proof does not apply
 - Alternatives: Maurer-Wolf, or Boneh-Lipton (looser, more complex)
The den Boer reduction

- Let G have prime order $q \mod p$. (Note $q \mid p-1$.)
- Suppose $DH(G^x, G^y) = G^{xy}$ was easy to compute.
- Let F be a field of size q.
- Represent x in F by G^x. Call this representation of the field G^F.
- Implement G^F: $G^{x+y} = G^x G^y$ and $G^{xy} = DH(G^x, G^y)$.
- To find x from G^x, try to solve discrete log in G^F.
- Log in G^F: given G^b and G^x, find t such that $G^x = G^b^t$.
- Since $q-1$ is smooth, use Pohlig-Hellman (PH) to quickly find t.
- Note: PH is group-generic, so it work in mult-group of G^F.
Why classic Diffie-Hellman in modern world?

• Older than elliptic curve (dinosaurs of public-key crypto)
 • Older => safer (more studied)?

• If Alice and Bob have enough computing and communication power, they can use multiple public-key cryptographic algorithms, e.g.:
 • ECDH (multiple curves?)
 • Post-quanta algorithm(s)
 • RSA
 • DH (classic DH – per this presentation)

• I.e. sum independently established 128-bit keys
 • Secure if any 1 of the key establishments are secure.
Review: primes p, q in DH exchange

• Usually take $p = 2q+1$ for q prime
• Call p a safe prime (and q a Sophie Germaine prime)
• NIST, for digital signature algorithm (DSA), chooses a much smaller prime q with $p=hq+1$ for h large
 • Smaller signatures, risk of small-subgroup attack from large h
• Alice picks random a, Bob random b
• Alice compute $A = g^a \mod p$, Bob $B = g^b \mod p$. Exchange A, B.
• Shared secret is $A^b \mod p = B^a \mod p$.
• Usually: g has order q (or small multiple of q)
Special number field sieve (SNFS)

- Weak primes p of certain special form
 - Small-coefficient polynomials evaluated at a small input, e.g. sums of powers
 - Weaker than random primes due to SNFS
 - Random primes only vulnerable to general NFS (which is slower than SNFS)

- Unfortunately, the main faster-than-random primes
 - Mersenne primes (and like) are weaker for DH,
 - Side note: these types of primes okay for ECC \leq no SNFS on ECC
 - Because they are also vulnerable to SNFS (sums of powers)
 - Note: Some DH systems use these special fast primes despite SNFS-risk
 - SNFS still infeasible at their key sizes,
 - Special form may avoid some other (hypothetical and unpublished) attack ???