
Trusted Execution Environments (TEE) and
the Open Trust Protocol (OTrP)

Hannes Tschofenig and Mingliang Pei

16th July 2017 -- IETF 99th, Prague

2

What do we mean by security?

Communication Security

Aims

 Prevent eavesdropping on
communication
– Solution: Encryption

 Prevent spoofing of end
point/server
– Solution: Authentication

Components Required

 Standards based
encryption/decryption &
authentication algorithms

 True random number generator

 Strong key provisioning,
management, and storage

 Strong identity provisioning,
management, and storage

Software Security

Aims

 Protect device/system from rogue
software
– Downloaded software

– Remote software

 Prevent access to certain assets &
data
– Reading data

– Alteration of data

 Allow recovery from attack
 Note: access can be remote or via local connector

Components Required

 Isolation of and restricted access to
certain data, resources and code

 Secure storage

 Trusted boot

 Immutable device identity

 Separation of monitoring &
recovery functionality

Physical Security

Aims

 Protecting against hardware
attacks.
• Intrusive attacks

• Semi Intrusive attacks

• Side Channel attacks

 Examples include:
– Differential power analysis

– Cutting internal chip tracks

– Fault injection

– Voltage variation

– etc

Components Required

 Specialised anti-tampering
technology. E.g.
– Deducing power and timing traces

– Randomization of the pipeline

 Encrypted memory interfaces

6

Security Principles

Security Principles: Isolation and Least Privilege

Isolation
 Isolate trusted resources from non-trusted

 Access to trusted software only through APIs

 Non-trusted software run at lowest privilege
possible

 Reduce attack surface of key components

non-trustednon-trusted

trustedtrusted

Security Principles: Isolation and Least Privilege

non-trustednon-trusted

trustedtrusted

Non-Trusted
Majority of software
Operating system
Graphics
Applications
Data processing
etc

Trusted Software
• Crypto functions
• Key management
• Attack detection
• Sensitive data

Trusted Software
Provision of security services

Small, well reviewed code

Security Profiles

Invasive HW Attacks
• Well resourced and funded
• Unlimited time, money & equipment.

Non-invasive HW Attacks
• Physical access to device:
 JTAG, Bus Probing, IO Pins, Side Channels etc.

 V
alue to attacker

Software Attacks
• Malware, Viruses, Root Kits
• Social engineering

Cost/Effort
To Attack

Cost/Effort
to Secure

10

TEE Solutions

Trusted Execution Environment: Why?

• Internet protocols today all rely on security protection
– Use security protocols requiring cryptographic keys

– Utilize cryptographic algorithms

• Operating systems (OSs), such as Android/Linux, are complex and sophisticated.

• Solution is to augment the OS with a more restrictive, and environment

• And extract the security components from applications / OS into this environment

• Trusted Execution Environments provide such an environment

Trusted Execution Environment: What is needed?

• Lightweight OS that can support
mutually distrusting Trusted Apps

• Isolated environment for the
execution of trusted code

• Private memory spaces for code and
data

» Cannot be snooped or modified by
other system agents

• Well defined entry and exit interfaces
– Designed to retain secrets when clients

are fully compromised

• Trusted Boot ROM*

• Trusted boot process*

• Cryptographic services
– Symmetric Private Key

– Asymmetric Public Key

– Random Number Generator

• Cryptographic key store
– Unique and shared keys

• Secure storage
– For persistent data, such as keys

(*) Needed for ARM TrustZone but not for other TEEs (e.g., Intel SGX)

Security Profiles

Invasive HW Attacks
• Well resourced and funded
• Unlimited time, money & equipment.

Non-invasive HW Attacks
• Physical access to device:
 JTAG, Bus Probing, IO Pins, Side Channels etc.

 V
alue to attacker

Software Attacks
• Malware, Viruses, Root Kits
• Social engineering

Cost/Effort
To Attack

Cost/Effort
to Secure

TrustZone based TEE

Secure Elements / HSMs

Application Profile
ARMv8-A
 32-bit and 64-bit

 A32, T32 and A64
instruction sets

 Virtual memory system

 Supporting rich operating
systems

Real-time Profile

ARMv8-R
 32-bit

 A32 and T32 instruction
sets

 Protected memory
system

 (optional virtual memory)

 Optimized for real-time
systems

Microcontroller Profile

ARMv8-M
 32-bit

 T32 / Thumb® instruction
set only

 Protected memory system

 Optimized for
microcontroller applications

ARM Architecture Profiles

TrustZone for ARMv8-A TrustZone for ARMv8-M

SECURE STATESNON-SECURE STATES SECURE STATESNON-SECURE STATES

TrustZone for ARMv8-M

Secure transitions handled by the processor
to maintain embedded class latency

Secure
App/Libs

Secure
App/Libs

Secure OSSecure OS
Non-secure

OS

Non-secure
OS

Non-secure
App

Non-secure
App

Secure
App/Libs

Secure
App/Libs

Secure OSSecure OS

Rich OS,
e.g.Linux

Rich OS,
e.g.Linux

Secure MonitorSecure Monitor

I2CI2C

Boot ROMBoot ROM

SRAMSRAM

DRAM

Code
&

Data

DRAM

Code
&

Data

UARTUART

I2CI2C

• Normal physical memory map contains
– DRAM for code and data

– I/O peripherals

– On chip ROM and SRAM

• The Secure state acts like “33rd address bit”
– Doubling size of physical address map

• Key resources become secure only
– Boot ROM and internal SRAM

• I/O devices are segregated
– Secure only, Non-Secure or shared access

• DRAM can be partitioned
– Using address space controller

Secure Memory Map

DRAM

Code
&

Data

DRAM

Code
&

Data

0xFFFFFFFF

0x00000000

0x80000000

Boot ROMBoot ROM

0x20000000

0x10000000

0x50000000

0x60000000

0x40000000

SRAMSRAM

UARTUART

I2CI2C

Boot ROMBoot ROM

SRAMSRAM

I2CI2C

Secure
NS=0

Non-Secure
NS=1

FUSESFUSES

0xFFFFFFFF

0x00000000

0x80000000

0x20000000

0x10000000

0x50000000

0x60000000

0x40000000

0x90000000

Secure DRAMSecure DRAM

Example System on Chip (SoC)
CPU 0CPU 0

L1I$L1I$ L1D$L1D$

MMUMMU

L2$L2$

DRAMDRAM

System BusSystem Bus

L2$L2$

GPUGPU
CPU 1CPU 1

L1I$L1I$ L1D$L1D$

MMUMMU

SRAMSRAM

Memory ControllerMemory Controller

ROMROM

G
ICG
IC

Peripheral BusPeripheral Bus

R
TCR
TC

U
A

R
T

U
A

R
T

Ti
m

er
Ti

m
er

Fl
as

h
Fl

as
h

MMUMMU

Display
Controller

Display
Controller

MMUMMU

Flash
Memory

Flash
Memory

I2
C

I2
C

• CPU cluster
– MMUs and caches

• Bus mastering devices
– GPU and Display controller

• Boot ROM and SRAM

• Memory Controller to
DRAM

• Peripheral bus
– Standard peripherals

DebugDebug

• Secure state added to CPU
– MMU and Caches

• NS tags in buses

• Boot ROM and SRAM secured

• Debug and profiling secured

• Secure only peripherals added

• Shared peripherals modified

• DRAM partitioned for Secure

• Crypto HW accelerator

• External Secure Peripherals

• Existing Non-Secure HW remains unchanged
– Never able to generate NS=0 transactions

• Note: Secure resources not to scale

Example SoC with TrustZone
CPU 0CPU 0

L1I$L1I$ L1D$L1D$

MMUMMU

L2$L2$

DRAMDRAM

System BusSystem Bus

L2$L2$

GPUGPU
CPU 1CPU 1

L1I$L1I$ L1D$L1D$

MMUMMU

SRAMSRAM ROMROM

G
ICG
IC

Peripheral BusPeripheral Bus

R
TCR
TC

U
A

R
T

U
A

R
T

Ti
m

er
Ti

m
er

Fl
as

h
Fl

as
h

MMUMMU

Display
Controller

Display
Controller

MMUMMU

Flash
Memory

Flash
Memory

I2
C

I2
CMemory ControllerMemory Controller

DebugDebug

N
SN
S

CPU 1CPU 1

L1I$L1I$ L1D$L1D$

MMUMMU

N
SN
S

N
SN
S

NSNS

CPU 0CPU 0

L1I$L1I$ L1D$L1D$

MMUMMU
N

SN
S

N
SN
S

NSNS

NSNS

SRAMSRAM ROMROM

DebugDebug

Peripheral BusPeripheral Bus

Ti
m

er
Ti

m
er

Fu
se

s
Fu

se
s

R
N

G
R

N
G

G
ICG
IC

I2
C

I2
C

Secure PartitionSecure Partition

TZASCTZASC

CryptoCrypto

Finger
Print

Finger
Print

KEY:
Trusted
Normal

KEY:
Trusted
Normal

NSNS

• Trusted Execution Environment
– Light-weight operating system offering

security services:

• Key Store, Crypto,

• Random Numbers

• Secure Store

• Secure Device Drivers

– Enables Trusted Apps, which can be installed,
updated and deleted

• EL3 Monitor provides Secure / Non-Secure
switching

• OS integration requires TEE driver issues SMCs to
TEE

TrustZone Software Stack

 Rich OS Rich OS

 TEE TEE

TA 2TA 2

Monitor . .Monitor . .

TA 1TA 1

Non-Secure Secure

HypervisorHypervisor

EL0

EL1

EL2

EL3

S-EL0

S-EL1
TEE

Driver

TEE
Driver

Media
Player

Media
Player

Web
Browser

Web
Browser

SMC
Dispatch

SMC
Dispatch

CryptoCrypto KeysKeys Finger
Print Reader

Finger
Print Reader

Event
Handler

Event
Handler

Finger
Print

Driver

Finger
Print

Driver

Crypto
Driver

Crypto
Driver

Hardware

• FIDO is an attempt to replace username/password-
based authentication with something strong.

• Process:
– Web service challenges device

– Challenge passed onto FIDO authenticator

– Performs user verification (e.g., fingerprint)

– Cryptographically sign the challenge

– Send response to web service

– User now securely logged in

– For transaction confirmation, trusted display is used.

• Software and hardware stack needed for operation
– Networking, Rich OS, Secure OS, HW

– FIDO Authenticator functionality in TEE; FIDO private key
and fingerprint never leaves the TEE

FIDO Use Case

 Rich OS Rich OS

FIDO
plugin

FIDO
plugin

TEETEE

FIDO
TA

FIDO
TA

Monitor Monitor

Non-Secure

HypervisorHypervisor

EL0

EL1

EL2

EL3

S-EL0

S-EL1

TEE
Driver

TEE
Driver

Web
Browser

Web
Browser

SMC
Dispatch

SMC
Dispatch

CryptoCrypto

KeysKeys

Finger
Print

Finger
Print

Event
Handler

Event
Handler

Finger
Print

Driver

Finger
Print

Driver
Crypto
Driver

Crypto
Driver

Secure

Hardware

Trusted
Display

Trusted
Display

Trusted
Display

Trusted
Display

21

Running Code

Open Source Software Available

• Many developers of TEE technology
– Chip companies, OEMs, OS platform owners, Independent Software Vendors, OSS

• ARM Trusted Firmware:
– Link: https://github.com/ARM-software/arm-trusted-firmware

– AArch64 reference implementation
containing trusted boot, monitor and
runtime firmware

• OP-TEE
– Link: https://github.com/OP-TEE/

– Reference implementation of secure world
OS.

• GlobalPlatform provides common set of
API’s and services

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/
https://github.com/OP-TEE/

Trying TrustZone @ Home

TrustZone on Raspberry Pi3

• Sequitur Labs port of Linaro’s OP-TEE
environment to the Raspberry Pi 3

• Press release:
• http://linuxgizmos.com/trustzone-tee-tech-ported-to-raspberry-pi-3/

• Code:
• https://github.com/OP-TEE/build/blob/master/docs/rpi3.md

• Video: https://www.youtube.com/watch?v=3MnLrHoQcyI

USB Armory

• Hardware: http://inversepath.com/usbarmory.html

• ~100 EUR

• The USB armory from Inverse Path is
an open source hardware design,
implementing a flash drive sized
computer with TrustZone.

• Example apps available: https://

github.com/inversepath/usbarmory/wiki/Applications

23

http://linuxgizmos.com/trustzone-tee-tech-ported-to-raspberry-pi-3/
http://linuxgizmos.com/trustzone-tee-tech-ported-to-raspberry-pi-3/
http://linuxgizmos.com/trustzone-tee-tech-ported-to-raspberry-pi-3/
https://github.com/OP-TEE/build/blob/master/docs/rpi3.md
https://github.com/OP-TEE/build/blob/master/docs/rpi3.md
https://github.com/OP-TEE/build/blob/master/docs/rpi3.md
https://www.youtube.com/watch?v=3MnLrHoQcyI
https://www.youtube.com/watch?v=3MnLrHoQcyI
http://inversepath.com/usbarmory.html
http://inversepath.com/usbarmory.html
http://inversepath.com/usbarmory.html
https://github.com/inversepath/usbarmory/wiki/Applications
https://github.com/inversepath/usbarmory/wiki/Applications

1. Isolation helps to improve security for software.

2. TrustZone provides the CPU and system isolation.

3. Open source code available for you to play with.

Summary

25

Open Trust Protocol (OTrP):

Problem Statement

Secure World

SDSD

Demand of hardware based security with TEE and TA

26

Device with TEE
SP

TAM

OTA Provisioning and
Management

Trusted
Applications

(TA)

Trusted
Applications

(TA)

Create

Hardware PlatformHardware Platform

TEETEE

Normal World

Rich OSRich OS

Client
Applications

Client
Applications TATA

SDSD

TATA

Payment App
Providers

Payment App
Providers

Security App
Providers

Security App
Providers

Game App
Providers

Game App
Providers

Enterprise App
Providers

Enterprise App
Providers

The Challenge

• Adoption gap for service providers
– Gap between devices with hardware security and a wish to push Trusted

Apps to devices with different TEEs and vendors

• Fragmentation is growing - IoT accelerated that fragmentation

• Lack of standards to manage TAs
– Devices have hardware based Trusted Execution Environments (TEE) but

they do not have a standard way of managing those security domains and
TAs

27

Gaps to utilize hardware based security

28

Payment App
Providers

Payment App
Providers

Security App
Providers

Security App
Providers

Game App
Providers

Game App
Providers

Multiple OSsMultiple OSs

Firmware X, Y, ZFirmware X, Y, Z

Many
Service

Providers

Device HardwareDevice Hardware

Trusted ApplicationsTrusted Applications

Client ApplicationsClient Applications

Device
Manufactures

TEE
Providers

Chip/Firmware
Providers

Key
Management

?
What protocol to

install, update,
and delete TAs?
(with attestation

feature)

Trusted
Applications

Devices with TEE

Enterprise App
Providers

Enterprise App
Providers

29

Open Trust Protocol (OTrP)

Open Trust Protocol (OTrP)

• An interoperable Trust Application Management protocol across
broad application providers and diverse TEE OS providers

• Designed to work with any hardware security based TEE that aims
to support a multi-vendor environment

• Focus on re-use of existing schemes (CA and PKI) and ease of
implementation (keeping message protocol high level)

30

• CAs issue certificates to OTrP actors (TEE, TAM, SP)

• TAM and TEE exchange messages

• An OTrP Agent relays the OTrP message between TAM and TEE

Secure World Normal World

Client AppClient App
Trusted AppTrusted App

Secure World
OS

Secure World
OS

HardwareHardware

OTrP AgentOTrP Agent

Normal World OSNormal World OS

Device

Overview

Certification Authorities
for Devices

Certification Authorities
for TAM and SP

Open Trust Protocol

TAMTAM Service
Providers (SP)

Service
Providers (SP)

Design Choices

• Uses asymmetric keys and PKI
– Manufacturer-provided keys and trust anchors

– Enables attestation between TAM and TEE-device

• JSON-based messaging between TAM and TEE
– Messages for attestation

– Messages for security domain management and TA management

– Use JOSE (JSON signing and encryption specifications) – CBOR alternative spec available.

• OTrP Agent in REE relays message exchanges between a TAM and TEE

• Device has a single TEE only

32

Envisioned User Experience

App developer builds two components:
1. Android App &
2. Trusted App

Developer includes a TAM library to
handle the OTrP transport

App developer uploads their Android app to a
suitable app store and securely sends their
trusted app to their TAM provider End user downloads Android app from

an app store

App on first start communicates to TAM
provider and installs trusted app into the
TEE using OTrP

End user enjoys a rich Android
experience and the security of a TEE
backed trusted component

TAM

OTrP Agent

34

• Responsible for routing OTrP messages to the appropriate TEE

• Most commonly developed and distributed by TEE vendor

• Implements an interface as a service, SDK, etc.

TAM

PKI

Device
Software

OTrP

Device

Certification AuthorityCertification Authority

TEETEE

Hardware
Platform
Hardware
Platform

TAMTAM

OTrP
Agent
OTrP
Agent

Certificate
Enrollment API

Implementation
Specific API

OTrP Message OTrP Agent API

Scope

Certification AuthorityCertification Authority

Client
App

Client
App

Service
Provider
Service
Provider

Command Descriptions

GetDeviceState • Retrieve information of TEE device state including SD and TA associated to a TAM

Command Descriptions

CreateSD • Create SD in the TEE associated to a TAM

UpdateSD • Update sub-SD within SD or SP related information

DeleteSD • Delete SD or SD related information in the TEE associated to a TAM

Command Descriptions

InstallTA • Install TA in the SD associated to a TAM

UpdateTA • Update TA in the SD associated to a TAM

DeleteTA • Delete TA in the SD associated to a TAM

 Remote Device Attestation

 Security Domain Management

 Trusted Application Management

Operations and Messages

* AIK: Attestation Identity Key, TFW: Trusted Firmware

Certificate
Authority
Certificate
Authority TAMTAMService ProviderService Provider

SP Key pair
and Certificate

TAM Key pair
and Certificate

TEE Key pair
and Certificate

TFW Key pair
and Certificate (optional)

Device TEEDevice TEE

* Key pair and Certificate:
 evidence of secure boot
 and trustworthy firmware

* Key pair and Certificate:
 used to sign a TA

* Key pair and Certificate:
 device attestation
 to remote TAM and SP.

* SP AIK in runtime
 for use by SP (encrypt TA data / verify)

* Key pair and Certificate:
 used to issue certificate

CA Certificate

Trust Anchors: trusted
Root CA list of TEE
certificates

Keys

* Key pair and Certificate:
 sign OTrP requests to be verified
by TEE

Trust Anchors: trusted
Root CA list of TAM &
TFW

K
ey

s
Tr

u
st

A

n
ch

o
rs

U
sa

g
e

Entity Relationships

38

• Security of the Operation Protocol is enhanced by applying the following three Measures:

 Verifies validity of Message Sender’s Certificate

 Verifies signature of Message Sender to check immutability

 Encrypted to guard against exposure of Sensitive data

Request to TSM for TA installation

Send [GetDeviceState] to TEE

Return DSI as a response to [GetDeviceState]

Send [CreateSD]to create SD where the TA will be installed

Send other prerequisite commands (if necessary)

Send [installTA] with encrypted TA binary and its data

 Decrypt TA binary and its

 personal data.

 Install TA into target SD.

 Store personal data in

 TA’s private storage.

Phase#1
“Device Attestation”
Operation request triggered and
verify Device state information

Phase#2
Prerequisite operation
(if Security domain doesn’t exist
where the TA should be installed)

Phase#3
Perform Operation requested
by SP or Client Application

TAM Client App TEE

 Create new SD

Sample Protocol Usage Flow

Summary

• Some TEEs, such as TrustZone, are open to companies to install
their favorite secure world OS.

• Vendors want to have a choice regarding Trusted Application
Managers.

• This creates an interoperability challenge for managing
(installing, updating, deleting) Trusted Applications on a TEE.

• OTrP provides a protocol for such a TA management (offering
attestation capabilities).

40

	Slide 1
	Slide 2
	Communication Security
	Software Security
	Physical Security
	Slide 6
	Security Principles: Isolation and Least Privilege
	Security Principles: Isolation and Least Privilege
	Security Profiles
	Slide 10
	Trusted Execution Environment: Why?
	Trusted Execution Environment: What is needed?
	Security Profiles
	ARM Architecture Profiles
	TrustZone for ARMv8-A TrustZone for ARMv8-M
	Secure Memory Map
	Example System on Chip (SoC)
	Example SoC with TrustZone
	TrustZone Software Stack
	FIDO Use Case
	Slide 21
	Open Source Software Available
	Trying TrustZone @ Home
	Summary
	Slide 25
	Demand of hardware based security with TEE and TA
	The Challenge
	Gaps to utilize hardware based security
	Slide 29
	Open Trust Protocol (OTrP)
	Slide 31
	Design Choices
	Envisioned User Experience
	OTrP Agent
	Slide 35
	Slide 36
	Slide 37
	Entity Relationships
	Slide 39
	Summary

