SOCKS Protocol Version 6
draft-olteanu-intarea-socks-6-00

Vladimir Olteanu, Dragoș Niculescu
University Politehnica of Bucharest
Motivation

- SOCKSv5 makes liberal use of round trips
 - Authentication method negotiation
 - Authentication
 - Remote connection establishment

- 0-RTT authentication possible after pre-negotiation

- Hot use case: “Bond” 3G/4G/LTE and WiFi using MPTCP
 - Little to no MPTCP support on the server side
 - Use proxy to convert to regular TCP
 - Mobile networks have high latency
Improvements over v5

- **Client sends as much information as possible upfront**
 - Optimistic, doesn’t wait for authentication to conclude
 - Method advertisement, server address, some application data
- **Client can specify if it wants TFO on the proxy-server leg**
- **Extensible: TCP-like options**
- **0-RTT authentication support via options**
SOCKSv5 vs. SOCKSv6 [1/2]
SOCKSv5 vs. SOCKSv6 [2/2]

- Can include authentication data in the request on subsequent connections
SOCKSv6 Request

- Includes auth. method advertisement
- Includes initial data
- Options in TLV format
 - May include authentication data
SOCKSv6 Authentication Reply

Version	Type	Method	Number of	Options
Major	Minor			Options
-------	-------	------+--------+-----------	----------	
1	1	1	1	Variable
-------	-------	------+--------+-----------	----------	

- Informs client whether more authentication is needed or not
 - If 0-RTT authentication failed: selects which authentication method to use
 - If 0-RTT authentication succeeded: informs client which method was used
SOCKSv6 Operation Reply

- Reply code indicates whether the connection was successful or not (and why: RST, timeout, etc.)
- Initial data offset lets the proxy avoid buffering data while the client authenticates
SOCKSv6 in action: no TFO anywhere

- Data reply in 2 RTTs
 - No worse than vanilla TCP
SOCKSv6 in action: TFO on proxy-client leg

- Data reply in 1 end-to-end RTT + 1 proxy-to-server RTT
 - **Negative overhead**: We save 1 client-to-proxy RTT, assuming the proxy is on path
 - Highly advantageous for mobile networks, where layer 2 has high delay
SOCKSv6 in action: TFO everywhere

- Data reply in 1 RTT
 - Same as when contacting the server directly
Multiple proxies

- Can run SOCKS over SOCKS (can be stacked indefinitely)
 - Client is responsible for authenticating with each proxy
 - Data reply in 2 RTTs w/o any TFO, 1 RTT with TFO on all legs
- ...or just configure the first proxy to go via a second proxy
Implementation

• Early prototype (some differences from draft)
 - Message library: https://github.com/45G/socks105
 - Proxifier + proxy:
 https://github.com/45G/shadowsocks-libev
Comparison to MPTCP-PM and 0-RTT TCP converters

- draft-boucadair-mptcp-plain-mode-10
- draft-bonaventure-mptcp-converters-00

Similarity: No control data aside from initial exchange

Different starting point: purely layer 5 protocol
- All signaling is done using TCP data
- TFO/SYN data not required, but highly beneficial
- Middlebox doesn’t kill TCP => middlebox doesn’t kill SOCKS