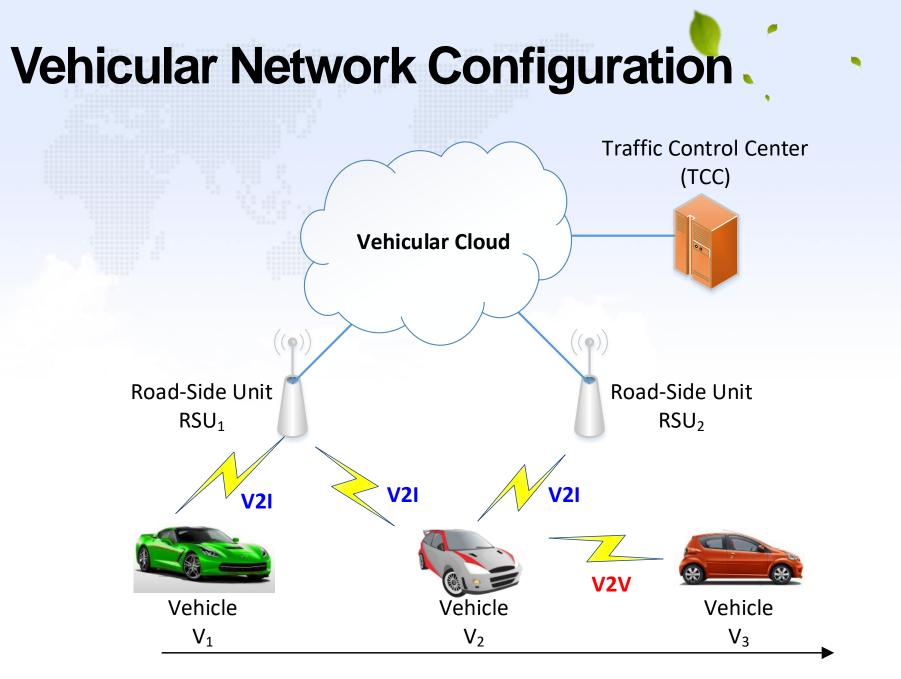
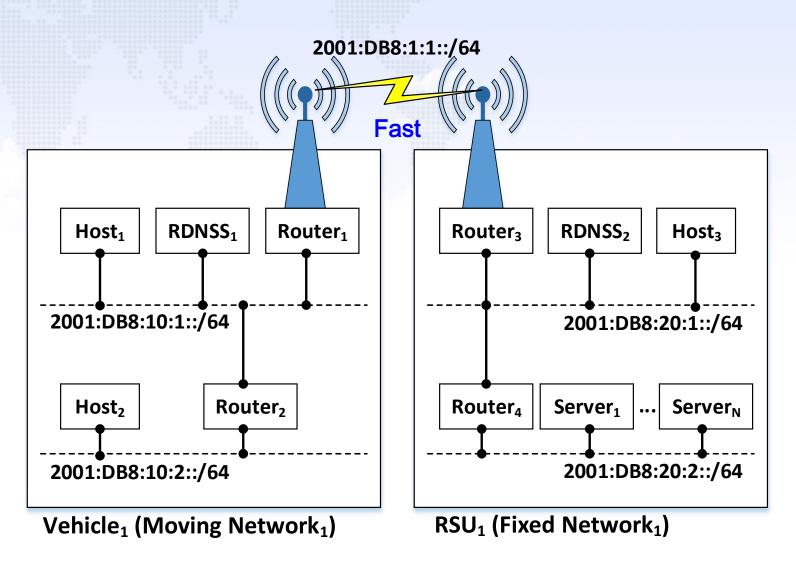
Problem Statement for IP Wireless Access in Vehicular Environments (draft-ietf-ipwave-problem-statement-00)

Jaehoon (Paul) Jeong^{*}, Alex Petrescu, Tae (Tom) Oh, Dapeng Liu, and Charles E. Perkins

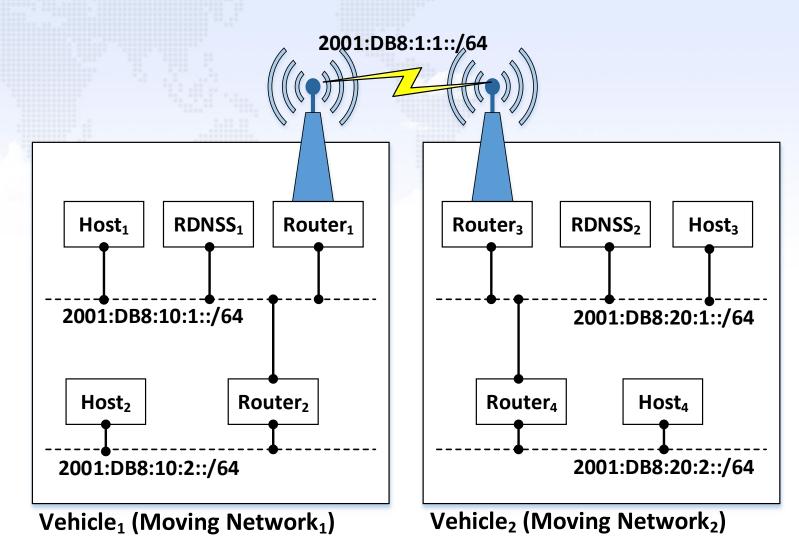
Merging Two Drafts into WG Document


- This document became a WG document by merging the following two individual drafts:
 - draft-jeong-ipwave-v2i-problem-statement-00
 - Vehicle-to-Infrastructure (V2I) Networking
 - draft-petrescu-its-problem-03
 - Vehicle-to-Vehicle (V2V) Networking

Introduction to Vehicular Networking


- Objective of this document
 - To specify the problem statement for <u>IPv6-based</u> Vehicleto-Infrastructure (V2I) or Vehicle-to-Vehicle (V2V) networking.
- Assumptions
 - IEEE 802.11-OCB or Cellular Links (3G-UMTS, WCDMA, 4G-LTE, 5G-New Radio (NR)) are considered as link types.
 - IPv6 is considered as the Network-layer protocol.
 - Road-Side Unit (RSU) is connected to the Internet as an access point for vehicles.

Focus of this document


- Networking issues in one IP hop communications between <u>RSU and vehicles</u> or <u>among vehicles</u>.
- Internetworking between the internal networks of cars and RSUs.

Internetworking between Vehicle Network and RSU Network

Internetworking between Two Vehicle Networks

Issues for IPv6 Vehicular Networking (1/6)

IPv6 Addressing Problem for V2I

- Two policies for IPv6 addressing
 - Local IPv6 addresses for vehicular networks
 - Global IPv6 addresses for internetworking
- Local IPv6 addresses
 - Usage for road network services (e.g., emergency notification and navigation)
 - e.g., Unique Local IPv6 Unicast Addresses (ULAs)
- Global IPv6 addresses
 - Usage for general Internet services (e.g., email, web surfing, and entertainment)
- Policies for global IPv6 addresses
 - Multi-link subnet for multiple RSUs and cars
 - Single subnet per RSU
 - Single subnet between neighboring cars

Issues for IPv6 Vehicular Networking (2/6)

- IPv6 Addressing Problem for V2V
 - Address Configuration Problem
 - In-vehicle addresses may be <u>pre-configured</u> or <u>configured dynamically</u> from a network deployed along the road (for 802.11-OCB or cellular NIC).

- Communication Path Setup Problem

• How to establish **IP communication paths** between the computers in one vehicle and a nearby vehicle?

– Discovery and Exchange Sub-problems

- Discovery Sub-problem
 - How can edge routers in vehicles discover each other?
- Prefix Exchange Sub-problem
 - How can edge routers in vehicles exchange routing information?

Issues for IPv6 Vehicular Networking (3/6)

- Adaptation of Neighbor Discovery (ND)
 - Adjusts ND time-related parameters (e.g., router lifetime and NA interval), considering <u>high-speed vehicles</u> and <u>vehicle</u> <u>density</u>.
- IP Address Autoconfiguration (SLAAC and DHCPv6)
 - Supports the <u>fast configuration</u>, considering high-speed vehicles.
 - RSU can perform <u>IPv6 Stateless Address Autoconfiguration</u> (<u>SLAAC</u>) including the Duplicate Address Detection (DAD) proactively on behalf of the vehicles as an ND proxy.
 - <u>DHCPv6</u>, <u>DHCPv6-PD or Stateless DHCPv6</u> need to be adapted for fast moving vehicles in the vehicular network whose RSUs have different subnets.
 - <u>Signal strength measurement</u> from IP RA or WAVE Short Message (WSM) can be used to <u>evaluate stable links</u>.

Issues for IPv6 Vehicular Networking (4/6)

DNS Naming Service

- IPv6 host DNS configuration for Recursive DNS Server (RDNSS) and DNS Search List (DNSSL)
 - Through RA Options [RFC 8106] and DHCP Options [RFC 3646].

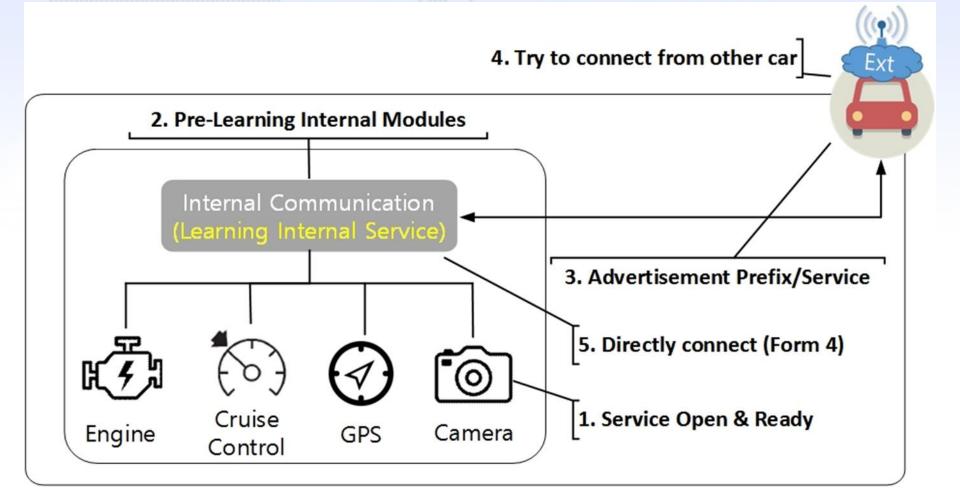
- DNS name resolution through an appropriate RDNSS

• Within a vehicle's moving network or an RSU's fixed network.

- DNS name autoconfiguration of in-vehicle devices

- Through DNS Name Autoconfiguration (DNSNA) [draftjeong-ipwave-iot-dns-autoconf-00], mDNS [RFC 6762], and DNS Update [RFC 2136].
- In-vehicle devices or hosts need to register their DNS name and IPv6 address into a local DNS server in a vehicle or an RSU.

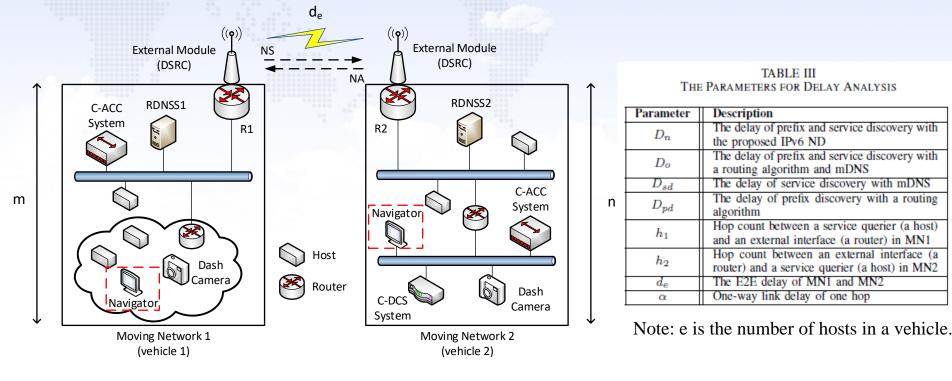
Issues for IPv6 Vehicular Networking (5/6)


- IP Mobility Support for V2I
 - In a single subnet per RSU, vehicles keep crossing the merged communication coverage of adjacent RSUs.
 - During this crossing, TCP/UDP sessions can maintained by IP mobility support, such as Mobile IPv6 (MIPv6) [RFC 3775], Proxy MIPv6 [RFC 5213], and Distributed Mobility Management (DMM) [RFC 7333, RFC 7429].
 - The parameter adjustment is required for <u>high-speed</u> vehicles.
 - With the periodic reports of the mobility information from the vehicles, TCC can coordinate RSUs for the proactive mobility management of the moving vehicles.

Issues for IPv6 Vehicular Networking (6/6)

- Service Discovery
 - Vehicles need to discover services (e.g., road condition notification, navigation service, and entertainment) provided by internal nodes in an RSU's network.
 - Possible Solutions
 - DNS-based Service Discovery (DNS-SD) [RFC 6763]
 - Uses Service (SRV), Pointer (PTR), and Text (TXT) records
 - IPv6 ND Extension for the Prefix and Service Discovery
 - A piggyback service discovery during the prefix exchange of network prefixes for the networking between a vehicle's moving network and an RSU's fixed network.

Service Discovery (1/2)


Internal Service Registration into a Vehicle

Service Discovery (2/2)

Vehicular ND vs. mDNS for Prefix and Service Discovery

Exchange of Prefix & Service Information

$$D_{pd} = \max(O(m), O(n)).$$

$$D_{sd} = (2\alpha \cdot (h_1 + h_2) + 2d_e) \cdot e.$$

$$D_o = \max(O(m), O(n)) + (2\alpha \cdot (h_1 + h_2) + 2d_e) \cdot e.$$

$$D_n = \alpha \cdot \max(h_1, h_2) + d_e.$$

- (1) The delay of the prefix discovery in the worst case
- (2) The delay of the service discovery of each host is executed sequentially
- (3) Total delay
- (4) Our proposed method with vehicular ND

Security and Privacy (1/3)

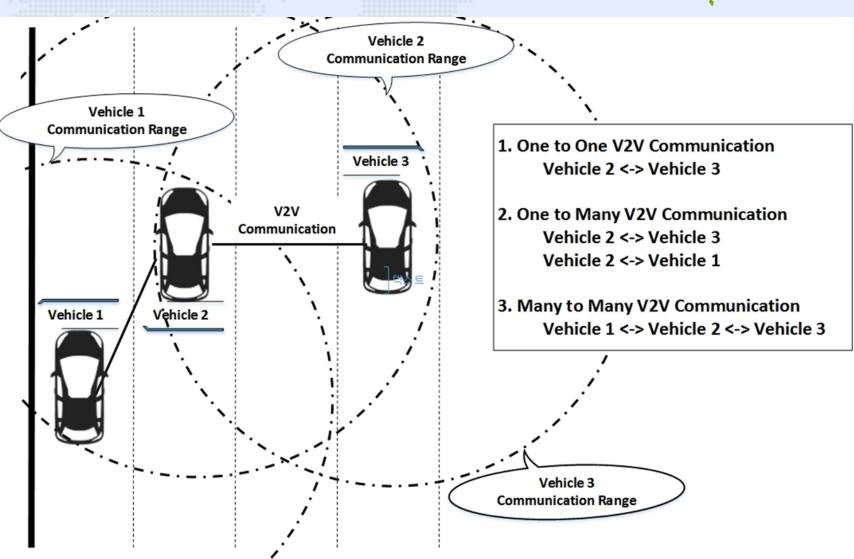
- Authentication and Access Control
 - A Vehicle Identification Number (VIN) for authentication
 - Multiple car certificates per vehicle for authentication
 - Cellular soldered SIM card, Software credentials, or Hardware Security Module (HSM) based Authentication
 - An RSU can be used to give vehicles the connectivity with an authentication server in TCC.
 - Transport Layer Security (TLS) [RFC 5246] certificates can be used for the authentication and access control in secure communications.

Security and Privacy (2/3)

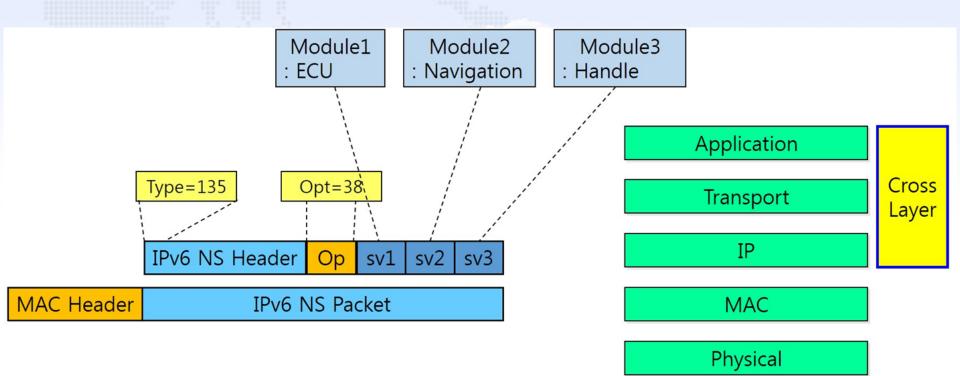
- Privacy Support by Periodic Change of MAC and IP Addresses
 - To prevent a vehicle from being tracked by an adversary, the MAC and IP addresses of the vehicle can be changed periodically with randomness.
 - This address update should not interrupt the communications between a vehicle and an RSU
 - In the level of the network layer (i.e., IP) or transport layer (e.g., TCP and UDP).

Security and Privacy (3/3)

- Confidential Data Exchange
 - To protect data packets exchanged between a vehicle and an RSU, <u>IPsec</u> can be used.
 - Confidentiality for Data Packets
 - It can be provided by efficient encryption and decryption algorithms (e.g., IP Encapsulating Security Payload (ESP) [RFC 4303]).
 - It can use an efficient key management scheme (e.g., Internet Key Exchange Protocol Version 2 (IKEv2) [RFC 7296][RFC 4306]).


Next Steps

- Improvement with more in-depth technical details


 The authors will keep working for IPWAVE problem
 statement with IPWAVE WG.
 - Reuse more of draft-petrescu-its-problem-03.
- Common Terminology Usage (e.g., RSU, RSE)
 - draft-ietf-ipwave-ipv6-over-80211ocb-03
 - ISO 21217 (ITS station/communication architecture) and ISO 21210 (IPv6 networking for ITS)
 - FCC (CFR 90.7 2010)
 - FHWA (Vehicle to Infrastructure Deployment Guidance and Products – 2015)
- Welcome Comments from IPWAVE WG.

Appendix: Vehicular Neighbor Discovery (draft-jeong-ipwave-vehicular-neighbor-discovery-00)

V2V Communication

Prefix Discovery Vehicular Prefix Information Option

0	1	2	3	
0123456789	012345678	90123	45678901	
+-	+-	+-+-+-+-+	-+-+-+-+-+-+-+	
Type	Length Pref:	ix Length	Distance	
+-	+-	+-+-+-+-+	-+-+-+-+-+-+-+	
	Reserved			
+-	+-	+- <mark>+</mark> -+-+-+	-+-+-+-+-+-+-+	
1				
:	Prefix		:	
1				
+-	+-+- <mark>+</mark> -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+	

TABLE I VEHICULAR PREFIX INFORMATION OPTION FIELDS

Field	Description
Туре	8-bit identifier of the VSI option type as assigned by the IANA: TBD
Length	8-bit unsigned integer. The length of the option (including the Type and Length fields) is in units of 8 octets. The value is 3.
Prefix Length	8-bit unsigned integer. The number of leading bits in the Prefix that are valid. The value ranges from 0 to 128.
Distance	8-bit unsigned integer. The distance between the sub- net announcing this prefix and the subnet correspond- ing to this prefix in terms of the number of hops.
Reserved	This field is unused. It MUST be initialized to zero by the sender and MUST be ignored by the receiver.
Prefix	A 128-bit IPv6 address or a prefix of an IPv6 address. The Prefix Length field contains the number of valid leading bits in the prefix. The bits in the prefix after the prefix length are reserved and MUST be initialized to zero by the sender and ignored by the receiver.

Service Discovery Vehicular Service Information Option

)) 1 2 3 4 5 6	7890123	45678	2 9012	3456	789	3 0 1
Туре	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	Ì	Re	served1		I
Protocol	Reserved2	2	Por	t Number +-+-+-+-		I
	Serv	vice Addre	SS			:
+-+-+-+-	+-+-+-+-+-+-+-+-+	+-+-+-+-	+-+-+-	+-+-+-	+-+-+-	+-+-+

TABLE II VEHICULAR SERVICE INFORMATION OPTION FIELDS

Field	Description
Туре	8-bit identifier of the VSI option type as assigned by the IANA: TBD
Length	8-bit unsigned integer. The length of the option (including the Type and Length fields) is in units of 8 octets. The value is 3.
Reserved1	This field is unused. It MUST be initialized to zero by the sender and MUST be ignored by the receiver.
Protocol	8-bit unsigned integer to indicate the upper-layer protocol, such as transport-layer protocol(e.g., TCP, UDP, and SCTP).
Reserved2	This field is unused. It MUST be initialized to zero by the sender and MUST be ignored by the receiver.
Port Number	16-bit unsigned integer to indicate the port number for the protocol.
Service Address	128-bit IPv6 address of a vehicular service.