O-RTT TCP Converters

draft-bonaventure-mptcp-converters-01

IETF99, July 2017

O. Bonaventure
M. Boucadair
B. Peirens

Motivation

* |nstead of tuning MPTCP to cope
middleboxes, can we design middleboxes that
would benefit to MPTCP ?

Finally, the working group will explore whether an MPTCP-aware

middlebox would be useful, where at least one end host is MPTCP-enabled.
For example, potentially helping MPTCP's incremental deployment by
allowing only one end host to be MPTCP-enabled and the middlebox acts as
an MPTCP proxy for the other end host, which runs TCP; and potentially
helping some mobility scenarios, where the middlebox acts as an anchor
between two MPTCP-enabled hosts. The working group will detail what real
problems an MPTCP-enabled middlebox might solve, how it would impact the
Multipath TCP architecture (RFC6182), what proxy approach might be
justified as compared against alternative solutions to the problems, and
the likely feasibility of solving the technical and security issues.

Some proposed solutions

Extensions for Network-Assisted MPTCP Deployment Models

draft-boucadair-mptcp-plain-mode-10

Status IESG evaluation record IESG writeups Email expansions History

Versions 0o o1 02 03 04 05 06 07 08 09

o
S S
= &

MPTCP Working Group B. Peirens
Internet-Draft Proximus
Intended status: Informational G. Detal
Expires: January 6, 2017 S. Barre
O. Bonaventure
Tessares

July 05, 2016

. . . . Network Working Group
Link bonding with transparent Multipath TCP Request for Comments: 1928

draft-peirens-mptcp-transparent-00 Category: Standards Track

<
é?
&
M. Leech
Bell-Northern Research Ltd
M. Ganis
International Business Machines
Y. Lee
NEC Systems Laboratory
R. Kuris
Unify Corporation
D. Koblas
Independent Consultant
L. Jones
Hewlett-Packard Company
March 1996

SOCKS Protocol Version 5

Converter

* Motivation

— Far more MPTCP enabled clients than MPTCP
enabled servers

— Clients want to benefit from MPTCP at least on a
fraction of the end-to-end path

Key points of email discussion

Using the converter should not significantly increase
the connection establishment delay

— O-RTT
Client can decide to use converter based on policies

Clients should be able to bypass converter when server
supports MPTCP

TFO must be used if data is placed in SYN
— For client-converter exchanges

— Clients using converter should still be able to use TFO with
servers

Design should be extensible and future-proof
Should avoid defining new TCP Options

A cleaner design

Converter Protocol is an application-level
protocol listening on a specific TCP port

Client commands and converter responses are
encoded as TLV messages

— Ensures extensibility

Converter Protocol leverages TFO
— Commands and responses can be sent inside SYNs

Client can learn options supported by server
— Allows client to bypass converter

Simplified example

@t

TCP Options
TFO cookie (t) from
converter

/ SYN

y SYN+ACK []

SYN (TFO:t) [Connect @s:p]
SYN+ACK

~1

@s

TLV message
in SYN payload

MPTCP connection through converter

@t

SYN (TFO:t,MPC)

[Connect @s:p] /
/ \ SYN(MPC)
SYN+ACK(MPC(Kc))
[EXtTCPH(MPC(Ks)) 1] \\

SYN+ACK (MPC(Ks))

\Jl
@s

Copy of the extended
TCP header returned

by server

TFO connection through converter

o < Empty TFO

SYN (TFO:t)
[Connect @s:p /

TCPOpt:TFO] \ SYN(TFO)
s
NN

SYN+ACK [ExtTCPH(TFO:sc)]
SYN+ACK (TFO:sc)

\\l
@s
@r cookie: sc

Client learns
erver cookie

Empty TFO option

TFO connection through converter

second connection to server
@t

SYN (TFO:t)
[Connect @s:p

TCPOpt:TFO:sc] |
Data SYN(TFO:sc) Data

) AYNJ’ACK] SYN+ACK

Server recognises
cookie sc and
accepts data

About extensibility
 Two dimensions were considered in the design

— Extensibility of the Converter protocol

* Version number and TLV format ensure that the protocol
can be extended for different use cases

— Evolution of TCP

e Converter protocol was designed with MPTCP in mind, but
other TCP extensions could benefit from it as well

* Client can detect which TCP options are supported by the
server and decide to bypass the converter

Criterias

Main criterias (email from Phil/Yoshi)

No changes to MPTCP (RFC6824bis)
— Converter uses application layer protocol leveraging TFO

Proxy is simple to operate and deploy
— Converter uses reserved service name/port

A session can be initiated from either end
The set-up time is minimized
— O-RTT leveraing TFO
minimise the amount of overhead on data
— TLV messages appear only in SYN
solution needs to work if end to end encryption is in use

Criterias

* Criteria specific to solutions for the single-ended
Proxy scenario:
— the proxy is unlikely to be on both default paths
» Converter uses reserved service name/port
— clarify whether the proxy simply forwards

e Converter terminates TCP connections

— allows hosts to have traffic that doesn’t get proxied
 Client can bypass converter (policies or if server supports)

— end host and proxy need to authenticate
* Not in draft-00 but can be added as new TLV messages

Conclusion

* New design takes into account comments raised
during email discussions

— Application level protocol
 Service name/port to be reserved by IANA

— Provides O-RTT using TFO
— Client can bypass converter if server supports option

* We request WG adoption for charter item

— Finally, the working group will explore whether an
MPTCP-aware middlebox would be useful, where at
least one end host is MPTCP-enabled.

Backup slides

Fixed Header

* Sent by client and converter

Length of all
TLV messages in
blocks of 32 bits

Current version=1

The Connect TLV

IPv6 address

Server Port |

e +
| TCPOpt type | TCPOpt Length | Value (opt) | |
e T R T -
| |
R T LT T T LT +

The Extended TCP Header TLV

Fommm e R R e -
| Type | Length | Reserved I
Fommm - e T T e +
| Returned Extended TCP header I
| e |
e el e +

Copy of the Extended
TCP header returned
by server in SYN+ACK

Bootstrap procedure

@t
Converter
cookie
SYN (TFO)
[Bootstrap]

A+ACK (TFO:t) [Supported TCP Options(MPTCP)]

@s

TCP Extensions
supported by Converter

Bootstrap

_______________ e T e T e e e e e e
Type | Length | Zero

_______________ e

_______________ R e
Type | Length | Reserved

_______________ e e e
Kind #1 | Kind #2 |

_______________ T e

_______________ Py Sy S

| Kind #n | Zero

