Measuring YouTube Content Delivery over IPv6

Vaibhav Bajpai TU Munich

IETF 99 Prague, CZ

Published at: SIGCOMM Computer Communication Review July 2017: https://goo.gl/oUJ7Ej

July 2017

Joint work with

Saba Ahsan Aalto University, Helsinki, Finland

Jörg Ott *TU Munich, Germany*

Jürgen Schönwälder Jacobs University Bremen, Germany

Motivation

- ► IPv6 contributes ~25% [1] of traffic within Comcast.
- ► Swisscom reports ~60% [1] of IPv6 traffic is YouTube.
- ► IPv6 traffic largely dominated by YouTube [2].

shaded region represents the duration of the longitudinal study.

Do users experience benefit (or suffer) from YouTube streaming over IPv6?

 \sim 100 dual-stacked SamKnows probes (\sim 66 different origin ASes)

NETWORK	ГҮРЕ	#
RESIDENTIAL NREN / RESEARCH BUSINESS / DATACENTER OPERATOR LAB IXP		78 10 ER 08 04 01
RIR	#	
RIPE ARIN APNIC AFRINIC LACNIC	60 29 10 01 01	

Research Contribution

- ► HE (RFC 6555) makes clients to prefer streaming YouTube videos over IPv6.
- ► Observed performance (both in terms of latency and throughput) over IPv6 is worse.
- ► Stall rates are low, bitrates that can be reliably streamed are comparable.
- ► When a stall occurs, stall durations over IPv6 are higher.
- ► Worse performance is due to GGC nodes that are IPv4-only.

This is the first study to measure YouTube content delivery over IPv6

 Motivation

 Methodology

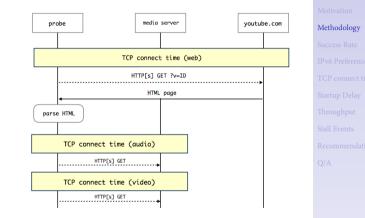
 Success Rate

 IPv6 Preference

 TCP connect times

 Startup Delay

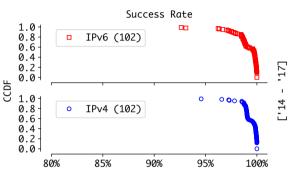
 Throughput


 Stall Events

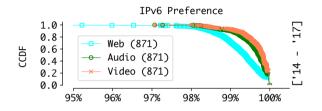
 Recommendations

 Q/A

$Methodology \mid \texttt{Selection of YouTube Videos}$


- ► Using YouTube v3 API [3].
- ► Video Selection Criteria:
 - 1. Video duration > 60s.
 - 2. Available in Full HD.
 - 3. No regional restrictions.
- ► List updated every 12h.
- ► Probes daily pull the list.

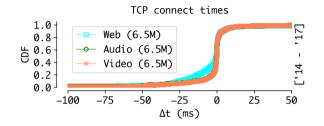
- The test supports non-adaptive and step-down playout modes only.
- ► Results are biased our vantage points (centered largely around EU, US and JP).

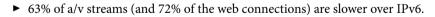

Success Rate

- Number of successful iterations to total iterations.
- ► The test executes once every hour (over both AF).

- ▶ 99% of probes achieve success rate of more than 94% over IPv4.
- ▶ 97% of probes achieve success rate of more than 94% over IPv6.
- ► Slightly lower success rates over IPv6 due to network issues closer to probes.

IPv6 Preference



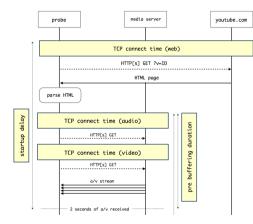

- ▶ RFC 6724 [4] makes apps prefer connections made over IPv6.
- ▶ RFC 6555 [5] allows apps to fallback to IPv4 when IPv6 connectivity is bad.
- ► TCP connections over IPv6 are preferred at least 97% of the time.

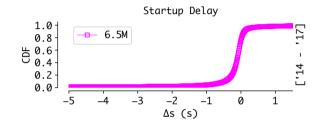
Clients prefer streaming YouTube videos over IPv6

IPv6 Preference

TCP connect times

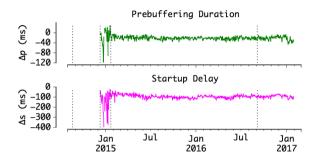
▶ 14% of a/v streams are at least 10 ms slower over IPv6.


TCP connect times

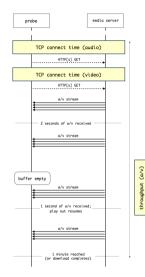

TCP connect times

- ► TCP connect times consistently higher over IPv6 and have not improved over time.
- ► TCP connect times towards the webpage worse over IPv6 than towards media servers.

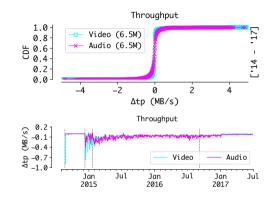
Sequence Diagram (contd.)


Startup Delay

▶ 80% of the samples are slower over IPv6.

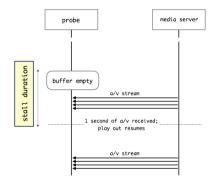

► Half of the samples are at least 100 ms slower over IPv6.

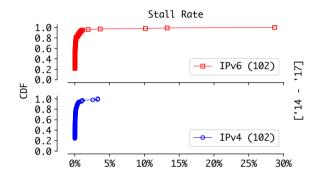
Startup Delay



- ▶ Prebuffering durations are ~25 ms higher over IPv6.
- ► Startup delays are ~100 ms higher over IPv6.
- ► Initial interaction with the web server makes startup delay worse over IPv6.

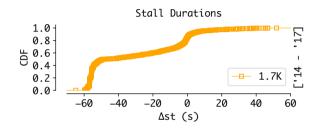
Sequence Diagram (contd.)


Throughput


Throughput

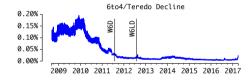
- ▶ 80% of video and 60% audio samples achieve lower throughput over IPv6.
- ► The throughput is consistently lower over IPv6, but it has improved over time.

Sequence Diagram (contd.)


Stall Rates

Stall Events

- ▶ 90% of the probes witness less than 1% stall rate over both address families.
- ► Bitrates reliably streamed is also comparable over both address families.


Stall Durations

▶ 80% of samples experience stall durations that are at least 1s longer.

Recommendations

- ► Update RFC 6555 with a lower HE timer value.
 - We have shown [6] that reducing HE timer value to 150 ms (from 300 ms) helps.

- ► ISPs should put latency as a first-class citizen.
- ► ISPs should ensure GGC nodes are dual-stacked.
 - Request an IPv6 prefix allocation from Google.

Recommendations

Takeway

- ► Clients prefer streaming YouTube videos over IPv6.
- ► Observed performance (both in terms of latency and throughput) over IPv6 is worse.
- ► Stall rates are low, but when a stall occurs, stall durations over IPv6 are higher.
- ► Worse performance due to GGC nodes that are IPv4-only.
- Reproducibility Considerations:
 - ► The test is open-sourced: https://github.com/sabyahsan/youtube-test
 - ► The dataset is released: https://github.com/vbajpai/2017-ccr-youtube-analysis

bajpaiv@in.tum.de | @bajpaivaibhav

O/A

References

- NANOG. (2016) IPv6 traffic percentages? [Online]. Available: https: //mailman.nanog.org/pipermail/nanog/2016-January/083624.html
- [2] N. Sarrar, G. Maier, B. Ager, R. Sommer, and S. Uhlig, "Investigating IPv6 Traffic - What Happened at the World IPv6 Day?" ser. Passive and Active Measurement Conference, 2012, pp. 11–20. [Online]. Available: https://doi.org/10.1007/978-3-642-28537-0_2
- G. Developers. (2017) YouTube Data API. [Online]. Available: https://developers.google.com/youtube/v3/docs/videos/list
- [4] D. Thaler, R. Draves, A. Matsumoto, and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)," RFC 6724 (Proposed

Standard), RFC Editor, Fremont, CA, USA, pp. 1–32, Sep. 2012. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6724.txt

- [5] D. Wing and A. Yourtchenko, "Happy Eyeballs: Success with Dual-Stack Hosts," RFC 6555 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–15, Apr. 2012. [Online]. Available: https://www.rfc-edito.org/rfc/rfc6555.txt
- [6] V. Bajpai and J. Schönwälder, "Measuring the Effects of Happy Eyeballs," ser. Applied Networking Research Workshop, 2016. [Online]. Available: http://dl.acm.org/citation.cfm?id=2959429