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Assumptions/Use case
• A zone operator wants to incrementally deploy a new 

algorithm


• And new algorithms are appearing or will be in the 
pipeline (Ed25518, Ed448, NSEC5, PQC, etc.)


• It will sign using both old and new algorithms for a 
transition period


• Then withdraw the old algorithm once it’s confident that 
all or most of its client population of resolvers understand 
the new algorithm



Assumptions/Use case

• This is possible today with DNSSEC - double sign the 
zone, and return signatures with the multiple algorithms in 
responses


• But zone operators often don’t want to unnecessarily 
bloat the size of responses with multiple signatures 
because of potential operational issues:



Assumptions/Use case
• .. operational issues (cont):


• Response might exceed the path MTU (or the IPv6 
minimum MTU) and be fragmented - fragments often don’t 
work reliably on the Internet - blocked by middleboxes 
and network security devices


• To avoid this, zone operator could truncate messages that 
exceeded path MTU, forcing retry over TCP - introduces 
additional latency and processing costs


• Wants to avoid large scale use of TCP (or perhaps QUIC in 
the future) before it has scaled up infrastructure to handle 
that



Assumptions/Use case
• Why don’t you just deploy the new algorithm only? After all 

DNSSEC fails open (several people to me this week):


• Obviously, I lose the benefit of DNSSEC protection for a 
lot of the resolver population


• Furthermore, if I have DANE applications critically 
dependent on DNSSEC authentication, then this is an 
unacceptable security risk:


• DANE applications can’t really afford to fail open, unless 
they are entirely opportunistic or optional, so they will be 
even more dissuaded from new DNSSEC algorithm 
adoption



Algorithm Negotiation Proposal 

• A new EDNS0 option that allows a DNS client to specify a 
list of DNSSEC algorithms, in preference order, that the 
client desires to use.


• DNS server, upon receipt of this option:


• chooses the strongest algorithm that it supports in 
common with the client.


• selectively delivers DNSSEC signatures using that 
algorithm only



Algorithm Negotiation Proposal 

• For more technical details, read the draft:


• https://tools.ietf.org/html/draft-huque-dnssec-alg-nego

https://tools.ietf.org/html/draft-huque-dnssec-alg-nego
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* The zone operator, not the client, should really be dictating algorithm 
preference. 

* So client sends its list of algorithms, but server picks the strongest of the list 
that it supports. 

* This means that for downgrade protection, the client will need a way to know in 
an authenticated manner the algorithm preference list of the server. 
* Server has a new (signed) RR at the zone apex which lists this order 

(contains an ordered list of algorithm numbers)
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Cache Implications

• Resolvers that have downstream validators potentially 
supporting different algorithms


• Resolver will have to keep track of which cache entries 
have a signatures from a subset of algorithms supported 
at the authoritative server, and re-query upstream as 
needed


• Or perhaps fetch all algorithms from upstream and 
delivery algorithms selectively downstream
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RFC 6975 Redux

• This protocol could also subsume the functionality 
proposed in RFC 6975 (which hasn’t yet seen 
deployment) to signal DNSSEC algorithm understanding.


• This would give authoritative server operators a way to 
gauge when a sufficient threshold of the resolver 
population understands a new algorithm, that it could 
deploy the new one, or withdraw older ones.



TODO

• Continue refining the draft


• Fine tune and more fully specify caching behavior for 
various scenarios and configurations


• Add Direction bit (to detect broken devices that blindly 
reflect EDNS options)


• Write prototype code



Some Alternatives
• Mass migrate DNS ecosystem to alternate transports, like 

TCP, TLS, or QUIC


• Fix the entire Internet so that large fragmented UDP 
payloads can transit successfully


• (although fragments can still cause issues: see Haya 
Shulman’s “Fragmentation Considered Poisonous” 
paper from a few years ago, and more recent attempts 
to deprecate fragments altogether in the IETF)


• Design an application layer message framing protocol for 
the DNS



Should we work on this?


