
Algorithm Negotiation
in DNSSEC?

Shumon Huque, Haya Shulman, Shane Kerr

July 20th 2017

IETF99, Prague, Czech Republic

draft-huque-dnssec-alg-nego-01

Assumptions/Use case
• A zone operator wants to incrementally deploy a new

algorithm

• And new algorithms are appearing or will be in the
pipeline (Ed25518, Ed448, NSEC5, PQC, etc.)

• It will sign using both old and new algorithms for a
transition period

• Then withdraw the old algorithm once it’s confident that
all or most of its client population of resolvers understand
the new algorithm

Assumptions/Use case

• This is possible today with DNSSEC - double sign the
zone, and return signatures with the multiple algorithms in
responses

• But zone operators often don’t want to unnecessarily
bloat the size of responses with multiple signatures
because of potential operational issues:

Assumptions/Use case
• .. operational issues (cont):

• Response might exceed the path MTU (or the IPv6
minimum MTU) and be fragmented - fragments often don’t
work reliably on the Internet - blocked by middleboxes
and network security devices

• To avoid this, zone operator could truncate messages that
exceeded path MTU, forcing retry over TCP - introduces
additional latency and processing costs

• Wants to avoid large scale use of TCP (or perhaps QUIC in
the future) before it has scaled up infrastructure to handle
that

Assumptions/Use case
• Why don’t you just deploy the new algorithm only? After all

DNSSEC fails open (several people to me this week):

• Obviously, I lose the benefit of DNSSEC protection for a
lot of the resolver population

• Furthermore, if I have DANE applications critically
dependent on DNSSEC authentication, then this is an
unacceptable security risk:

• DANE applications can’t really afford to fail open, unless
they are entirely opportunistic or optional, so they will be
even more dissuaded from new DNSSEC algorithm
adoption

Algorithm Negotiation Proposal

• A new EDNS0 option that allows a DNS client to specify a
list of DNSSEC algorithms, in preference order, that the
client desires to use.

• DNS server, upon receipt of this option:

• chooses the strongest algorithm that it supports in
common with the client.

• selectively delivers DNSSEC signatures using that
algorithm only

Algorithm Negotiation Proposal

• For more technical details, read the draft:

• https://tools.ietf.org/html/draft-huque-dnssec-alg-nego

https://tools.ietf.org/html/draft-huque-dnssec-alg-nego

Signed with
P1, P2

Resolver Auth Server

Proposal 1

Query: a.b.c
+ I prefer algorithms:

P1, P2, P3

Signed with
P1, P2

Resolver Auth Server

Proposal 1

Query: a.b.c
+ I prefer algorithms:

P1, P2, P3

Signed with
P1, P2

Resolver Auth Server

Response: a.b.c 1.2.3.4
+ signature with P1

Proposal 1

Query: a.b.c
+ I prefer algorithms:

P1, P2, P3

Signed with
P1, P2

Resolver Auth Server

Response: a.b.c 1.2.3.4
+ signature with P1

Downgrade protection: EDNS option is not protected. MITM attacker could strip,
P1 from the query, and downgrade the authentication to happen using algorithm
P2. To protect against, this Resolver compares the signature algorithm in the
response to the list of known algorithms in the (authenticated) DNSKEY RRset
that it already has from the zone.

Proposal 1

Signed with
P1, P2

Resolver Auth Server

Proposal 2

* The zone operator, not the client, should really be dictating algorithm
preference.

* So client sends its list of algorithms, but server picks the strongest of the list
that it supports.

* This means that for downgrade protection, the client will need a way to know in
an authenticated manner the algorithm preference list of the server.
* Server has a new (signed) RR at the zone apex which lists this order

(contains an ordered list of algorithm numbers)

Signed with
P1, P2

Resolver Auth Server

Proposal 2

ALGPREF P1 P2

Query: a.b.c
+ I prefer algorithms:

P2, P3, P1

Signed with
P1, P2

Resolver Auth Server

Proposal 2

ALGPREF P1 P2

Query: a.b.c
+ I prefer algorithms:

P2, P3, P1

Response: a.b.c 1.2.3.4
+ signature with P1

Cache Implications

• Resolvers that have downstream validators potentially
supporting different algorithms

• Resolver will have to keep track of which cache entries
have a signatures from a subset of algorithms supported
at the authoritative server, and re-query upstream as
needed

• Or perhaps fetch all algorithms from upstream and
delivery algorithms selectively downstream

Resolver Auth Server
(ALGPREF P1 P2)

Validating Stub1
P1

Validating Stub2
P2, P1

Validating Stub3
P2

Query 1

Cache P1

Q/R

Validating Stub4
[]

Resolver Auth Server
(ALGPREF P1 P2)

Validating Stub1
P1

Validating Stub2
P2, P1

Validating Stub3
P2 Query 2

Cache P1

Validating Stub4
[]

Resolver Auth Server
(ALGPREF P1 P2)

Validating Stub1
P1

Validating Stub2
P2, P1

Validating Stub3
P2 Query 2

Cache P1
Cache P2

Q/R

Validating Stub4
[]

Resolver Auth Server
(ALGPREF P1 P2)

Validating Stub1
P1

Validating Stub2
P2, P1

Validating Stub3
P2

Cache All Algs

Run alg nego between
validating stubs and resolver

Run vanilla (all algs)
between resolver and

authority

RFC 6975 Redux

• This protocol could also subsume the functionality
proposed in RFC 6975 (which hasn’t yet seen
deployment) to signal DNSSEC algorithm understanding.

• This would give authoritative server operators a way to
gauge when a sufficient threshold of the resolver
population understands a new algorithm, that it could
deploy the new one, or withdraw older ones.

TODO

• Continue refining the draft

• Fine tune and more fully specify caching behavior for
various scenarios and configurations

• Add Direction bit (to detect broken devices that blindly
reflect EDNS options)

• Write prototype code

Some Alternatives
• Mass migrate DNS ecosystem to alternate transports, like

TCP, TLS, or QUIC

• Fix the entire Internet so that large fragmented UDP
payloads can transit successfully

• (although fragments can still cause issues: see Haya
Shulman’s “Fragmentation Considered Poisonous”
paper from a few years ago, and more recent attempts
to deprecate fragments altogether in the IETF)

• Design an application layer message framing protocol for
the DNS

Should we work on this?

