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Why do we propose this?

Current implementations (e.g., Linux one) opens subflows on all

available interfaces upon connection establishment
— Great for bandwidth aggregation
But Make-Before-Break is sometimes useless

e Connection finished before establishment of additional
subflows
e Application not requiring lot of capacity

e But rather low latency...
e ...and seamless network handover

Useless subflows waste network/energy resources



The Smartphone Usecase

Typically wants to remain on the WiFi if good

e Only create cellular subflows if bad/no WiFi
e Or if traffic actually requires large bandwidth
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Proposing a Break-Before-Make Approach

We propose three mechanisms for the smartphone usecase

e "Global Scheduling": server following client’s choices
e "Multipath TCP Oracle": detecting bad performing subflows

¢ "Immediate Reinjections'': fast subflow creation

Only discussing the last one here, as it affects interoperability



Limiting Handover Delay

The backup (cellular) path creation is delayed

e Nice from a energy consumption point of view...
e ...but incurs larger app perceived latency in mobility cases

e Reactive approach: need to detect first bad network

Furthermore, additional Multipath TCP path creation takes time...



Towards Fast Establishment of Additional Subflows
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Figure 1: Normal JOIN.
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Quantifying Latency Gains (Request/Response — Mininet Setup)
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Figure 3: Latency gain between Fast and Normal Joins depending on

the request size.

e Saving at least 1 RTT
e Saving 2 RTTs if request size < MSS



Defining New Multipath TCP Options

Two new proposed options

e FAST_JOIN_OUT
e When the client has data to send
e FAST_JOIN_IN
e When the client has no data to send

e But knows that main path(s) failed
e And the server might still have data to send (e.g., middle of
bulk download)



FAST_JOIN_OUT Option Format — Initial SYN

1 2 3
01234567890123456789012345678901
Fmm pomm o T T e S +
[ Kind | Length |Subtypelrsv|E|B|  Address ID |
Fmmm o o T T e +

| Receiver’s Token (4 bytes)

| Sender’s Truncated HMAC (4 bytes)
+-—- + ——+

| Data-Level Length (2 bytes) |
+-—- -—- -—+

With HMACcs(DSN, token)



FAST_JOIN_OUT Option Format — SYN/ACK

1 2

3

01234567890123456789012345678901

+——

P RO T T S
+ +=-+—-+-+-+

| Kind
+___

+ — +

|
| Sender’s Truncated HMAC (8 bytes)
|

F——= e

| Data ACK (4 or 8 bytes, depending on flags)
+___

With HMACsc(DataACK, DSN)

——+

Length |Subtypelrsv|EIB|  Address ID |

—-——+
|
|
|

-———+

——+



FAST_JOIN_IN Option Format — Initial SYN

1 2 3
01234567890123456789012345678901
+-—- + + +—t—t—+—+ ——+
| Kind | Length |Subtypelrsv|E|B|  Address ID |
+-—- + + +—t—t—+—+ ——+
| Receiver’s Token (4 bytes) |
+-—- ——+
| Data ACK (4 or 8 bytes, depending on flags) |
+-—- -—- ——+
| |
| Sender’s Truncated HMAC (8 bytes) |
| |
+-—- -—- -—- ——+

With HMACcs(DataACK, token)
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FAST_JOIN_IN Option Format — SYN/ACK

1 2 3
01234567890123456789012345678901
+-—- + + +—t—t—+—+ ——+
| Kind | Length |Subtypelrsv|E|B|  Address ID |
+-—- + + +—t—t—+—+ ——+
| Receiver’s Token (4 bytes) |
+-—- -— ——+
| |
| Sender’s Truncated HMAC (8 bytes) |
| |
+-—- -—- -—- ——+
| Data sequence number (4 or 8 bytes, depending on flags) |
+-—- -—- -—- ——+

With HMACsc(DSN, DataACK)
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Possible Security Considerations

e Shortened HMAC size
e Try to save as much TCP option space as possible
e SYN replay attacks

e Prevent more than 1 subflow creation with a given DSN/Data
ACK
e Limit number of fast created subflows per connection
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To Summarize

Tuning Multipath TCP for smartphone

e Cellular subflow consumes radio resources

e Only use cellular when needed

Applying changes at MPTCP design to suit this usecase

e Implemented in Linux MPTCP v0.91
e And in Nexus 5 (with Android 6.0.1)

— Interest in writing a draft about this?
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Thanks for your attention!

Feel free to ask questions or provide
feedback ®



