Simple Homenet Naming
Architecture

Ted Lemon <ted.lemon@nominum.com>
Daniel Migault <daniel.migault@ericsson.com>



Goals of the naming architecture

Describe how to:

e Look up names on the internet

e Publish services across the entire homenet
e Discover services anywhere on the homenet



Non-goals:

e Publish a DNS zone for the homenet in the public DNS

e Make service discovery available off the homenet

e Allow off-homenet devices to publish services on the
homenet

e Secure homenet naming/service discovery using
DNSSEC



Name Resolution

e Provisioning devices with resolver IP addresses
o DHCPv4, RA+RDNSS, stateless DHCPv6

e Providing resolution
o One or more DNS proxies that forward to the correct upstream resolver

e Unsolved problem: how to do multihoming in the presence
of CDNs



Multihoming and CDNs

Name lookups for resources stored on CDNs give
different answers depending on the network connection
Host on homenet may look up name using resolver from
provider A, then connect to CDN using provider B

This will generate support requests

What to do?



CDN solution (proposed)

Two kinds of hosts: multihome-fahig and not

Network picks one ISP and advertises its prefixes to all hosts
Hosts that are multihome-fahig get the other prefix as well
DNS proxy for ISP A gets address in prefix from ISP A

DNS proxy for ISP B gets address in prefix from ISP B

Exact mechanism uncertain, probably needs RA extension
For IPv4, we could just pick.



Provisioning Devices

Devices signal that they are fahig using RA discovery
Network signals extra ISPs using host-specific RAs
DHCPvV6 stateless doesn't work for multihoming
Single-homed hosts get resolver(s) for primary ISP
Multihomed hosts get resolver(s) for each ISP

Resolvers are DNS proxies on the homenet, not the ISP's
resolvers

Comments from implementors would be really helpful



DNS Proxy

e Determine whether a name is local (‘home.arpa') or not,
and send either to local resolver or to ISP resolver

e Use source address to decide which ISP's resolvers to
use for resolving names on the internet

e Could be a caching resolver, but minimal functionality
requires is a DNS proxy with the ability to direct traffic



Service Discovery

e Main model is dnssd Discovery Proxy (formerly "hybrid
proxy")

e Service Discovery uses split model described in
draft-sctl-mdns-relay.

e Each link has its own subdomain of 'home.arpa'

e Advertising proxy updates a separate zone, 'home.arpa'’

e Hosts browse all of these zones



Required infrastructure

e Every homenet router can if needed provide:

Discovery Broker
Discovery Proxy
Advertising Proxy
Discovery Relay

e Every homenet has at least one:

o Discovery Broker
o Discovery Proxy
o Advertising Proxy
e Every link has at least one:

o Discovery Relay

o O O O

10



A typical homenet (perhaps)

home.arpa: the advertising proxy zone

link1.home.arpa: advertisements for link #1
link2.home.arpa: advertisements for link #2
link3.home.arpa: advertisements for link #3

home.arpa is listed as the only browsing zone

11



A service discovery lookup

host -> DNS proxy:
_ipp._tcp.home.arpa IN PTR?
DNS proxy -> discovery broker:
_ipp._tcp.home.arpa IN PTR?
broker -> advertising proxy:
_ipp._tcp.home.arpa IN PTR?
broker -> discovery proxy:

_ipp._tcp.link1.home.arpa IN PTR?
_ipp._tcp.link2.home.arpa IN PTR?
_ipp._tcp.link3.home.arpa IN PTR?

12



Answers come back

advertising proxy->broker:

_ipp._tcp.home.arpa IN PTR reg-printer.nome.arpa
discovery proxy->broker:

_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa
broker->DNS proxy

_ipp._tcp.home.arpa IN PTR reg-printer.nome.arpa
_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa
DNS proxy->host:

_ipp._tcp.home.arpa IN PTR reg-printer.nome.arpa
_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa

13



Discovery Relay

Very lightweight, essentially allows a discovery proxy to
do mDNS on networks to which it is not directly connected
Gives us a way to centralize mDNS to the extent we want
to.

Allows us to have multiple Discovery Proxies serving the
whole homenet

draft-sctl-mdns-relay
https://github.com/abhayakara/dnssd-lite

14



Discovery Proxy

e Translates between one or more mDNS ".local" zones and
their corresponding per-link zones

e Can in principle either be centralized, or one per HNR

e C(Centralizing gives better cache performance, which
means less multicast, at least in theory

e Stateless (aside from cache)

e draft-ietf-dnssd-hybrid-proxy

15



Discovery Broker

e Aggregator for discovery proxies

e Allows the client to ask one question about services, and
get all the answers

e Otherwise client has to browse multiple zones

e Not clear this is needed, but it's nice-to-have

e draft-sctl-discovery-broker

16



Advertising Proxy

e Essentially a DNS authoritative server for a zone

e But additionally provides sleep proxy functionality

e Allows DNS updates using the protocol described in
draft-sctl-service-registration

e Essentially stateless--state can be recovered over time if lost

e Could in principle be replicated using zone transfers

e draft-sctl-service-registration

17



Status

e Everything but the multihome solution has a spec written

e Implementation of mdns-relay is complete but not in sync
with current specification, will update after IETF

e Implementation of registration protocol not quite there, but
Toke independently did something similar

e If WG decided this was the way to go, we could be done
in fairly short order and get on to the advanced homenet
naming architecture

18



The nsregd name registration daemon

e Implemented as a DNS Update proxy server (and client)

e Will authenticate clients (on a FCFS/TOFU basis) and the zones they
update (and optionally the addresses)

e Speaks TSIG-signed update or unbound's config protocol to upstream
server(s)

e Client will lookup server, get IPs from OS, and register hostname (no
config required)

e ~2500 lines of Go, GPLv3. https://github.com/tohojo/nsregd

19


https://github.com/tohojo/nsregd

Differences from draft-sctl-service-registration-00

Overloads TTL instead of using "Update Leases" (from
draft-sekar-dns-ul-01)

The client does another lookup step (for SRV _nsreg. tcp.<zone>)
Server only speaks TCP (to avoid spoofing)

No sleep proxy (Section 4)

Server only allows A and AAAA records (and will optionally generate
reverse PTRs)

20



