IEEE 802.1 Time-Sensitive Networking (TSN) for DetNet

János Farkas, Norman Finn, Patricia Thaler Ericsson Huawei Broadcom

IETF 99 – DetNet Session

July 20, 2017

Before We Start

This presentation should be considered as the personal view of the presenters not as a formal position, explanation, or interpretation of IEEE 802.1.

Dictionary

TSN

- Stream
- Talker
- Listener

DetNet

- Flow
- Source
- Destination

Outline

- Introduction
- TSN stream description
- Per stream facilities
- Zero congestion loss
 - Shaping facilities
 - Time-scheduled facilities
- Transmission preemption
- Summary
- Discussion
 - Integrating DetNet and TSN queuing

INTRODUCTION

Bounded Latency

- TSN's target applications, real-time networks, require a guaranteed not-to-exceed end-to-end latency for critical data
- We are after the worst-case latency
- Average/mean/best-case latencies are irrelevant
- Many ways to accomplish bounded latency:
 - Throw away late packets; grossly overprovision the network; intensive engineering and testing.
 - Provide zero congestion loss

There is No Free Lunch

- The low-hanging fruit has been picked and eaten.
- TSN is taking two approaches to explore the remaining trade-off space, which is between:
 - Lower worst-case latency
 - Simplicity of implementation
 - Ability to serve a wide range of flow bandwidths
 - Lower latency variation
 - Ability to handle dynamic reservation changes
- TSN is taking two fundamentally different approaches, though there is overlap:
 - **1. Per stream traffic shaping**
 - 2. Time-based transmission

• **Resource reservation before use is mandatory.**

Illustration of QoS & Reliability Functions

TSN STREAM DESCRIPTION

Stream Description

- Stream (flow) identification in IEEE 802.1 TSN:
 - Destination & Source MAC addresses
 - VLAN ID & Priority Code Point (PCP: L2 priority)
 - DSCP
 - IPv4 5-tuple
 - IPv6 5-tuple

Flow identification is used for QoS purposes, and for edge encapsulation transformations, NOT for forwarding

- Traffic Specification (next slide)
- Network reply (following slide)

Traffic Specification

- Application's (Talker's) promise:
 - Interval: time period for traffic specification
 - Max Frames per Interval
 - Max Frame Size
 - This spec is observable and verifiable
- Talker behavior
 - Transmission Selection Algorithm (shaper)
 - If Time Aware 👝 Transmit Offsets, Jitter
- Application's needs (user to network requirements):
 - Worst-case end-to-end latency
 - Number of replication/elimination paths

Network Response

- Talker/Listener Status info:
 - none
 - ready
 - failed (with failure code)
- Accumulated Latency = worst-case latency for a frame
 - Response to Listener is about a single path
 - Response to Talker is about the worst path among all Listeners

PER STREAM FUNCTIONS

Per-Stream Filtering and Policing

- Protection against bandwidth violation, malfunctioning, malicious attacks, etc. (802.1Qci)
- Decisions on per-stream, per-priority, etc.
- Stream Filter
 - Filters, Counters
- Stream Gate
 - Open or Closed
 - can be time-scheduled
- Meter
 - Bandwidth Profile of MEF 10.3
 - Red/Yellow/Green Marking

Frame Replication and Elimination

- Avoid frame loss due to equipment failure (802.1CB)
- Per-packet 1+1 (or 1+n) redundancy
 NO failure detection / switchover
- Send packets on two (or more) disjoint paths, then combine and delete extras

Stream Transformation

- Stream transformation (802.1CB) can provide Stream identification transformation
- Stream transformation can be applied if the network and the user use different Stream identification

• Example:

ZERO CONGESTION LOSS

- 1. Shaper-based approaches
- 2. Time-scheduled approaches

Asynchronous Traffic Shaping

- Zero congestion loss without time sync (P802.1Qcr)
- Similar to per-flow IntServ shaping, except that:
 - All flows from one input port to same output port share the same queue
 - One shaper state machine per flow, and the right shaper applied to the packet upfront of the queue
- Fewer queues, but same number of shapers

Credit Based Shaper

- Credit Based **Shaper** (CBS 802.1Qat)
 - Shaped queues have higher priority than unshaped queues
 - Shaping still guarantees bandwidth to the highest unshaped priority (7)

= Highest priority for shaped queues

- CBS is similar to the typical run rate/burst rate shaper, but with really useful mathematical properties
 - Only parameter = bandwidth (Max burst size is a consequence)
 - The impact on other queues of any number of adjacent shapers is the same as the impact of one shaper with the same total bandwidth.

Scheduled Traffic

- Reduces latency variation for Constant Bit Rate (CBR) streams, which are periodic with known timing
- Time-based control/programming of the 8
 bridge queues (802.1Qbv)
- Time-gated queues
- Gate: Open or Closed
- Periodically repeated time-schedule
- Time synchronization is required

Uses of Output Scheduler

- Scheduling queues can control latency to nanosecond precision (if the implementation is accurate)
 - But, with only a few queues, it is not trivial to isolate streams or packets
- Other uses
 - Link or network time-sharing
 - Cyclic Queuing and Forwarding

Cyclic Queuing and Forwarding

- **Double buffers** (802.1Qch) are served alternate using time-gated control
- Two pairs: 2–3 and 4–5 in this example

6

7

2

Priority selection

3

= Shapers ensure fair access for 0, 1, 6, 7 traffic

■Alternately open green and purple

• If the wire length and bridge transit time are negligible compared to the cycle time, double buffers are sufficient:

TRANSMISSION PREEMPTION

Frame Preemption

- Express frames suspend the transmission of preemptable frames (802.3br and 802.1Qbu)
 - It is link local per hop, i.e., it is not IP fragmentation
- Scheduled rocks of critical packets in each cycle:
- Conflict excessively with non-guaranteed packet rocks:
 1 2 2 2 2 2
 Problem colved by preemptive and between the rocks:

Preemption + scheduling

- Output scheduling makes nanosecond latency variation possible
- Preemption minimizes the amount of guard band required to ensure availability of the link for a scheduled transmission

Preemption with Scheduling

NO TIME TO TALK ABOUT

TSN Configuration

- TSN configuration (P802.1Qcc)
- Information model & YANG
- Configuration Models
 - Fully Distributed Model
 - Fully Centralized Model
 - Centralized Network / Distributed User Model

Reservation Protocol

- Stream Reservation Protocol (SRP 802.1Qat)
 - Advertises streams
 - Registers the path of streams
 - Calculates the worst-case latency
 - Establishes an AVB domain
 - Reserves the bandwidth for streams
- SRP enhancements (P802.1Qcc)
- Link-local Registration Protocol (LRP P802.1CS)
 - Replicate a registration including changes
 - Optimized for databases on the order of 1 Mbyte
 - Not tied to bridges

SUMMARY

Summary

- TSN brings some new queuing techniques to the party
- TSN combines two fundamentally different approaches
 - Per stream traffic shaping, policing
 - Time-based transmission
- TSN techniques should be available to DetNet in order to meet some requirements

DISCUSSION

Integrating DetNet and TSN

- A flow needs the same treatment in DetNet and TSN
 - All of the above methods are equally applicable to bridges, routers, label switches, hosts, etc., should be available to both TSN and DetNet
 - Only the traffic class selection differs (L2 priority vs LSP priority vs DSCP ...)
- We need a set of YANG modules to select and govern the use of these queuing strategies for all node types

FURTHER READING

Further Reading

- http://www.ieee802.org/1
- <u>http://www.ieee802.org/1/pages/tsn.html</u>
- TSN Tutorial at IETF 99: <u>slides</u> & <u>video</u>
- Introduction to IEEE 802.1 TSN
- <u>Tutorial on IEEE 802 Ethernet Networks for Automotive</u>
- IEEE 802.1 TSN for Automotive flyer
- IEEE 802.1 TSN for Industrial Networks flyer
- <u>A Time-Sensitive Networking Primer: Putting It All Together</u>
- Heterogeneous Networks for Audio and Video: Using IEEE 802
 .1 Audio Video Bridging
- <u>Tutorial on IEEE 802.3br Interspersing express traffic (IET) an</u> <u>d</u> <u>IEEE 802.1 Time-Sensitive Networking</u>
- <u>Tutorial on Deterministic Ethernet</u>