TCP Prague: Resolving Tensions between Congestion Control Scaling Requirements

Supporting discussion paper:
https://riteproject.files.wordpress.com/2015/10/ccdi_tr.pdf

Bob Briscoe bobbriscoe.net
Koen De Schepper NOKIA Bell Labs
Scaling congestion control dynamics

- whiskers: 1 standard deviation.
- %-age figures: resulting utilization of raw capacity
- 3G and 4G results captured over a production network [1]
- 5G Wide Area macro-cell results were simulated (next slide)
- Poor handling of dynamics by TCP's receive window was manually overridden in all cases (to focus on congestion control dynamics)
 - with autotuned rwnd and Cubic CC, 4G/LTE mean utilization was 43%
Why Such Poor Utilization?

- Right: video still of simulation to establish capacity dynamics
 - pedestrian mobility model
 - 3.5GHz macrocell (red) combined with 28GHz (blue) and 73 GHz (yellow) mmWave microcells

- Left: Goodput is for TCP Cubic over 20ms base RTT
 - each 10s grid line = 500 RTT
 - mean goodput: 1.2Gb/s; mean utilization: 19%
WiFi is no better

- 802.11ad
 - 60GHz 3Gb/s channel, static, office environment, occasional human blocking, Compound TCP
 - median goodput 280Mb/s, utilization 9.3%
 - near-perfect beam-forming improved utilization to 16% [2]
Lesson from design of high-BDP TCP protocols

- keep the number of round trips between drops small
- equivalently, keep the number of drops per round trip large

v: number of congestion signals per round trip

<table>
<thead>
<tr>
<th>BDP</th>
<th>20ms round trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>1,250</td>
</tr>
<tr>
<td>1,500</td>
<td>1,750</td>
</tr>
<tr>
<td>2,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

- Cubic 100 Mb/s: $v = 1/250$
- Cubic 800 Mb/s: $v = 1/500$
- DCTCP any rate: $v = 2$
Req#1. Scalable Congestion Signalling

- congestion signalling is scalable if \(v \geq v_0 \) \((1) \)
 where \(v_0 \) is a reasonable min

- \(v = (\text{segments per RTT}, W) \ast (\text{probability each will be marked, } p) \)
 \(v = Wp \)

- substitute in scalability constraint \((1) \)
 \(W \geq v_0 / p \) \((2) \)

- can easily derive constraint on steady-state TCP equations from this...

 General congestion control formula: \(W \propto \frac{1}{p^B} \)

- To satisfy \((2) \), \(B \geq 1 \)

<table>
<thead>
<tr>
<th></th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reno</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Cubic</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>DCTCP (prob. AQM)</td>
<td>1</td>
</tr>
<tr>
<td>DCTCP (step AQM)</td>
<td>2</td>
</tr>
</tbody>
</table>
Approach to scaling the dynamics

- capacity decrease or other flows arrive: not the problem
- If capacity increases, or other flows depart, no information, except
 - ACK rate increases briefly while queue empties\(^{(1)}\)
 - the next mark never comes...

- If normally 500 RTTs between marks, it takes \(~1000\) RTTs to notice their absence
- If normally 2 marks per RTT, it takes 1 RTT to notice
- Then sender can start probing for capacity

\(^{(1)}\) Goal: ultra-low standing queue; The closer to our goal, the less we will detect this
Req#2: Limited RTT-dependence

- We have lived with this. Why change?
- Bufferbloat has cushioned us from the impact of RTT-dependent CC
- Low queuing delay leads large RTT flows to starve

Note: this is not an anti-starvation requirement not a strong 'fairness' requirement

<table>
<thead>
<tr>
<th></th>
<th>Qdelay</th>
<th>Total RTT imbalance ((R_1+q)/(R_2+q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop tail</td>
<td>200 ms</td>
<td>(\frac{(200+200)}{(2+200)}) (\approx 2)</td>
</tr>
<tr>
<td>PIE AQM</td>
<td>15 ms</td>
<td>(\frac{(200+15)}{(2+15)}) (\approx 13)</td>
</tr>
<tr>
<td>L4S AQM</td>
<td>500 µs</td>
<td>(\frac{(200+0.5)}{(2+0.5)}) (\approx 80)</td>
</tr>
</tbody>
</table>

E.g: base RTT ratio \(R_1/R_2 = 200/2 = 100\)
Tension between Reqs 1 & 2

- Scalable congestion signalling
- Limited RTT-dependence (pW/R const)

\begin{align*}
 pW & \geq v_0 \\
 pW & \propto R
\end{align*}

v: number of congestion signals per round trip
W: congestion window
p: dropping or marking probability
R: Total Round trip time
"Compromise 5" betw Reqs 1 & 2

- signals per RTT
 \[pW = \frac{v_0}{\ln(R_0/R+1)} \]

scalable signalling
AND
>>R_0 RTT-independent
<<R_0 not RTT-dependent

- flow rate
 \[\frac{pW}{R} = \frac{v_0}{R \ln(R_0/R+1)} \]

\[p \approx 1/u \]
Resolving Tensions between Congestion Control Scaling Requirements

6 scalability requirements (RTT, rate):

1. Scalable congestion signaling
2. Limited RTT-dependence
3. Unlimited responsiveness
4. Low relative queuing delay
5. Unsaturated signaling
6. Coexistence with Classic TCP

Link to paper:
Resolving Tensions Between Congestion Control Scaling Requirements
https://riteproject.files.wordpress.com/2015/10/ccdi_tr.pdf

Link to experiment videos:
BBR with AQM: https://youtu.be/4eYfyKYe9nM
BBR with Cubic: https://youtu.be/akO1HN2ey48