ISIS Extensions for Flex Ethernet (FlexE)
draft-zcdc-isis-flexe-extension-01

Authors
Yongqing Zhu (zhuyq@gsta.com)
Huanan Chen (chenhuanan@gsta.com)
Zongpeng Du (duzongpeng@huawei.com)
Mach Chen (mach.chen@huawei.com)
Flex Ethernet (FlexE) Overview

- By decoupling Ethernet MAC rate and PHY rate
 - FlexE can support a variety of Ethernet MAC rates that may or may not correspond to any existing Ethernet PHY rate

- FlexE has three major features
 - Bonding, bond Nx100GbE interfaces into a single pipe to form a larger and faster interface
 - Sub-rating, adapt Ethernet MAC rate to line rate, mainly for the case where the line rates in UNI and NNI are not matching
 - Channelization, within a PHY or a group of PHYs, e.g., supporting a 25G MAC, a 50G MAC and a 125G MAC to over two bonded 100GBASE PHYs

- FlexE introduces the “slot” concept
 - Based on a calendar, direct how to dispatch/map Ethernet flow onto corresponding slots
 - Each slot has a 5G granularity for now, more granularities may be supported (e.g., 25G)
FlexE Interface and Link

• A FlexE interface
 • Is a Nx100GBASE bonded Ethernet interfaces
 • Can be channelized into multiple sub-interfaces
• A FlexE link connects two FlexE interfaces
 • The big pipe
• A FlexE sub-link connects two FlexE sub-interfaces
 • The small pipes

A Use Case of FlexE – Network Slicing

- A FlexE link sliced into multiple FlexE sub-links as demand
- A set of FlexE sub-links allocated to a user/service to form a “sliced network” that has dedicated resources
- LSPs of the user/service can be established over their own sub-links
 - RSVP-TE signaling, or
 - Segment Routing
- Provide interface/link level isolation
Advertisement of FlexE Link and Sub-link

- FlexE Link, following new information needed
 - Granularity (e.g., 5G per slot)
 - Available slots

- FlexE Sub-link, two options
 - Each sub-link advertised as an individual link, need to
 - Configure IP address at two ends of the link
 - Enable routing protocols (e.g., OSPF or ISIS) on each link
 - Sub-link advertised as a member of a “bundle”
 - No need to configure IP address and enable routing protocols for each link
 - More scalable
ISIS Extensions for FlexE Link Advertisement

Interface Switching Capability Descriptor (ISCD) sub-TLV

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Cap</td>
<td>Encoding</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

- Max LSP Bandwidth at priority 0
- Max LSP Bandwidth at priority 1
- Max LSP Bandwidth at priority 2
- Max LSP Bandwidth at priority 3
- Max LSP Bandwidth at priority 4
- Max LSP Bandwidth at priority 5
- Max LSP Bandwidth at priority 6
- Max LSP Bandwidth at priority 7

FlexE Interface sub-TLV

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type = TBD3</td>
<td>Length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FlexE Group Number</th>
<th>Granularity</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Slots at priority 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Slots at priority 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next steps

• WG review and feedbacks
• FlexE sub-link advertisement optimization and enhancement
 • Support Network slicing (interface/link based) and Segment Routing
Thanks