Proposal for Fast Subflow Creation

Quentin De Coninck
quentin.deconinck@uclouvain.be

Universite Catholique de Louvain
IETF 99, Prague
From "Every Millisecond Counts: Tuning Multipath TCP for Interactive Applications on Smartphones", tech. report.

http://hdl.handle.net/2078.1/185717

http://hdl.handle.net/2078.1/185717

Why do we propose this?

Current implementations (e.g., Linux one) opens subflows on all

available interfaces upon connection establishment
— Great for bandwidth aggregation
But Make-Before-Break is sometimes useless

e Connection finished before establishment of additional
subflows
e Application not requiring lot of capacity

e But rather low latency...
e ...and seamless network handover

Useless subflows waste network/energy resources

The Smartphone Usecase

Typically wants to remain on the WiFi if good

e Only create cellular subflows if bad/no WiFi
e Or if traffic actually requires large bandwidth

. WiFi et

Server

The Smartphone Usecase

Typically wants to remain on the WiFi if good

e Only create cellular subflows if bad/no WiFi
e Or if traffic actually requires large bandwidth

= g ®

SOWIFY et

Server

The Smartphone Usecase

Typically wants to remain on the WiFi if good

e Only create cellular subflows if bad/no WiFi
e Or if traffic actually requires large bandwidth

? _______ g ()

SOWIFY et

Server

Proposing a Break-Before-Make Approach

We propose three mechanisms for the smartphone usecase

e "Global Scheduling": server following client’s choices
e "Multipath TCP Oracle": detecting bad performing subflows

¢ "Immediate Reinjections'': fast subflow creation

Only discussing the last one here, as it affects interoperability

Limiting Handover Delay

The backup (cellular) path creation is delayed

e Nice from a energy consumption point of view...
e ...but incurs larger app perceived latency in mobility cases

e Reactive approach: need to detect first bad network

Furthermore, additional Multipath TCP path creation takes time...

Towards Fast Establishment of Additional Subflows

S

YN 4
4 lom1)
andom?2)

:
o e oM

SYN/AC

Ac
K+ MPJOIN(;,,"BQ)

Client
Server

Figure 1: Normal JOIN.

Towards Fast Establishment of Additional Subflows

Client

Figure 1: Normal JOIN.

Server

Client

SYN 4
P_FastT
JOINJN{(Dke" o
" OSN, hmacy)
+ daty

SYN/ACK + wmp_FAST JON. IN(DataACK pmac?’
/

—_— Ack

\

Figure 2: Fast JOIN with data.

Server

Quantifying Latency Gains (Request/Response — Mininet Setup)

7900
E£800 . . 14208

& 600 ||+ 16 KB

0 50 100 150 200 250 300 350 400
Additional path RTT [ms]

Figure 3: Latency gain between Fast and Normal Joins depending on

the request size.

e Saving at least 1 RTT
e Saving 2 RTTs if request size < MSS

Defining New Multipath TCP Options

Two new proposed options

e FAST_JOIN_OUT
e When the client has data to send
e FAST_JOIN_IN
e When the client has no data to send

e But knows that main path(s) failed
e And the server might still have data to send (e.g., middle of
bulk download)

FAST_JOIN_OUT Option Format — Initial SYN

1 2 3
01234567890123456789012345678901
Fmm pomm o T T e S +
[Kind | Length |Subtypelrsv|E|B| Address ID |
Fmmm o o T T e +

| Receiver’s Token (4 bytes)

| Sender’s Truncated HMAC (4 bytes)
+-—- + ——+

| Data-Level Length (2 bytes) |
+-—- -—- -—+

With HMACcs(DSN, token)

FAST_JOIN_OUT Option Format — SYN/ACK

1 2

3

01234567890123456789012345678901

+——

P RO T T S
+ +=-+—-+-+-+

| Kind
+___

+ — +

|
| Sender’s Truncated HMAC (8 bytes)
|

F——= e

| Data ACK (4 or 8 bytes, depending on flags)
+___

With HMACsc(DataACK, DSN)

——+

Length |Subtypelrsv|EIB| Address ID |

—-——+
|
|
|

-———+

——+

FAST_JOIN_IN Option Format — Initial SYN

1 2 3
01234567890123456789012345678901
+-—- + + +—t—t—+—+ ——+
| Kind | Length |Subtypelrsv|E|B| Address ID |
+-—- + + +—t—t—+—+ ——+
| Receiver’s Token (4 bytes) |
+-—- ——+
| Data ACK (4 or 8 bytes, depending on flags) |
+-—- -—- ——+
| |
| Sender’s Truncated HMAC (8 bytes) |
| |
+-—- -—- -—- ——+

With HMACcs(DataACK, token)

10

FAST_JOIN_IN Option Format — SYN/ACK

1 2 3
01234567890123456789012345678901
+-—- + + +—t—t—+—+ ——+
| Kind | Length |Subtypelrsv|E|B| Address ID |
+-—- + + +—t—t—+—+ ——+
| Receiver’s Token (4 bytes) |
+-—- -— ——+
| |
| Sender’s Truncated HMAC (8 bytes) |
| |
+-—- -—- -—- ——+
| Data sequence number (4 or 8 bytes, depending on flags) |
+-—- -—- -—- ——+

With HMACsc(DSN, DataACK)

11

Possible Security Considerations

e Shortened HMAC size
e Try to save as much TCP option space as possible
e SYN replay attacks

e Prevent more than 1 subflow creation with a given DSN/Data
ACK
e Limit number of fast created subflows per connection

12

To Summarize

Tuning Multipath TCP for smartphone

e Cellular subflow consumes radio resources

e Only use cellular when needed

Applying changes at MPTCP design to suit this usecase

e Implemented in Linux MPTCP v0.91
e And in Nexus 5 (with Android 6.0.1)

— Interest in writing a draft about this?

13

Thanks for your attention!

Feel free to ask questions or provide
feedback ®

