Rate-limiting of IPv6 traceroutes is widespread:
measurements and mitigations.

Pablo Alvarez
Florin Oprea
John Rula

Akamai Technologies



Yy Outline

« Traceroute is an important tool in understanding overall
Internet topology

* We have observed worse performance for IPv6 traceroutes
compared to IPv4

« What are the underlying reasons for data loss, and the
characteristics of this loss?

 |s there something we can do to improve performance within
the current state of affairs?

 How can / should we change that state of affairs?

©2017 AKAMAI | FASTER FORWARD™



Y How much worse are IPv6 traces than IPv4?

« Collect
« ~20M traceroutes
* to ~200K IPv4 and ~100K |IPv6 targets
 From ~8K sources
« Over 1 day (most traces collected within 15t 6 hours)

« Count the number of null hops before the last non-null hop on
each trace

« Aggregate % missing hops for each target and for each
source separately.



Y How much worse are IPv6 traces than IPv4?

Missing routers for each target

0.12 | | | |

- |PVv4
= |PVv6 H

0.10

0.08}

0.06

PDF

0.04

0.02

0.00 ' '
0 20 40 60 80 100

Missing Trace %



Y  How much worse are IPv6 traces than IPv4?

0.14
0.12
0.10

. 0.08

% 0.06
0.04

D

0.02

0.00
o)

Many more missing hops in IPv6 traces, whether we
aggregate over source or over target.

AI | FASTER FOR

Missing routers for each source

20

40
Missing Trace %

—  |Pv4
—— IPV6

60

80

100

WAR

DTM



Yy Why routers drop IPv6 error packets

* Analysis shows presence of rate-limiting for v6
 RFC 4443: routers MUST rate-limit v6 error messages
« RFC recommends using token-bucket for rate-limiting

« Token-bucket(r, b) allows r error packets per second, bursts
of b packets

« Can we estimate (r, b)? r tokens/ Sec[...

bucket holds up to
b tokens

packets  token

wait

RWARD™



Measuring ICMPV6 error packet rate limiting

Send a packet with the same TTL to the same target every ~10ms
See how many come back, and when
The “clump” at the start is the bucket size

o After the bucket is filled, we can measure the refill rate
ir = initial replies = 22, rr = refill replies = 8
it = initial time = 220 ms rt = Refill time = (1000-220) = 780 ms
OIIIOIIIOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIOIIIOIIIOI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
- < N~

Time at which ICMPv6 error packets were received (ms)

 refill rate estimate = rr/rt = 11 Hz

» Bucket size = ir — (it * refill rate) = 20

» Adjusted refill rate = (rr + (ih — bucket size)) / rt = 10 Hz

« If refill rate > 66Hz, ignore bucket size (hard to measure) ©2017 AKAMAL | FASTER FORWARD™



Y Results: many routers show similar rate limits

« 3078 routers in 6 continents (112 in AF ... 906 in NA. NA and SA are separate)

 18% of hops (8700/48000) had more than one router, not used here.

« ~1/3 of routers do not show rate-limiting at the ~100Hz frequency we tested.

« There are consistent peaks in refill rate across continents, probably reflecting
default factory settings on the routers

50% 1
40%
30% T

20% 1

Percent of Routers

10% A

0% -

Refill Rate (Hz)



B  Routers also show similar bucket sizes

« Again, the data support the idea most routers are set to default configurations
« Size == -1 indicates no bucket size detected (router allows rates close to 100 Hz).

50% -

400/0 T

w
S
R

20% -

Pergent of Routers
o
2

0%
-1 0 0515253545 6 8 12 16 24 30 40 50 60 >60

Bucket Size

©2017 AKAMAI | FASTER FORWARD™



Ny Mitigation 1: Spread out TTLs

« Standard method: send out a packet with TTL 1 for each target, wait for
return, send out packet with TTL 2, etc...

« This is the worst possible way to do things for multiple targets: since many
traces hit the same routers at the same time, we empty the token bucket as
fast as we can and do not allow time for refills.

1. Random TTLs overall 2. TTLs increasing across 3. Start trace at random TTL
targets for each target.
Colors represent time

at which packet was sent:
-‘U S
s
_*4 s

|

6s

©2017 AKAMAI | FASTER FORWARD™




250%
200%
150%
100%

50%

How much does spreading out TTLs help?

B baseline

B method 1
¥ method 2
B method 3

valid routers null routers  completed traces time

Method 3 seems the best choice: pretty fast, and clear improvements

©2017 AKAMAI | FASTER FORWARD™



Y Mitigation 2: Fill in traces with known data

« If a router’s bucket is empty, that means it has previously sent back at
least one error packet

« We are likely to have that information, and can use it to fill in
subsequent trace efforts

Example:
Trace 1: A->B->C->D->E->F->G->H
Trace 2: A->*->C->T->U->V->W

Trace 3: A->*->C->*->U->M->N->0->P
Trace 3 filled in: A->B->C->T->U->M->N->0->P

Caveats:

« Cannot keep old data around too long
* Ignores load balancing routers

« Sometimes we just don’t have the data



Y Gains from filling in traces with known data

100% 1
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
O% I I I I I I I I I T T T I I I I I T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hop

== missing hops filled in

©2017 AKAMAI | FASTER FORWARD™



Yy Summary

« Starting many IPv6 traces at the same time is problematic: routers will drop
many of the return packets due to RFC-imposed rate-limiting.

« Different routers have very different rate-limiting properties

« Rate-limiting properties are little known and appear to remain at factory defaults.

Tested possible mitigations from the tracing side:

« Changing the order of TTLs to avoid having multiple traces hit the same router at
nearby times.

« Using recently collected traces to complete other traces

* Moderate improvement: on the order of 10-20% more routers

Requests:

* Much higher limits (e.g. 100 Hz, 50 tokens) can be easily supported by mpst
current hardware

» Router manufacturers and/or ISPs can make topology discovery easier by
setting higher default limits / configurations.

« |ETF recommendations for v6 routers should mention this (current draft in
v6OopSs)

©2017 AKAMAI | FASTER FORWARD™



