
HTTP/QUIC

draft-ietf-quic-http-04

1

Recap: Why are we here?

• Handshake establishes QUIC version, parameters, crypto,
and app protocol in 0-2 RTTs

• 0-RTT if you get the version right and can do TLS 1.3 resumption

• QUIC packets are encrypted containers of frames

• Loss detection identifies lost packets

• …but lost frames get retransmitted

• Most frames are control-oriented; STREAM frames
contain data from a particular stream

• Odd-numbered streams are client-initiated

• Even-numbered streams are server-initiated
2

Recap: Why is QUIC this way?
• A UDP-based protocol can be implemented at the app

layer

• Ships with apps, so updates at the app’s cadence, not the OS
vendor’s or device owner’s

• Ability to “reach inside” and pass more information if
appropriate

• But doesn’t have to be!

• An authenticated/encrypted protocol limits middlebox
tampering

• Apparently protocol innovation is hard to deploy because
transparent intermediaries change bits or choke! Who knew?

• QUIC incorporates many proposed TCP (or SCTP) improvements
which haven’t been successfully deployed 3

Changes since Chicago

• HTTP draft pretty quiet – current focus is on transport

• Minor changes in response to transport changes

• Crypto moved to stream 0, so control moved to stream 1

• Clarified that since Alt-Svc always specifies port, there’s
no designated port for HTTP/QUIC

4

Key Issues for HTTP/QUIC

• Stream Issues

• Header compression

• Settings

• Priorities

• Coupling with HTTP/2

• Authority

5

Stream Awkwardness in HTTP

6

GET /resource

:status = 200, PUSH_PROMISE

Pushed resource Push streams only carry
data from server to client…

… …but client is required to
respond (close the stream)

Body

POST /resource

:status = 401

When the server is done
answering, but the client
isn’t done talking yet….

Unidirectional Proposals

• Status quo – Streams are bidirectional

• Idle -> open -> half-closed (local/remote) -> closed

• Pairs of unidirectional streams

• Each direction is independently idle -> open -> closed

• “Half-closed” is a shorthand for describing a pair of streams

• Streams can be opened unidirectionally

• Either of the previous, but adds an idle -> half-closed transition

• Fully unidirectional

• Separate stream ID space in each direction

• Each stream is idle -> open -> closed

• Someone has to handle correlation 7

Current Stream Usage

• Stream 1 – Connection Control
Stream

• Carries session-wide info
(SETTINGS, PRIORITY)

• Each request occupies two
streams

• Message control stream –
HEADERS, etc.

• Unframed data stream carries
message payload

• No muxing in HTTP-layer
framing, but still uses frames

8

0

QUIC streams

HTTP requests

Crypto

Req

1 3 5 7 9

Control
Frames

Req

…
Frames Data Frames Data

Why two streams?

HPACK

9

Insert+Use

Use

RST_STREAM

HPACK data can never be
reset safely!

HEADERS

Body

Separate body stream
means no extra framing at
HTTP layer

Ability to separately flow-
control headers versus
body

Why one stream?

10

HEADERS

Body
No way to support
PUSH_PROMISE ordering
on different streams

PUSH_PROMISE

And anyway….
• We need to fix the vulnerability to loss in the header

compression
• The extra overhead of DATA frames is minimal – 4 bytes

per up to 64KB
• DATA frames may still be required on two streams to

solve ordering problems

Shoehorning HPACK

• HTTP/QUIC -04 still uses HPACK

• Adds a counter on HPACK frames

• Requires decoder process frames
in encode-order

• No more HOLB than before, but
no less

• Alternative proposals:

• draft-bishop-quic-http-and-
qpack

• draft-krasic-quic-qcram

• HPACK with zero dynamic table
size (temporary)

11

Sequence Number

HPACK Data….

HPACK Alternatives
QPACK

• HPACK-derived, new wire format

• Allows trade-off between HOLB
risk and compression efficiency

• Avoids lost-data risk by using
dedicated stream for table
changes

• Does not require access to
transport-level knowledge (but
implementation might leverage)

QCRAM

• Uses HPACK wire format, with
additions to HEADERS frame

• Entirely prevents HOLB

• Will incorporate a similar
technique via two passes over
headers

• Assumes some access to
packetization logic / rollback

12

SETTINGS and Handshake

• HTTP/QUIC uses an HTTP/2-like SETTINGS frame

• Only at the beginning – no changes!

• Proposal to simplify further and combine HTTP settings
with QUIC settings in handshake

• Strawman:

• Each application gets a QUIC transport setting with a blob value

• Pack the contents of a SETTINGS frame into this blob

• Include the application settings for any application(s) you’re
offering

• Potential drawback: Client’s settings are in the clear

13

Integrated Errors

• QUIC currently divides error space into four regions

• Connection or stream can close for any error in any region

• Discuss:

• Transport should never close streams

• Streams close only for application-defined reasons

• Transport errors are fatal

• Can application terminate connection with error? What does this
look like?

14

Priorities and Placeholders

• Some UAs implement priorities
using idle streams which are never
used

• QUIC has a strong preference for
contiguous stream use in order

• How do we want to deal with this?

15

HTTP/2 Divergence

• Separate error registry

• Because QUIC has a unified error space for use in
RST_STREAM, CONNECTION_CLOSE

• Shared frame registry with HTTP/2

• Some HTTP/2 frames don’t exist in HTTP/QUIC

• Of those that do, zero frames are identical between HTTP/2
and HTTP/QUIC

• Extensions don’t automatically work

• Shared SETTINGS registry with HTTP/2

• Half the HTTP/2 settings don’t exist

• Extensions don’t automatically work

• Added a “Transitioning from HTTP/2” section
describing differences 16

Authority

• Authority over an origin in HTTP is defined by the URI’s
scheme, hostname, and port

• ‘http’ and ‘https’ schemes are defined to use TCP

• Alt-Svc allows delegation from an authoritative origin to
another protocol/host/port tuple

• …which need not be UDP 443

• When either client or server doesn’t have/want TCP, how
do we do this?

17

