
Simple Homenet Naming
Architecture

Ted Lemon <ted.lemon@nominum.com>
Daniel Migault <daniel.migault@ericsson.com>

1

Goals of the naming architecture

Describe how to:
● Look up names on the internet
● Publish services across the entire homenet
● Discover services anywhere on the homenet

2

Non-goals:

● Publish a DNS zone for the homenet in the public DNS
● Make service discovery available off the homenet
● Allow off-homenet devices to publish services on the

homenet
● Secure homenet naming/service discovery using

DNSSEC

3

Name Resolution

● Provisioning devices with resolver IP addresses
○ DHCPv4, RA+RDNSS, stateless DHCPv6

● Providing resolution
○ One or more DNS proxies that forward to the correct upstream resolver

● Unsolved problem: how to do multihoming in the presence
of CDNs

4

Multihoming and CDNs

● Name lookups for resources stored on CDNs give
different answers depending on the network connection

● Host on homenet may look up name using resolver from
provider A, then connect to CDN using provider B

● This will generate support requests
● What to do?

5

CDN solution (proposed)
● Two kinds of hosts: multihome-fähig and not
● Network picks one ISP and advertises its prefixes to all hosts
● Hosts that are multihome-fähig get the other prefix as well
● DNS proxy for ISP A gets address in prefix from ISP A
● DNS proxy for ISP B gets address in prefix from ISP B
● Exact mechanism uncertain, probably needs RA extension
● For IPv4, we could just pick.

6

Provisioning Devices

● Devices signal that they are fähig using RA discovery
● Network signals extra ISPs using host-specific RAs
● DHCPv6 stateless doesn't work for multihoming
● Single-homed hosts get resolver(s) for primary ISP
● Multihomed hosts get resolver(s) for each ISP
● Resolvers are DNS proxies on the homenet, not the ISP's

resolvers
● Comments from implementors would be really helpful

7

DNS Proxy

● Determine whether a name is local ('home.arpa') or not,
and send either to local resolver or to ISP resolver

● Use source address to decide which ISP's resolvers to
use for resolving names on the internet

● Could be a caching resolver, but minimal functionality
requires is a DNS proxy with the ability to direct traffic

8

Service Discovery

● Main model is dnssd Discovery Proxy (formerly "hybrid
proxy")

● Service Discovery uses split model described in
draft-sctl-mdns-relay.

● Each link has its own subdomain of 'home.arpa'
● Advertising proxy updates a separate zone, 'home.arpa'
● Hosts browse all of these zones

9

Required infrastructure
● Every homenet router can if needed provide:

○ Discovery Broker
○ Discovery Proxy
○ Advertising Proxy
○ Discovery Relay

● Every homenet has at least one:
○ Discovery Broker
○ Discovery Proxy
○ Advertising Proxy

● Every link has at least one:
○ Discovery Relay

10

A typical homenet (perhaps)

home.arpa: the advertising proxy zone
link1.home.arpa: advertisements for link #1
link2.home.arpa: advertisements for link #2
link3.home.arpa: advertisements for link #3

home.arpa is listed as the only browsing zone

11

A service discovery lookup
host -> DNS proxy:

_ipp._tcp.home.arpa IN PTR?
DNS proxy -> discovery broker:

_ipp._tcp.home.arpa IN PTR?
broker -> advertising proxy:

_ipp._tcp.home.arpa IN PTR?
broker -> discovery proxy:

_ipp._tcp.link1.home.arpa IN PTR?
_ipp._tcp.link2.home.arpa IN PTR?
_ipp._tcp.link3.home.arpa IN PTR?

12

Answers come back
advertising proxy->broker:

_ipp._tcp.home.arpa IN PTR reg-printer.home.arpa

discovery proxy->broker:
_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa

broker->DNS proxy
_ipp._tcp.home.arpa IN PTR reg-printer.home.arpa
_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa

DNS proxy->host:
_ipp._tcp.home.arpa IN PTR reg-printer.home.arpa
_ipp._tcp.link1.home.arpa IN PTR mdns-printer.link1.home.arpa

13

Discovery Relay

● Very lightweight, essentially allows a discovery proxy to
do mDNS on networks to which it is not directly connected

● Gives us a way to centralize mDNS to the extent we want
to.

● Allows us to have multiple Discovery Proxies serving the
whole homenet

● draft-sctl-mdns-relay
● https://github.com/abhayakara/dnssd-lite

14

Discovery Proxy

● Translates between one or more mDNS ".local" zones and
their corresponding per-link zones

● Can in principle either be centralized, or one per HNR
● Centralizing gives better cache performance, which

means less multicast, at least in theory
● Stateless (aside from cache)
● draft-ietf-dnssd-hybrid-proxy

15

Discovery Broker

● Aggregator for discovery proxies
● Allows the client to ask one question about services, and

get all the answers
● Otherwise client has to browse multiple zones
● Not clear this is needed, but it's nice-to-have
● draft-sctl-discovery-broker

16

Advertising Proxy
● Essentially a DNS authoritative server for a zone
● But additionally provides sleep proxy functionality
● Allows DNS updates using the protocol described in

draft-sctl-service-registration
● Essentially stateless--state can be recovered over time if lost
● Could in principle be replicated using zone transfers
● draft-sctl-service-registration

17

Status

● Everything but the multihome solution has a spec written
● Implementation of mdns-relay is complete but not in sync

with current specification, will update after IETF
● Implementation of registration protocol not quite there, but

Toke independently did something similar
● If WG decided this was the way to go, we could be done

in fairly short order and get on to the advanced homenet
naming architecture

18

The nsregd name registration daemon
● Implemented as a DNS Update proxy server (and client)
● Will authenticate clients (on a FCFS/TOFU basis) and the zones they

update (and optionally the addresses)
● Speaks TSIG-signed update or unbound's config protocol to upstream

server(s)
● Client will lookup server, get IPs from OS, and register hostname (no

config required)
● ~2500 lines of Go, GPLv3. https://github.com/tohojo/nsregd

19

https://github.com/tohojo/nsregd

Differences from draft-sctl-service-registration-00
● Overloads TTL instead of using "Update Leases" (from

draft-sekar-dns-ul-01)
● The client does another lookup step (for SRV _nsreg._tcp.<zone>)
● Server only speaks TCP (to avoid spoofing)
● No sleep proxy (Section 4)
● Server only allows A and AAAA records (and will optionally generate

reverse PTRs)

20

