Gap Analysis for
IDentity EnAbled networkS

draft-xyz-ideas-gap-analysis-00

Y. Qu (Ed.), A. Cabellos, R. Moskowitz, B. Liu, A. Stockmayer,
IDEAS BOF, IETF 99, July 2017, Prague
A Brief History of Identifier/Location separation

• The realization that IP addresses have overloaded semantics goes back to 1993 [RFC1498]
• Solution: Identifier-Locator Split
• Over the years several protocols have followed this paradigm, as an example:
 – HIP (RFC 6537)
 – LISP (RFC 6830)
• Identifier/LOC protocol use an infrastructure to store the relation between the two namespaces:
 – LISP Mapping System
 – RVS in HIP
Locator/ID Separation Protocol

1. Host A sends data to Tunnel Router X.
2. Tunnel Router X encapsulates the data and sends it to Tunnel Router Y.
3. Mapping System maps the Locator (X) to an Identifier (A).
4. Tunnel Router Y decapsulates the data and sends it to Host B.

EID space

RLOC space

EID space
Host Identity Protocol

• Bob’s slides
Common operation of ID/LOC protocols

1. Publish ID->LOC Mapping
2. Query Identifier
 Obtain location of HostA
3. Data Path

HostA

HostB
Privacy: Tracking of Location

1. Publish ID->LOC Mapping

2. Query Identifier Track Location of MN

Mobile Node

Attacker
Privacy: User-Defined Access Control Policies

1. Define Access Policy:
 E.g: I want to be reached only by people in my whitelist

2. Track Location

3. Query Identifier
 Obtain location of hosts

4. Data Path

Hosts

IDEAS Infrastructure

HostB

Attacker
User-Defined Access policies

• **GAP**: Existing protocols typically assume that Identifier/LOC information is **public**

• IDEAS introduces the notion of **privacy**:
 – Support fine-grained access policies to enable custom disclosure of Identity, Identifier and Locator(s) information
 • Not system-wide policies
 – Access policy tied to host **identity**
 – Identity is unique per entity
IDEAS introduces the notion of **IDENTITY**

IDEAS Infrastructure

1. **Publish IDy->IDf->LOC**
 - Define Access Policy
 - Use ephemeral IDfs

2. **Query Identity**
 - Obtain Ephemeral Identifier

3. **Query Ephemeral Identifier**
 - Obtain LOC

4. **Data Path**

Hosts

HostB
Identity (IDy) and Identifier (IDf) Split

• **GAP**: In Identifier/LOC protocols:
 – Identifier uniquely identifies the end-host
 – LOC identifies the network interface

• IDEAS introduces the notion of **identity** (IDy)
 – Identity is unique per entity
 • Allocation policies for identity
 • Permanent
 • Never revealed over the wire
 – Identifier is used as a session ID
 • Ephemeral IDfs can be used
 • Can be used in clear
 – Locator identifies the network interface
Common Infrastructure

IDEAS Infrastructure

IDf/LOC protocols

LISP
HIP
ILA

Data-Plane
Common Infrastructure

- **GAP**: Existing protocols offer their own mapping service for IDf/LOC
- IDEAS introduces a common infrastructure for IDy/IDf and IDf/LOC mappings
 - Work with existing protocols
 - Consistent policies
 - Ease network management
Summary

• IDEAS introduces the following new requirements:
 1. The notion of identity with its own lifecycle and requirements.
 2. Strong requirements for privacy tied to the identity. This requires fine-grained user-defined access control.
 3. A common infrastructure for IDy/IDf and IDf/LOC mappings.