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A QUIC history

Protocol for HTTP transport, deployed at Google starting 2014
Between Google services and Chrome / mobile apps
Reduced page-load latency and video rebuffers

YouTube Video Rebuffers: 15 -18%
Google Search Latency: 3.6 - 8%
35% of Google's traffic (7% of Internet)

IETF QUIC working group formed in Oct 2016
Modularize and standardize QUIC



Google's QUIC deployment
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What are we talking about?
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QUIC Design Aspirations

e Deployability and evolvability

e Low latency connection establishment
o mostly 0-RTT, sometimes 1-RTT

e Multistreaming and per-stream flow control

® Better loss recovery and flexible congestion control
o Richer signaling (unique packet number)
O Better RTT estimates

® Resilience to NAT-rebinding



Metrics

® Latency
o Search
o Video Playback

e Video Rebuffer Rate
e Application-defined metrics

o Matter to apps, drive adoption
o Include non-network components



Search and Video Latency

% latency reduction by percentile

Lower latency Higher latency
Mean | 1% 5% 10% 50% 90% 95% 99%
Search
Desktop 80| 04 13 14 15 5.8 103 16.7
Mobile 36/-06 03 03 05 45 8.8 143
Video
Desktop 80| 1.2 31 33 46 84 9.0 10.6
Mobile 53100 06 05 12 44 58 75




Search and Video Latency

% latency reduction by percentile
Lower latency Higher latency

Mean\ 1% 5% 10% 50% 90% 95% 99%

Search
Desktop 80104 13 14 15 58 103 16.7
Mobile 36/F06 03 03 05 45 88 143

Video
Desktop 8012 31 33 46 84 9.0 10.6
Mobile \ 53/ 00 06 05 12 44 58 7.5
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Search and Video Latency

% latency reduction b

Lower latency Higher latency
Mean| 1% 5% 10% 50%/90% 95% 99%
Search '
Deskto 801104 13 14 1§ 5.8 10.3 16.7
Mobile 36(F06 -03 03 05 45 88 14.3
Video
Desktop 8012 3.1 33 46\ 84 9.0 10.6
Mobile\ 53] 00 06 05 12 \44 58 175
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Handshake Latency
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Figure 7: Comparison of handshake latency for QUIC; and TCP; ver-
sus the minimum RTT of the connection. Solid lines indicate the mean

handshake latency for all connections, including 0-RTT connections.

The dashed line shows the handshake latency for only those QUIC,
connections that did not achieve a 0-RTT handshake. Data shown is
for Desktop connections, mobile connections look similar.
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Video Rebuffer Rate

% rebuffer rate reduction by percentile

Fewer rebuffers More rebuffers

Mean | < 93% 93% 94 % 95% 99%

Desktop  18.0 * 100.0 704 60.0 18.5
Mobile 15.3 * * 100.0 52.7 8.7
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All metrics improve more

as RTT increases ...
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Network loss rate increases with RTT

Mean TCP Rtx %
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TCP receive window limit

4.6% of connections have
server's max cwnd == client's max rwnd
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QUIC improvement by country

% Reduction in Search Latency % Reduction in Rebuffer Rate

Country Mean Min RTT (ms) Mean TCP Rtx % Desktop Mobile Desktop Mobile
South Korea 38 1 1.3 1.1 0.0 10.1
USA 50 2 3.4 2.0 4.1 12.9
India 188 8 13.2 5.5 22.1 20.2
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Experiments and Experiences:
UDP Blockage

e QUIC successfully used: 95.3% of clients
e Blocked (or packet size too large): 4.4%
e QUIC performs poorly: 0.3%

o Networks that rate limit UDP

o Manually turn QUIC off for such ASes
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Experiments and Experiences:
Packet Size Considerations

e UDP packet train experiment, send and echo packets
® Measure reachability from Chrome users to Google servers
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Experiments and Experiences:
FEC in QUIC

e Simple XOR-based FEC in QUIC
o 1 FEC packet per protected group
o Timing of FEC packet and size of group controllable

e Conclusion: Benefits not worth the pain
o Multiple packet losses within RTT common
o FEC implementation extremely invasive
o Gains really at tail, where aggressive TLP wins
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Experiments and Experiences:
Userspace development

® Better practices and tools than kernel
® Better integration with tracing and logging infrastructure
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Experiments and Experiences:
Network Ossification

® Middlebox ossification

o Vendor ossified first byte of QUIC packets (flags byte)
O ...since it seemed to be the same on all QUIC packets
o Broke QUIC deployment when a flag was flipped

Encryption is the only protection against network ossification
® Userspace development

o Has better practices and tools than kernel
o Better integration with tracing and logging infrastructure
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