

Diameter Specification
Reccomendations

IETF 99
July 2017

(draft-bertz-dime-diamimpr-00)

Motivation

● As an Operator, Sprint was observing successful
interop of Diameter but long lead times for development

● Sprint's C3PO project (a 4G open source EPC
developed jointly with Intel) uses freediameter
– Also noticed longer than expected implementation lead times
– Errors were minor but enough to be a drag on the schedule
– We decided to do a study to determine how efficient we can

be
● Hypothesis – We can go from spec to code (library +

structs / objects + json marshaling +...) < 1 hour

Findings

● We were so wrong...
● Too many table formats

– It cannot be argued this is a Change over time, some specs started /
became RFCs at similar times but have different Table formats

● Imports of AVPs not treated consistently
● Outright errors slow us down

– Some AVPs NEVER given a Code
– Some AVPs referenced and missing (NEVER defined)

● Some data you just can't get from any spec programmatically
– App ID + Messages + Return Codes + App Name
– Especially hard when a spec has multiple applications

Methodology

● Save Document in text format
● Put Defined AVPS and Imported/Referenced/Re-used AVPs in

different files
● Add Enums ONLY if parser cannot find them
● Put app info in a special file to map commands, return codes, app

id, app name, etc.
● Run python code to create 'dia' files used in diafuzzer

(https://github.com/Orange-OpenSource/diafuzzer)
– Enhance as required to support use cases

● Load the dia files into memory (which forces many semantic
checks)

Unexpected Use Cases

● Grouped AVPs/Commands that further refine the
AVPs/Commands defined in other applications

● Easy to detect
– Except when in the same document (that was no fun)

● Some inconsistencies - in some specs the
Grouped AVP was Imported and others it was
defined when in fact it is both

● There is no concept of imported commands...

We are not immune

● RFC 4006 bis had a few m inor issues (to be
closed as part of WGLC)

Enumerations

● Don't use them. Just don't...
● Use Cases

– Enums referencing other Enums
● Some reuse Enums
● Others restrict Enums – can you do that?
● Others add new values

– Enums referencing web pages (URIs)
– Enums reference registries (which is expected)

● No format and very inconsistent
– So inconsistent we often just appended enums to generated files

and manually processed them

Recommendations

● Overall:
– The name of all AVPs, Commands and Grouped

AVPs appear consistently throughout the document.
– The letter case MUST be consistent for all names.
– No spaces should appear in the names.
– Use of underscores is discouraged except for line

continuations in tables and enumeration labels.

Defined AVP Recommendations

● Tables MUST include the following columns:
– Attribute Name
– AVP Code
– Section Defined
– Data Type
– AVP Flag Rules for MUST and MUST NOT
– Other minor recommendations in spec

Defined AVPs Recommended
Formats

 AVP Section | |MUST |
 Attribute Name Code Defined Data Type |MUST| NOT |
 ---|---------+---------|
 AVP-Name 85 9.8.2 Unsigned32 | M | V |

 Example Two

 | AVP | Section | | |MUST |
 Attribute Name | Code | Defined | Data Type |MUST| NOT |
 ---------------------|--------+-----------+---------------+--------+---------|
 AVP-Name | 85 | 9.8.2 | Unsigned32 | M | V |

Imported AVP Recommendations

● Imported or Re-used AVPs MUST be included in
the specification. A table MUST be present if
AVPs are re-used/imported.
– The table MUST include the AVP and Source

document columns.
– The table MAY include a Comment column.
– An M-bit column MAY be present as required.

● (Should this be MAY or MUST?)

– The table MUST be pipe delimited when in text format.

Grouped AVP / Command
Refinement

● Preconditions
– Original structure MUST have *[AVP] present to be Refinable (see Open Questions

later in presentation about this)
– Any refinement of an AVP present the new structure MUST conform to the occurrences

range
● If X*Y[Foo] was present in original and A*B [Foo] present in refinement then X <= A <= B <= Y.

– AVPs retained without further restriction of the number of occurrences MUST be kept in
the Refining AVP's definition otherwise they are assumed to be dropped from the new
AVPdefinition.

● Refinement is defined by 'Refines [App Id]'. When App Id is not present, it is
assumed to be the original spec.
– A Refined AVP / Command MUST NOT appear in anything but an Import Table

EXCEPT for the specification that originally defined the AVP / Command.
● Allows for easy detection of defining spec but not helpful when a define/refine is in the same

document.<< Open question

Example Refinement

From TS 29.336
 User-Identifier ::= <AVP-Header: 3102, 10415>
 [User-Name]
 [MSISDN]
 [External-Identifier]
 [LMSI]
 *[AVP]

 From TS 29.128
 User-Identifier ::= <AVP-Header: 3102, 10415, Refines>
 [User-Name]
 *[AVP]

Command Recommendations

● inconsistent values between the name, three
letter acronym defined in the table and the
actual name used in the command definition.

Enumeration Recommendations

● Enumeration Value Names MUST adhere to alphanumeric and
underscore characters.

● Enumeration Value Names MUST not begin with an underscore.
● When being defined the format MUST include the label and the value

assigned with the label enclosed in parenthesis on a single line.
– Example w/o parenthesis

● Speed_10 10
● Speed_1010 (Error)

– Example with parenthesis
● Speed_10 (10)
● Speed_10(10)

● Coverage of Use Cases were NOT specified in the document

GAPs for Automated Validation

Many pieces of information cannot be programmatically validated.

GAP 1: The application identifier and name of an application.

GAP 2: The application and vendor identifiers associated with a
defined AVP table.

GAP 3: The application and vendor identifiers associated with
Commands.

GAP 4: Reused and newly defined result codes for an application.

GAP 5: Easily parsed enumerations that cover all use cases.

Example to Close Gaps

 1: AppFoo ::= <Diameter Application: 10415 101010>
 2: Command1-Name-Request C1R
 3: Command1-Name-Answer C1A
 4:
 5: Result-Codes ::= <Diameter Result-Codes: 101010>
 6: NEW_RESULT (4999)
 7: IMPORTED_RESULT IMPORT (4010)

● Just a suggestion here

 GAP 1 is closed in line 1. GAP 3 is closed in lines 1 through 3
 while GAP 4 is closed by lines 5 through 7.

 GAP 2 can be closed by using a common discernable Table Name format,
 e.g. AppFoo defined AVPs. In this case the Application Name can be
 looked up and associated to the defined AVP table.

Enumeration Example Format

Does not resolve Use Cases.

Gap 5 can be partially closed by following a pattern
similar to Result-Codes but this does not resolve all
uses cases.

Result-Codes ::= <Diameter Enumeration: 123, 45678>
Label_1 (0)
LABEL_Two (2)

Open Questions

● Open question, can a Grouped AVP/Command have a range
limited [AVP] member, e.g. *5[AVP]?

● Do we go back and file Errata on all items noted in the
Survey?
– Will we take up fixing these?

● Do we want to mix 'pseudo enumerations' (defined as
Unsigned32 but have a spec for mapping labels to values and
DOES NOT require a registry)

● When a define/refine is in the same document we know it
should be in a Defined Grouped AVP (if it is a Grouped AVP)
but should we make other considerations?

Summary

● Diameter over the wire is fine
● The specs are doing well (our evidence is that

over the wire interoperability works)
● We can do better!
● Our current formats cannot cover all use cases
● Automated Validation is possible
● Good specs take less than 20 minutes to go from

spec to code generation

Next Steps

● WG Adopt this document as either

A> a requirements document and make changes in another
document (my recommendation)

B> a solutions document (much more work required)
● File Errata based upon results but don't work on fixes

unless the specs are actually used
● Figure out what to do for Enums (add as WG Item)
● Work on an automated verification system as part of the I-

D nits process
– Should it be gating all of the time or only for WGLC?

Diameter Specification
Reccomendations

IETF 99
July 2017

(draft-bertz-dime-diamimpr-00)

Motivation

● As an Operator, Sprint was observing successful
interop of Diameter but long lead times for development

● Sprint's C3PO project (a 4G open source EPC
developed jointly with Intel) uses freediameter
– Also noticed longer than expected implementation lead times
– Errors were minor but enough to be a drag on the schedule
– We decided to do a study to determine how efficient we can

be
● Hypothesis – We can go from spec to code (library +

structs / objects + json marshaling +...) < 1 hour

Findings

● We were so wrong...
● Too many table formats

– It cannot be argued this is a Change over time, some specs started /
became RFCs at similar times but have different Table formats

● Imports of AVPs not treated consistently
● Outright errors slow us down

– Some AVPs NEVER given a Code
– Some AVPs referenced and missing (NEVER defined)

● Some data you just can't get from any spec programmatically
– App ID + Messages + Return Codes + App Name
– Especially hard when a spec has multiple applications

Methodology

● Save Document in text format
● Put Defined AVPS and Imported/Referenced/Re-used AVPs in

different files
● Add Enums ONLY if parser cannot find them
● Put app info in a special file to map commands, return codes, app

id, app name, etc.
● Run python code to create 'dia' files used in diafuzzer

(https://github.com/Orange-OpenSource/diafuzzer)
– Enhance as required to support use cases

● Load the dia files into memory (which forces many semantic
checks)

Unexpected Use Cases

● Grouped AVPs/Commands that further refine the
AVPs/Commands defined in other applications

● Easy to detect
– Except when in the same document (that was no fun)

● Some inconsistencies - in some specs the
Grouped AVP was Imported and others it was
defined when in fact it is both

● There is no concept of imported commands...

We are not immune

● RFC 4006 bis had a few m inor issues (to be
closed as part of WGLC)

Enumerations

● Don't use them. Just don't...
● Use Cases

– Enums referencing other Enums
● Some reuse Enums
● Others restrict Enums – can you do that?
● Others add new values

– Enums referencing web pages (URIs)
– Enums reference registries (which is expected)

● No format and very inconsistent
– So inconsistent we often just appended enums to generated files

and manually processed them

Recommendations

● Overall:
– The name of all AVPs, Commands and Grouped

AVPs appear consistently throughout the document.
– The letter case MUST be consistent for all names.
– No spaces should appear in the names.
– Use of underscores is discouraged except for line

continuations in tables and enumeration labels.

Defined AVP Recommendations

● Tables MUST include the following columns:
– Attribute Name
– AVP Code
– Section Defined
– Data Type
– AVP Flag Rules for MUST and MUST NOT
– Other minor recommendations in spec

Defined AVPs Recommended
Formats

 AVP Section | |MUST |
 Attribute Name Code Defined Data Type |MUST| NOT |
 ---|---------+---------|
 AVP-Name 85 9.8.2 Unsigned32 | M | V |

 Example Two

 | AVP | Section | | |MUST |
 Attribute Name | Code | Defined | Data Type |MUST| NOT |
 ---------------------|--------+-----------+---------------+--------+---------|
 AVP-Name | 85 | 9.8.2 | Unsigned32 | M | V |

Imported AVP Recommendations

● Imported or Re-used AVPs MUST be included in
the specification. A table MUST be present if
AVPs are re-used/imported.
– The table MUST include the AVP and Source

document columns.
– The table MAY include a Comment column.
– An M-bit column MAY be present as required.

● (Should this be MAY or MUST?)

– The table MUST be pipe delimited when in text format.

Grouped AVP / Command
Refinement

● Preconditions
– Original structure MUST have *[AVP] present to be Refinable (see Open Questions

later in presentation about this)
– Any refinement of an AVP present the new structure MUST conform to the occurrences

range
● If X*Y[Foo] was present in original and A*B [Foo] present in refinement then X <= A <= B <= Y.

– AVPs retained without further restriction of the number of occurrences MUST be kept in
the Refining AVP's definition otherwise they are assumed to be dropped from the new
AVPdefinition.

● Refinement is defined by 'Refines [App Id]'. When App Id is not present, it is
assumed to be the original spec.
– A Refined AVP / Command MUST NOT appear in anything but an Import Table

EXCEPT for the specification that originally defined the AVP / Command.
● Allows for easy detection of defining spec but not helpful when a define/refine is in the same

document.<< Open question

Example Refinement

From TS 29.336
 User-Identifier ::= <AVP-Header: 3102, 10415>
 [User-Name]
 [MSISDN]
 [External-Identifier]
 [LMSI]
 *[AVP]

 From TS 29.128
 User-Identifier ::= <AVP-Header: 3102, 10415, Refines>
 [User-Name]
 *[AVP]

Command Recommendations

● inconsistent values between the name, three
letter acronym defined in the table and the
actual name used in the command definition.

Enumeration Recommendations

● Enumeration Value Names MUST adhere to alphanumeric and
underscore characters.

● Enumeration Value Names MUST not begin with an underscore.
● When being defined the format MUST include the label and the value

assigned with the label enclosed in parenthesis on a single line.
– Example w/o parenthesis

● Speed_10 10
● Speed_1010 (Error)

– Example with parenthesis
● Speed_10 (10)
● Speed_10(10)

● Coverage of Use Cases were NOT specified in the document

GAPs for Automated Validation

Many pieces of information cannot be programmatically validated.

GAP 1: The application identifier and name of an application.

GAP 2: The application and vendor identifiers associated with a
defined AVP table.

GAP 3: The application and vendor identifiers associated with
Commands.

GAP 4: Reused and newly defined result codes for an application.

GAP 5: Easily parsed enumerations that cover all use cases.

Example to Close Gaps

 1: AppFoo ::= <Diameter Application: 10415 101010>
 2: Command1-Name-Request C1R
 3: Command1-Name-Answer C1A
 4:
 5: Result-Codes ::= <Diameter Result-Codes: 101010>
 6: NEW_RESULT (4999)
 7: IMPORTED_RESULT IMPORT (4010)

● Just a suggestion here

 GAP 1 is closed in line 1. GAP 3 is closed in lines 1 through 3
 while GAP 4 is closed by lines 5 through 7.

 GAP 2 can be closed by using a common discernable Table Name format,
 e.g. AppFoo defined AVPs. In this case the Application Name can be
 looked up and associated to the defined AVP table.

Enumeration Example Format

Does not resolve Use Cases.

Gap 5 can be partially closed by following a pattern
similar to Result-Codes but this does not resolve all
uses cases.

Result-Codes ::= <Diameter Enumeration: 123, 45678>
Label_1 (0)
LABEL_Two (2)

Open Questions

● Open question, can a Grouped AVP/Command have a range
limited [AVP] member, e.g. *5[AVP]?

● Do we go back and file Errata on all items noted in the
Survey?
– Will we take up fixing these?

● Do we want to mix 'pseudo enumerations' (defined as
Unsigned32 but have a spec for mapping labels to values and
DOES NOT require a registry)

● When a define/refine is in the same document we know it
should be in a Defined Grouped AVP (if it is a Grouped AVP)
but should we make other considerations?

Summary

● Diameter over the wire is fine
● The specs are doing well (our evidence is that

over the wire interoperability works)
● We can do better!
● Our current formats cannot cover all use cases
● Automated Validation is possible
● Good specs take less than 20 minutes to go from

spec to code generation

Next Steps

● WG Adopt this document as either
A> a requirements document and make changes in another
document (my recommendation)

B> a solutions document (much more work required)
● File Errata based upon results but don't work on fixes

unless the specs are actually used
● Figure out what to do for Enums (add as WG Item)
● Work on an automated verification system as part of the I-

D nits process
– Should it be gating all of the time or only for WGLC?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

