Diffie-Hellman mod $630(427!+1)+1$

Andrew Allen and Dan Brown, BlackBerry CFRG, Prague, 2017 July 18

Gordon's attack and current countermeasures

- D. M. Gordon, Designing and detecting trapdoors for discrete log cryptosystems, (CRYPTO conference), 1992.
- A backdoor embedded into a Diffie-Hellman prime
- Hidden vulnerability to special number field sieve (SNFS) attack
- J. Fried and P. Gaudry and N. Heninger and E. Thomé A kilobit hidden SNFS discrete logarithm computation http://eprint.iacr.org/2016/961
- Realistic 1024-bit prime example
- Countermeasures that seem to work okay:
- Derive p from pi or e [Gordon]
- IPSec, TLS (e.g. RFC 7919): fixed DH primes use Gordon's methods.
- Derive p (and q) using pseudorandom hash [NIST]
- Bonus: hash or pi looks random, reduces risk of other special weakness?

Benefits of $p=630(427!+1)+1$

- Compact description has only little room for trapdoor
- Even more compact than using e, pi or hash
- E.g. RFC 7919, ffdhe3072: $p=2^{3072-2^{3008}+\left(\left[e 2^{2942}\right]+2625351\right) 2^{64}-1 ~}$
- (39 symbols by adding ^ for exponentiation, instead of 13).
- Diffie-Hellman secure as discrete log:
- q-1 a product $1^{*} 2^{*} 3^{*} . . .427$ of small numbers ($p=h q+1$)
- den Boer proof nearly optimal (among SNFS-resistant primes)
- Such a reduction (e.g. den Boer) out of reach for current primes?
- 3000+ bits: can protect 128 -bit keys (AES, etc.)
- Small cofactor 630 resists small-subgroup attacks effectively

Heuristics about 630(427!+1)+1

- Heuristic: factorials are special in sense they are NOT small polynomials evaluated at small inputs
- Else factoring would be easy
- Write floor(sqrt(n))! as polynomial, evaluate mod n. Take gcd. [BBS?]
- Weakly suggests that $630(427!+1)+1$ not vulnerable to SNFS
- Heuristic: p has many zero bits in binary expansion
- Suggests Diffie-Hellman using p ought to be a bit faster than random prime (due to faster Barrett reduction)

Extra slides

- On den Boer's reductions
- Why use classic DH at all?
- General background review
- Diffie-Hellman key exchange
- Special number field sieve

Diffie-Hellman needs more than discrete log!

- DLP: $g^{x} \bmod p---->x$
- DHP: $g^{x}, g^{y} \bmod p---->g^{x y} \bmod p$
- If q-1 smooth (product of small numbers), then den Boer showed Diffie-Hellman problem (DHP)
is nearly as hard as discrete log problem (DLP)
- Gordon/NIST primes usually have q-1 random => not smooth
- Factor of size $q^{\wedge}(2 / 3)$ usually expected
- den Boer proof does not apply
- Alternatives: Maurer-Wolf, or Boneh-Lipton (looser, more complex)

The den Boer reduction

- Let G have prime order $q \bmod p$. (Note $q \mid p-1$.
- Suppose $D H\left(G^{\wedge} x, G^{\wedge} y\right)=G^{\wedge}(x y)$ was easy to compute.
- Let F be a field of size q .
- Represent x in F by G^{x}. Call this representation of the field G^{F}.
- Implement $G^{F}: G^{x+y}=G^{x} G^{y}$ and $G^{x y}=D H\left(G^{x}, G^{y}\right)$.
- To find x from G^{x}, try to solve discrete log in G^{F}.
- Log in G^{F} : given G^{b} and G^{x}, find t such that $\mathrm{G}^{\mathrm{x}}=\mathrm{G}^{\mathrm{b}}$.
- Since q-1 is smooth, use Pohlig-Hellman (PH) to quickly find t.
- Note: PH is group-generic, so it work in mult-group of GF.

Why classic Diffie-Hellman in modern world?

- Older than elliptic curve (dhinosaurs of public-key crypto)
- Older => safer (more studied)?
- If Alice and Bob have enough computing and communication power, they can use multiple public-key cryptographic algorithms, e.g.:
- ECDH (multiple curves?)
- Post-quanta algorithm(s)
- RSA
- DH (classic DH - per this presentation)
- I.e. sum independently established 128-bit keys
- Secure if any 1 of the key establishments are secure.

Review: primes p,q in DH exchange

- Usually take $p=2 q+1$ for q prime
- Call p a safe prime (and q a Sophie Germaine prime)
- NIST, for digital signature algorithm (DSA), chooses a much smaller prime q with $p=h q+1$ for h large
- Smaller signatures, risk of small-subgroup attack from large h
- Alice picks random $a, B o b$ random b
- Alice compute $A=g^{a} \bmod p, B o b B=g^{b} \bmod p$. Exchange A, B.
- Shared secret is $A^{b} \bmod p=B^{a} \bmod p$.
- Usually: g has order q (or small multiple of q)

Special number field sieve (SNFS)

- Weak primes p of certain special form
- Small-coefficient polynomials evaluated at a small input, e.g. sums of powers
- Weaker than random primes due to SNFS
- Random primes only vulnerable to general NFS (which is slower than SNFS)
- Unfortunately, the main faster-than-random primes
- Mersenne primes (and like) are weaker for DH,
- Side note: these types of primes okay for ECC <= no SNFS on ECC
- Because they are also vulnerable to SNFS (sums of powers)
- Note: Some DH systems use these special fast primes despite SNFS-risk
- SNFS still infeasible at their key sizes,
- Special form may avoid some other (hypothetical and unpublished) attack ???

