
©2017 AKAMAI | FASTER FORWARDTM

Rate-limiting of IPv6 traceroutes is widespread:
measurements and mitigations.

Pablo Alvarez
Florin Oprea
John Rula

Akamai Technologies

©2017 AKAMAI | FASTER FORWARDTM

Outline

•  Traceroute is an important tool in understanding overall
Internet topology

•  We have observed worse performance for IPv6 traceroutes
compared to IPv4

•  What are the underlying reasons for data loss, and the
characteristics of this loss?

•  Is there something we can do to improve performance within
the current state of affairs?

•  How can / should we change that state of affairs?

©2017 AKAMAI | FASTER FORWARDTM

How much worse are IPv6 traces than IPv4?

•  Collect
•  ~20M traceroutes
•  to ~200K IPv4 and ~100K IPv6 targets
•  From ~8K sources
•  Over 1 day (most traces collected within 1st 6 hours)

•  Count the number of null hops before the last non-null hop on
each trace

•  Aggregate % missing hops for each target and for each
source separately.

©2017 AKAMAI | FASTER FORWARDTM

How much worse are IPv6 traces than IPv4?

0 20 40 60 80 100
0issing TrDFe %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
D

F

IPv4

IPv6

Missing routers for each target

©2017 AKAMAI | FASTER FORWARDTM

How much worse are IPv6 traces than IPv4?

Missing routers for each source

0 20 40 60 80 100
0issing TrDFe %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PD
F

IPv4

IPv6

Many more missing hops in IPv6 traces, whether we
aggregate over source or over target.

©2017 AKAMAI | FASTER FORWARDTM

•  Analysis shows presence of rate-limiting for v6
•  RFC 4443: routers MUST rate-limit v6 error messages
•  RFC recommends using token-bucket for rate-limiting
•  Token-bucket(r, b) allows r error packets per second, bursts

of b packets
•  Can we estimate (r, b)?

Why routers drop IPv6 error packets

©2017 AKAMAI | FASTER FORWARDTM

rr = refill replies = 8
rt = Refill time = (1000-220) = 780 ms

ir = initial replies = 22,
it = initial time = 220 ms

•  refill rate estimate = rr/rt = 11 Hz
•  Bucket size = ir – (it * refill rate) = 20
•  Adjusted refill rate = (rr + (ih – bucket size)) / rt = 10 Hz
•  If refill rate > 66Hz, ignore bucket size (hard to measure)

•  Send a packet with the same TTL to the same target every ~10ms
•  See how many come back, and when
•  The “clump” at the start is the bucket size
•  After the bucket is filled, we can measure the refill rate

Measuring ICMPv6 error packet rate limiting

©2017 AKAMAI | FASTER FORWARDTM

Results: many routers show similar rate limits
•  3078 routers in 6 continents (112 in AF … 906 in NA. NA and SA are separate)
•  18% of hops (8700/48000) had more than one router, not used here.
•  ~1/3 of routers do not show rate-limiting at the ~100Hz frequency we tested.
•  There are consistent peaks in refill rate across continents, probably reflecting

default factory settings on the routers

©2017 AKAMAI | FASTER FORWARDTM

0%

10%

20%

30%

40%

50%

-1 0 0.5 1.5 2.5 3.5 4.5 6 8 12 16 24 30 40 50 60 >60

Pe
rc

en
t o

f R
ou

te
rs

Bucket Size

AF
AS
EU
NA
OC
SA

Routers also show similar bucket sizes

•  Again, the data support the idea most routers are set to default configurations
•  Size == -1 indicates no bucket size detected (router allows rates close to 100 Hz).

©2017 AKAMAI | FASTER FORWARDTM

•  Standard method: send out a packet with TTL 1 for each target, wait for
return, send out packet with TTL 2, etc…

•  This is the worst possible way to do things for multiple targets: since many
traces hit the same routers at the same time, we empty the token bucket as
fast as we can and do not allow time for refills.

Mitigation 1: Spread out TTLs

Standard 1 2 3 Colors.represent.time
Target A B C A B C A B C A B C at.which.packet.was.sent:
ttl.1
ttl.2 0.s
ttl.3
ttl.4 2.s
ttl.5
ttl.6 4.s
ttl.7
ttl.8 6.s
ttl.9
ttl.10
ttl.11
ttl.12
ttl.13

1. Random TTLs overall

2. TTLs increasing across
targets

3. Start trace at random TTL
for each target.

©2017 AKAMAI | FASTER FORWARDTM

How much does spreading out TTLs help?

Method 3 seems the best choice: pretty fast, and clear improvements

50%

100%

150%

200%

250%

valid routers null routers completed traces time

baseline
method 1
method 2
method 3

©2017 AKAMAI | FASTER FORWARDTM

Mitigation 2: Fill in traces with known data
•  If a router’s bucket is empty, that means it has previously sent back at

least one error packet
•  We are likely to have that information, and can use it to fill in

subsequent trace efforts

Example:
Trace 1: A->B->C->D->E->F->G->H
Trace 2: A->*->C->T->U->V->W

Trace 3: A->*->C->*->U->M->N->O->P
Trace 3 filled in: A->B->C->T->U->M->N->O->P

Caveats:
•  Cannot keep old data around too long
•  Ignores load balancing routers
•  Sometimes we just don’t have the data

©2017 AKAMAI | FASTER FORWARDTM

Gains from filling in traces with known data

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Hop

 missing hops filled in

©2017 AKAMAI | FASTER FORWARDTM

Summary

•  Starting many IPv6 traces at the same time is problematic: routers will drop
many of the return packets due to RFC-imposed rate-limiting.

•  Different routers have very different rate-limiting properties
•  Rate-limiting properties are little known and appear to remain at factory defaults.

Tested possible mitigations from the tracing side:
•  Changing the order of TTLs to avoid having multiple traces hit the same router at

nearby times.
•  Using recently collected traces to complete other traces
•  Moderate improvement: on the order of 10-20% more routers

Requests:
•  Much higher limits (e.g. 100 Hz, 50 tokens) can be easily supported by mpst

current hardware
•  Router manufacturers and/or ISPs can make topology discovery easier by

setting higher default limits / configurations.
•  IETF recommendations for v6 routers should mention this (current draft in

v6ops)

