
Updates to NMDA datastore
architecture draft

Rob Wilton (Cisco), on behalf of NMDA authors

rwilton@cisco.com

IETF 99, Prague, Netmod WG

1

draft-ietf-netmod-revised-datastores-03

mailto:rwilton@cisco.com

1 slide reminder of draft:
• Operator requirement for devices to clearly differentiate

between:
• What it is being asked to do – i.e. the intended configuration

• What it is actually doing – i.e. operational state, including the applied
configuration.

• Different solutions to this problem has been evaluated by IETF.

• The IETF solution defines a new datastore for operational
state:

• This has implications on the structure of YANG models to be simplified
and optimized for use with NMDA.

• Also replaces the existing ‘broken’ NETCONF GET operation.

• NETCONF/RESTCONF additions to support the operational datastore.

2

Canonical datastores picture:
 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 | // configuration transformations,
 | // e.g., removal of "inactive"
 | // nodes, expansion of templates
 v
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 | // changes applied, subject to
 | // local factors, e.g., missing
 | // resources, delays
 |
 | +-------- learned configuration
 dynamic | +-------- system configuration
 datastores -----+ | +-------- default configuration
 | | |
 v v v
 +---------------+
 | <operational> | <-- system state
 | (ct + cf, ro) |
 +---------------+

3

Summary of what has changed
(since -01, presented at Chicago)

1. Improved the definitions of configuration and
state.
Pulled in, and clarified, definitions of existing
datastores currently defined in NETCONF RFC.

2. Further clarification on the semantics of
<operational>.

3. Refinements of origin meta-data.

4. Clarified xpath usage in NMDA datastores.

4

(1) Refinement of definitions
• We have worked hard to improve the definitions of

configuration and state
• Defined “conventional configuration datastores”

• Added learned configuration

• Got rid of the “static configuration” term

• Pulled in definitions for startup, candidate, and running
datastores:

• Aims to become the definitive reference for these.

• Be more explicit on their exact semantics.

• Please review these definitions carefully for correctness
and completeness

5

Refinement of definitions,
“configuration”:
• Updated based on feedback on the list:

“Data that is required to get a device from its initial
default state into a desired operational state. This
data is modelled in YANG using "config true" nodes.
Configuration can originate from different sources.”.

• Alternative way of thinking of this: “config: true
means that the node could be configured via
conventional datastores.

6

Refinement of definitions,
“learned configuration”:
“Configuration that has been learned via protocol
interactions with other systems that is not
conventional or dynamic configuration”.

• E.g. if the operational state for a config true YANG
node was acquired from BGP then that is “learned
configuration”.

• Open issue:
• Can the “learned” origin also apply to state nodes?

7

(2) Refined operational
datastore definition:
• Clarified how defaults work in <operational>:

“Requests to retrieve nodes from <operational> always
return the value in use if the node exists, regardless of any
default value specified in the YANG module. If no value is
returned for a given node, then this implies that the node
is not used by the device.”

• However, we probably still need to clarify what “in
use” means:

Trying to strike the right balance between being explicit
(good) and not returning too much “noise” data (bad).

8

(3) Refinement of origin meta-
data:
• Origin meta-data indicates where a data value has

come from.

• Applies to all YANG nodes.

• Currently focus is on <operational>, but could be
used in other datastores:

E.g. intended, or dynamic datastores

• Our intent is that it is optional to implement.

9

(3) Origin meta-data identities:

1. Intended – from intended datastore

2. Dynamic – from a dynamic datastore (except
derived identities)

3. System – system configuration or system state
(most prevelant for config false)

4. Learned – learned from a peer device

5. Default – default value from the schema.

6. Unknown – origin is unknown

10

(4) Refinement to xpath context

• The xpath expression for instance data in
<operational> will resolve to <operational>.

• Xpath expressions for configuration in configuration
datastores continues to resolve as before, i.e. the
datastore the instance data resides in.

• Input/output parameters for notifications, RPCs,
and action statements are evaluated in the context
of <operational>.

• The notifications, RPCs, actions could act on different
datastores.

11

Open issues

1. Can “learned” origin apply to config false nodes?

2. Define “in use” nodes for <operational>

3. Should guidelines be in the body, and are they
normative text?

• Issues above are quite minor, so ready for WG LC?

12

	Slide 1
	1 slide reminder of draft:
	Canonical datastores picture:
	Summary of what has changed (since -01, presented at Chicago)
	(1) Refinement of definitions
	Refinement of definitions, “configuration”:
	Refinement of definitions, “learned configuration”:
	(2) Refined operational datastore definition:
	(3) Refinement of origin meta-data:
	(3) Origin meta-data identities:
	(4) Refinement to xpath context
	Open issues

