Support for Notifications in CCN
(“draft-ravi-icnrg-ccn-notification-01.txt”)
IETF/ICN-RG -99, Prague

Ravi Ravindran (ravi.ravindran@huawei.com)
Asit Chakraborti(asit.chakraborti@huawei.com)
Syed Obaid Amin (obaid.amin@huawei.com)
Jiachen Chen (jiachen@winlab.rutgers.com)
—Marc Mosko(marc.mosko@parc.com)—
| i Sofisti io-solis@ | |

https://tools.ietf.org/html/draft-ravi-icnrg-ccn-notification-01

Draft History

First presented in IETF 95

IETF96 we added more discussion around flow and
congestion control

— Also a related ICN Sigcomm paper last year

 Jiachen Chen et al, “SAID: A Control Protocol for Scalable and
Adaptive Information Dissemination in ICN”

* Motivated by how simple AIMD and flow balance doesn’t
prevent congestion with heterogeneous receivers. They
eventually slower ones fall behind and stop benefitting from
the network cache.

Feedback from chairs to include more discussions
on why current Interest/Data Abstraction fails

This revision attempts to do that.

Table of Content

Table of Contents

0o I~ oy un 1B fww N =

8.1
8.
8

1.1
1.2
8.1.2.
8.1
1.3

Introduction e e e e e ..
Notification Requirements in CCN
Using Interest/Data Abstraction for PUSH
Proposed Notification Primitive in CCN
Notification Message Encoding .
Notification Processing .

Security Considerations .

Annex .

Flow and Congestion Control . ..
Issues with Basic Notifications . .
Flow and Congestion Control Mechanims .
1. End-to-End Approaches .

.1.2.2. Hybrid Approaches .

Receiver Reliability
Routing Notifications .
Notification reliability
Use Case Scenarios

.4.1. Realizing PUB/SUB System

9. Informative References
Authors' Addresses

[[N T T T T [[A S
NBIEIRKERIGREREEIERIKIS 0m wn

1

— Smartphone
0.8 M2M
Asset M2M
w 0.6 — Building w Asset
0O ~ Fleet 8 - Building
O 04 Misc. / i
Meterin]
0.2 = ,Te'ehea%th == - ?;;Tﬁm
0 === A L R L 12 hours 1 day 2d’ays,
-1 -08 -0.6 02 04 06 08 Average session interarrival

Motivation for PUSH in CCN

z
Fig. 1: Log Ratio of Upstream to Downstream traffic for M2M

and Smart Phone Fig. 2: Distribution between transmission range

from hours to days.

* PUSH is a norm in loT system, many messaging systems e.g. MQTT
*From Fig 1., significant (>80%) number of M2M devices have traffic that is upstream heavy.
* From Fig. 2, the distribution between the transmission vary from mins to days.

* Some of these updates are mission critical [2], with latency and reliability requirements for URLLC class of applications in 5G 1-10ms,
and no message loss.

* This is just one data point, pub/sub is standard in the industry e.g. Social Networks
* Other ICN protocols such as MobilityFirst, NetInf support both PUSH and PULL.

[1] Shafiq et al, “Large scale measure and characterization of cellular machine-to-machine traffic”, IEEE,

Transactions on Networking, 2013
[2] ITU, FG, IMT 2020 — “Network Standardization Requirement for 5G”
http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Documents/T13-SG13-151130-TD-PLEN-0208!!'MSW-E.docx

CCN PUSH Requirements

Supporting PUSH Intent

— This should match application’s intent to PUSH content similar to the
PULL primitive.

— Feature to be supported considering efficiency and scalability
Support Multicast

— Support network service where an application PUSH can be
multicasted to all intended receivers (just like Interest Multicast)

Security
— Should be able to deliver secure (authenticated and encrypted) NDO
Routing and Forwarding Support

— Push prefixes (Multicast or Unicast) should be treated differently
from prefixes for regular Interests from routing and forwarding
perspective, to support the PUSH intent.

Minimizing Processing

— PUSH flows shouldn’t be subjected to PIT/CS processing, considering
latency and application intention.

Using Interest/Data Abstraction for
Push

Discusses how Interest/Data Abstractions can be
used to achieve PUSH.

Four Basic Approaches
— Long Lived Interests

— Polling

— Overloading Interests
— Interest Trigger

We offer design choice discussions for each of these
cases with its pros and cons.

The discussion assume multiple providers within the
same GROUP_PREFIX generating content randomly
and receivers seeking to sync with the producers.

Using Interest/Data Abstraction— Long Lived Interest v

* Assume consumers know all the names [No
message loss]

— Content name: /GrouplD/ContentID
* ContentlD: sequential across all providers
— Query: /GrouplD/ContentID (full name)
* Problem with solution:

— Inefficiency in multi-provider case
* All Intersts have to be send to all providers
* Redundant Interest delivery
* Some PITs will never be consumed (e.g., pktl from
P2 to R1)

* Problem with assumption:

— How can the providers synchronize?
E.g., 2 providers send at the same time, who PIT of /GroupID
uses which name?

— Even if the providers can synchronize, what'’s
the cost?

— Providers have to address another sync
problem

Using Interest/Data Abstraction— Polling v

* Thisis to prevent the issues with the previous approach, the
providers can publish content using timestamps.

* Assume the consumer only know the group name

— Content name: /GrouplD/<Timestamp>
* No need for synchronization across providers
— Query name: /GrouplD/<earliest after XXX>
« XXX: the latest version (timestamp) | have

* Problem with solution:

— Need to have a synchronized time over the service providers and N
consumers

— Ambiguity content when two providers publish using the same
timestamps or when the clocks drift apart

— Message loss:
* P1 has notification t=1234, P2 has notification t=1327

* Consumer query with <earliest after t=1200>
(he can’t query 1201, since he is not sure if there is such a content)

* P2’s version might arrive before P1’s version
* Consumer will query <earliest after t=1327> and miss P1’s content

Using Interest/Data Abstraction— Long Lived Interest v2

 Assume consumers know all the names
— Content name: /GrouplD/ProviderID/ContentID

* ContentlD: sequential per provider

— Query: /GrouplD/ProviderID/ContentID (full name)
* Problem with assumption:

— Consumers have to know all the potential providers

— The solution becomes more “host-centric” than “information-
centric”

* Avoids the packet losses from the previous case
* Problem with solution:

— Increases the PIT state in the network

— If the Group_ID is shared among multiple devices (laptop, smart
phone etc.), the issues are similar to the long lived interest- vl
case.

Using Interest/Data Abstraction— Polling v2

* To reduce the PIT states in the network, we could process
Interests in the Application Layer

— Useful in applications like Gaming

* Assume consumer knows all the providers

— Content name: /GrouplD/ProviderID/ContentName/<timestamp>
* ContentID: sequential per provider

— Query: /GrouplD/ProviderID/<updates after t>/nonce

— Response: all the contents during the period (in a single response),
or “no update” response

— Aggregates the responses & the providers do not have to follow the
sequential version

* Problem with solution:
— Inefficiency with polling
— More load on the providers
— Caching not useful here
— Consumers have to know all the potential providers

Using Interest/Data Abstraction—
Polling with a Server

Using Server for Aggregating Provider Notifications:

Offloads Provider level data aggregation to a server

The providers would publish data into the server and the
consumers would poll for the updates from the server (similar
to Twitter and Facebook in IP network).

Server will offer aggregated response.

Problems with the Solution:

Single point of failure, just as in case of IP services today

Server has to use one of the previous mechanisms to sync their
current content state with providers.

Caches are not useful here just in the previous case

This approach boils down to a host-centric approach by tying
down to a server

Using Interest/Data Abstraction— Interest

Overloading

Approach

Notification Payload can be inserted into the Interest
itself

— Interests takes the form /GROUP_ID/NONCE/<Payload>

Problems with this Solution

Routing and forwarding has to differentiate between
Regular Interests from Interests with Notifications

Storing PIT state has to be avoided for efficiency

Consumer oriented FIB entry should reach all the
providers

Payloads beyond a certain size has to be avoided
considering engineering assumptions on Interest sizes.

Using Interest/Data Abstraction— Interest
Trigger

* Solutions

— Takes care of avoiding inserting Payload into the
Interest and routing and forwarding complexities of the
previous scheme

— Send a trigger with the content name, and the content
will then be pulled

* Problems
— Atleast a RTT delay, affects mission critical applications

— Triggers still have to reach all the receiving points, so
still has the routing and forwarding challenges.

— Trigger name space should be defined carefully.

Other updates

The remaining part of the draft hasn’t been
changed.

We provide discussions on protocol semantics,
router operation

Flow congestion control discussions are also
provided

Use case on using this for pub/sub is also
provided.

Next Steps

* Comments from the chairs and the group to
further this draft are welcome.

