FPC Status & Update

IETF 99
July 2017
Status

- Still on version 07
- No bugs / issues filed
- No bugs / issues found in implementation

Activities
- Weekly meetings since IETF 98
- 2x week since Early June
- Internships for FPC development (at an Operator)
Implementations

• Opendaylight FPC Agent
 – Version 04 mobility model
 – Multi-DPN Agent

• NEW - ONOS based FPC Agent
 – Version 04 mobility model
 – Uses ONOS Flow store
IETF 98 to IETF 99

IETF 98
- Focused on Mobility / Policy

Working to IETF 99
- Focused on Topology
 - Had the most questions and is neglected in implementations
 - Includes concepts such as slicing and discovery support (DDDS – RFC 3958)
 - Biggest questions
 - Can Topology support most widely used Use Cases?
 - How much is out of I-D scope?

<table>
<thead>
<tr>
<th>Tenant 1</th>
<th>Tenant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>Mobility</td>
</tr>
<tr>
<td>Policy</td>
<td>Policy</td>
</tr>
<tr>
<td>Topology</td>
<td>Topology</td>
</tr>
</tbody>
</table>
Topology Changes (next draft) – DPN Type (1/2)

DPN-Type
- Describes the types of reference points supported by a DPN or DPN-Group
- Used in determining 'if' a DPN / DPN-Group can service a request

Goal - provide sufficient information that ensures a proper interface can be selected to service a request

<table>
<thead>
<tr>
<th>Topology</th>
<th>DPN-Type-List</th>
<th>DPN-Type</th>
<th>Interface-List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Access-Technology (key)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Access-Technology-DisplayName</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Role (key)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Role-DisplayName</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interface-Id (key)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interface-protocols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Features-List</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interface-Settings (Optional)</td>
</tr>
</tbody>
</table>
Topology Changes (next draft) – DPN Type (2/2)

Access-Technology - the technology used in the access network from where the signaling originates, e.g. 3GPP, WiMAX, 802.x, etc.

Role - The actual function of the DPN. Determined by Access-Technology, e.g. LMA, MAG, etc.

Interface-Protocols - e.g. pmip, s5-gtp, s5-pmip, etc.

Features-List - Features required for determining the suitability of an interface to service a specific request.

Interface-Settings - Settings that MUST be known when determining the suitability of an interface to service a specific request.

Interface-Reference - comprised of the (compound) keys to an Interface-List entry:
- Access-Technology
- Role
- Interface-Id
Combined View (with Pointers)
Topology Changes (next draft) – DPN & DPN Groups

DPN-Group – A collection of DPN interfaces that serves a specific purpose prescribed by administrators. It typically serves some function, e.g. inbound roaming services, regionalization, etc.

DPN-List – Main structure used to hold the DPNs.

DPN-Id-List – DPNs that support the Interface

Referenced-DPNs-List – List (mix) of interfaces to provide the functions in the DPN-Group

Additional-Settings – Settings (in addition to those specified in the referenced interface). The settings will apply to the interface but do not affect the selection of the interface.

Interface-Reference

- **Role (key)**
- **Access-Technology (key)**
- **Interface-id (key)**

Interface-List

- **DPN-id**

Reference Pointer
Topography Usage

- DPN-Type is central to **selecting an interface** to service a request
- DPN-Group and DPN-List are used to **select which DPNs** are candidates.

A FPC Client or Agent may use this information, i.e. it is required information but not necessarily needed to be transmitted over an FPC protocol

- So then why do we care?
 - The protocol does care about the DPN-Type information elements but not the data structure it is held in when a Context is created.
 - DPN-Groups and DPN-Peers (still under discussion) are not required to be transmitted between a Client and Agent.

- Our #1 use case for selection, RFC 3598, and many derivates including 3GPP (TS 29.303) do care about this.
 - *In other words, if we don't support it in the information model it is useless at the system level.*
Topology Work in Progress / Open Items

- DPN-Peers
 - Prior relationships between DPNs that may be used to further narrow DPN selection or speed up Context creation

- Multi-tenancy – It is in the information model and we currently avoid needing to send tenant information over the wire in the ODL implementation by
 - This has been present in FPC for many versions
 - Having a Client only process a single tenant's request per Client Id. As a result of this a FPC Client may 'bind' (a message that is out of scope of FPC) to the Agent with many Identifiers.
 - We think this will not change but it is by no means finalized

- Slicing
 - It has been added to the model but we will need more analysis on how recent changes to Topology affect it, if at all.
Internship Work

• Work on two neglected aspects of the Opendaylight FPC Agent
 - Pre-provisioning of Policy – When a tenant is assigned to a DPN sending down base and most frequently used policies to ensure efficient Context creation
 • Looks straight forward but needed to build many reverse pointers in the system for impact analysis when a Policy changed
 - May be limited in its utility
 - Maybe we need better notification models in the Controllers when everything does not live under a tree? (not an IETF issue)
 - Composite DPNs – An abstract DPN composed of other DPNs. The Agent uses them to provide features such as N+K redundancy
 • The information model modifications to support this were trivial.
 • 2 RPC calls added to Topology to support adding/removing DPNs from the composite
 • Code is too complex to place into or describe in the FPC spec for just “1+1” composite DPN strategy.
 - Recommend that it is out of scope of this specification
 - Not sure IETF should ever standardize these behaviors
Open Items (In order of appearance)

- Topology
- Review of Policy
- Update of Mobility (based on Topology/Policy updates)
Going Forward – Aspirational Goals

• Why 'aspirational'? The spec is much bigger than others
 – Topology, Mobility and Policy in the same spec
 – System level use cases are verified, e.g. support for RFC 3958 based systems
• IETF 99 – Finish Topology
• Prior to IETF 100 – Finish Policy, modify Mobility based upon impacts & New Spec
• @ IETF 100 - ??? (Reviewers are key here)
FPC Status & Update

IETF 99
July 2017
Status

- Still on version 07
- No bugs / issues filed
- No bugs / issues found in implementation
- Activities
 - Weekly meetings since IETF 98
 - 2x week since Early June
 - Internships for FPC development (at an Operator)
Implementations

- Opendaylight FPC Agent
 - Version 04 mobility model
 - Multi-DPN Agent
- NEW - ONOS based FPC Agent
 - Version 04 mobility model
 - Uses ONOS Flow store
IETF 98 to IETF 99

- **IETF 98**
 - Focused on Mobility / Policy

- **Working to IETF 99**
 - Focused on Topology
 - Had the most questions and is neglected in implementations
 - Includes concepts such as slicing and discovery support (DDDS – RFC 3958)
 - Biggest questions
 - Can Topology support most widely used Use Cases?
 - How much is out of I-D scope?
Topo slide (DPN abstraction)
DPN-Type
- Describes the types of reference points supported by a DPN or DPN-Group
- Used in determining 'if' a DPN / DPN-Group can service a request

Goal - provide sufficient information that ensures a proper interface can be selected to service a request
Topology Changes (next draft) –
DPN Type (2/2)

Access-Technology - The technology used in the access network from where the signaling originates, e.g. 3GPP, WiMAX, 802.x, etc.

Role - The actual function of the DPN. Determined by Access-Technology, e.g. LMA, MAG, etc.

Interface-Reference - comprised of the (compound) keys to an Interface-List entry:
- Access-Technology
- Role
- Interface-Id

Interface-Settings - Settings that MUST be known when determining the suitability of an interface to service a specific request

Features-List - Features required for determining the suitability of an interface to service a specific request

Interface-Protocols - e.g. pmp, s5-gtp, s5-pmip, etc.
DPN-Group – A collection of DPN interfaces that serves a specific purpose prescribed by administrators. It typically serves some function, e.g. inbound roaming services, regionalization, etc.

DPN-List – Main structure used to hold the DPNs.

Referenced-DPNs-List (mix) of interfaces to provide the functions in the DPN-Group

DPN-Id-List DPNs that support the Interface

Interface Reference Pointer

Additional-Settings – Settings (in addition to those specified in the referenced interface). The settings will apply to the interface but do not affect the selection of the interface.
Topology Usage

- DPN-Type is central to **selecting an interface** to service a request
- DPN-Group and DPN-List are used to **select which DPNs** are candidates.

A FPC Client or Agent may use this information, i.e. it is required information but not necessarily needed to be transmitted over an FPC protocol
 - So then why do we care?
 - The protocol does care about the DPN-Type information elements but not the data structure it is held in when a Context is created.
 - DPN-Groups and DPN-Peers (still under discussion) are not required to be transmitted between a Client and Agent.
 - Our #1 use case for selection, RFC 3598, and many derivates including 3GPP (TS 29.303) do care about this.
 - *In other words, if we don't support it in the information model it is useless at the system level.*
Topology Work in Progress / Open Items

• DPN-Peers
 - Prior relationships between DPNs that may be used to further narrow DPN selection or speed up Context creation

• Multi-tenancy – It is in the information model and we currently avoid needing to send tenant information over the wire in the ODL implementation by
 - This has been present in FPC for many versions
 - Having a Client only process a single tenant's request per Client Id. As a result of this a FPC Client may 'bind' (a message that is out of scope of FPC) to the Agent with many Identifiers.
 - We think this will not change but it is by no means finalized

• Slicing
 - It has been added to the model but we will need more analysis on how recent changes to Topology affect it, if at all.
Internship Work

- Work on two neglected aspects of the Opendaylight FPC Agent
 - Pre-provisioning of Policy – When a tenant is assigned to a DPN sending down base and most frequently used policies to ensure efficient Context creation
 - Looks straight forward but needed to build many reverse pointers in the system for impact analysis when a Policy changed
 - May be limited in its utility
 - Maybe we need better notification models in the Controllers when everything does not live under a tree? (not an IETF issue)
 - Composite DPNs – An abstract DPN composed of other DPNs. The Agent uses them to provide features such as N+K redundancy
 - The information model modifications to support this were trivial.
 - 2 RPC calls added to Topology to support adding/removing DPNs from the composite
 - Code is too complex to place into or describe in the FPC spec for just “1+1” composite DPN strategy.
 - Recommend that it is out of scope of this specification
 - Not sure IETF should ever standardize these behaviors
Open Items (In order of appearance)

- Topology
- Review of Policy
- Update of Mobility (based on Topology/Policy updates)
Going Forward – Aspirational Goals

• Why 'aspirational'? The spec is much bigger than others
 - Topology, Mobility and Policy in the same spec
 - System level use cases are verified, e.g. support for RFC 3958 based systems
• IETF 99 – Finish Topology
• Prior to IETF 100 – Finish Policy, modify Mobility based upon impacts & New Spec
• @ IETF 100 - ??? (Reviewers are key here)