#### **Frame Context Selection**

Thomas Daede tdaede@mozilla.com

### Requirements for Temporal Scalability

- It should be possible to determine and control which previously coded frames are dependencies of the current frame
  - E.g., allow skipping every other frame

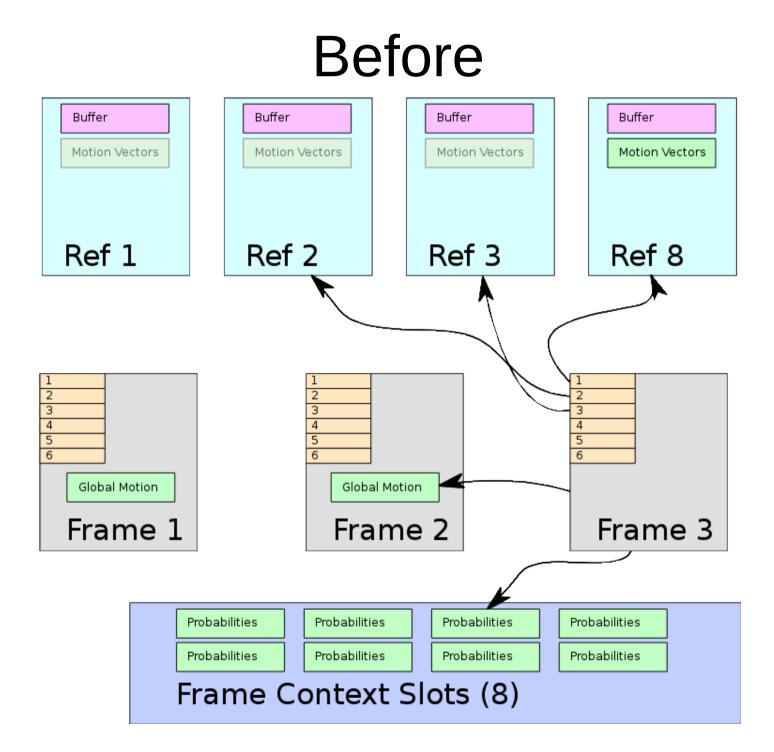
### **Requirements for Error Resilience**

- It should be possible to determine if the decoder is missing a frame required for decoding
  - This allows retransmission or dropping of the frame
  - Allows a decoder that never shows a broken frame

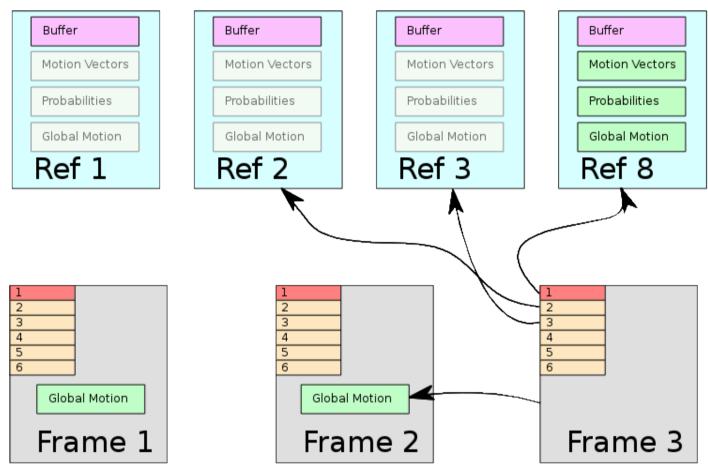
#### VP9

- Reference frame dependencies
  - Implicitly or explicitly signaled with picture IDs in RTP mapping
  - Up to three allowed per frame (from pool of 8)
- Frame contexts (probabilities)
  - Stores probabilities that are backwards-adapted based on data from previous frames
  - Decoder maintains four independent sets
  - Each frame signals which one to use
    - Optionally writes back to the slot it read from
  - Choice uncorrelated with references or picture IDs

### **Problems with Frame Contexts**


- If you lose a frame, you don't know which slot it updated
  - You no longer know if you can decode any frame
- The last frame to update the slot you're using might not be one of your reference frames
  - Frame contexts introduce potential hidden fourth frame dependency (this is surprising)
  - RTP mapping only signals three picture IDs (could fix)
- You can't fork probabilities and evolve them independently
  - Every layer pays cost of re-learning probabilities

### AV1


- Reference frame dependencies
  - Explicitly signaled and coded with frame IDs in codec payload
  - Up to six allowed per frame (from pool of 8)
- Probabilities
  - Currently same as VP9, but expanded to 8 slots
- Motion vectors for temporal MV prediction
  - Always from last coded frame
  - Fixed up by tempmv\_signaling proposal
- Global motion data
  - Coded as deltas relative to last coded frame

### Proposal

• Make all dependencies between frames track with reference frame structure



#### After



### Details

- Remove frame context slots
- Remove all syntax elements for saving and restoring frame contexts
- Instead, always save frame context with reference buffers
  - When storing a reference frame, store updated probabilities, temporal MVs, etc., too
- No more syntax to reset frame contexts
  - Implicit on a keyframe

### Complexities

- Interaction between reference number and function
  - In current encoder, first reference is always last frame from same layer
  - Need to re-order reference list to use probabilities from long-term reference (golden frame), alt-ref, etc.
- Using a previous frame context for intra-only frames
  Currently not supported (same as VP9)
- Using probabilities from a non-reference frame
  - No longer supported
  - With up to 6 of 8 references per frame, impact seems low

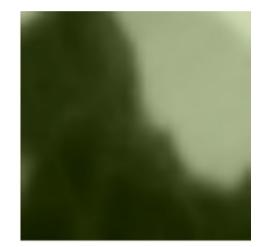
### TODO

- Still some things to move to frame context
  - Global motion
  - Frame size prediction

#### Chroma from Luma

Luc Trudeau (luc@trud.ca) David Michael Barr (b@rr-dav.id.au)

### New Update to CfL Proposal


- Current evolution of draft-egge-netvc-cfl
  - A lot has changed
- **Complementary to** draft-midtskogennetvc-chromapred

### What is Chroma from Luma?

• Exploits *local* correlation between color planes



Original



Reconstructed luma + chroma DC prediction (SSE: 315,364)

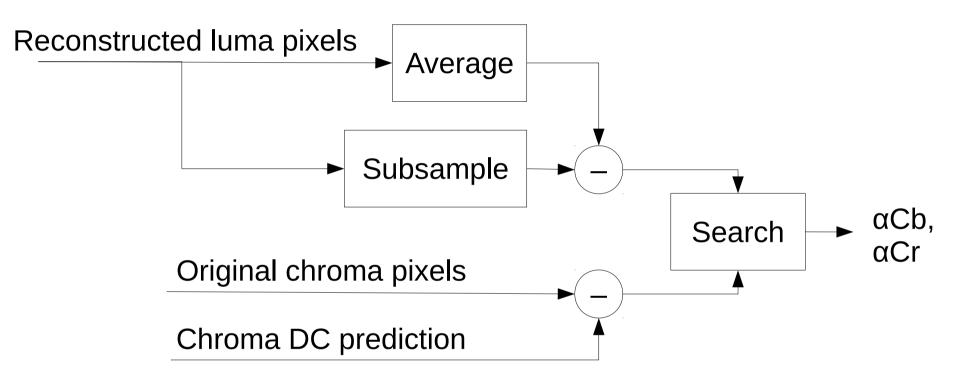


Reconstructed luma + CfL linear prediction  $\alpha = <-0.25, -0.25>$ (SSE: 116,884)

### Adapting CfL for AV1

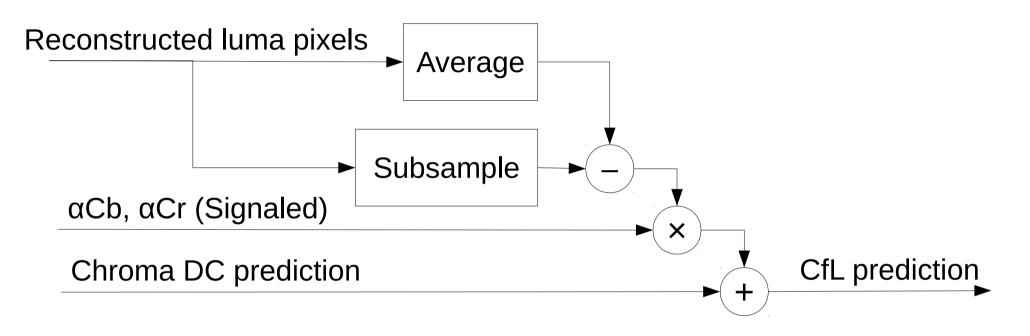
- Daala CfL predicted coefficients directly
- Hard to do frequency-domain processing in AV1
  - Up to 16 different transform types
  - Luma transform type may not match chroma type
  - Luma transform *size* may not match chroma size
    - Could handle this for the DCT
    - Hard to do for all transform type combinations
- Lesson from Daala
  - Implicit model building is not very good
  - Okay when it works, can be very bad when it doesn't

### Proposed vs. Prior CfLs


|                       | LM Mode <sup>1</sup>     | Thor CfL <sup>2</sup> | Daala CfL <sup>3</sup> | Proposed                   |
|-----------------------|--------------------------|-----------------------|------------------------|----------------------------|
| Prediction Domain     | Spatial                  | Spatial               | Frequency              | Spatial                    |
| Bitstream Signaling   | No                       | No                    | Sign bit,<br>PVQ gain  | Polar index                |
| Activation Mechanism  | LM Mode<br>(4×4 and 8×8) | Threshold             | Signaled per band      | CFL_PRED<br>(UV-only mode) |
| Requires PVQ          | No                       | No                    | Yes                    | No                         |
| Encoder Model Fitting | Yes                      | Yes                   | Via PVQ                | Search                     |
| Decoder Model Fitting | Yes                      | Yes                   | No                     | No                         |

#### 1. JCTVC-E266 (Chen et al.)

2. draft-midtskogen-netvc-chromapred


3. draft-egge-netvc-cfl

### CfL: Encoder Side

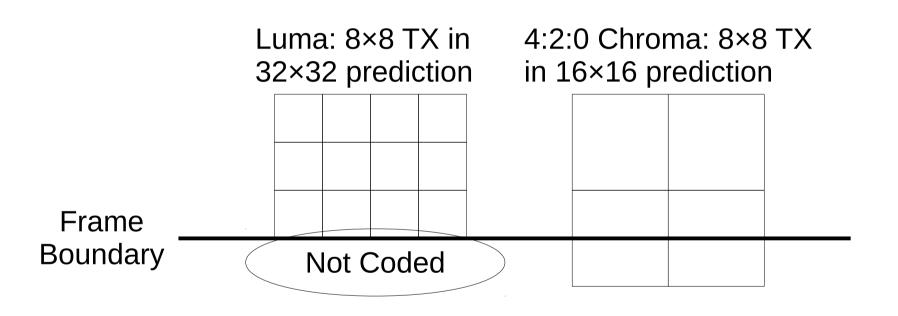


- Luma average computed over transform block
  - Minimizes luma buffering in decoder
- Chroma DC computed over whole prediction block
  - Simplifies encoder search

### CfL: Decoder Side



- Luma average computed over transform block
  - Minimizes luma buffering in decoder
- Chroma DC computed over whole prediction block
  - Simplifies encoder search


### Complications (1)

- Sub-8×8 block sizes for 4:2:0 (and 4:2:2, 4:4:0)
  - Chroma uses one 4×4 transform with mode information from *bottom right*
    - Chroma is intra if bottom-right luma is intra
  - Must buffer luma from *inter* blocks above, left
- Chroma DC prediction for non-square blocks
  - Number of above + left pixels not a power of two
  - Average requires division (can implement with LUT)
  - AV1 adding rectangular transforms with rectangular intra prediction, so not a CfL-specific problem

## Complications (2)

- Boundary handling
  - Frame size rounded up to nearest multiple of 8
  - Intra transform blocks completely outside this region are *not coded*
  - Chroma transform blocks may cover larger area than luma

### Boundary Handling: Example




- Use simple extrapolation to recover missing luma pixels
- Also complicates DC prediction (not CfL-specific)

#### Outdated Example: AV1



205\_-\_Vallée\_de\_Colca\_Panorama\_-\_Juin\_2010\_-\_5\_de\_6.y4m (subset1) QP = 55, PSNR Cr = 37.26 dB Analyzer link: https://goo.gl/69N6LC

#### Outdated Example: AV1+CfL



205\_-\_Vallée\_de\_Colca\_Panorama\_-\_Juin\_2010\_-\_5\_de\_6.y4m (subset1) QP = 55, PSNR Cr = 38.58 dB Analyzer link: https://goo.gl/69N6LC

#### Latest Results

• AWCY BD-rate results on subset1 (still images)

| PSNR                                                  | PSNR Cb  | PSNR Cr  | PSNR HVS | SSIM   | MS SSIM | <b>CIEDE 2000</b> |  |
|-------------------------------------------------------|----------|----------|----------|--------|---------|-------------------|--|
| 0.2948                                                | -14.8567 | -12.7782 | 0.5817   | 0.5682 | 0.5886  | -5.0903           |  |
| reorder@2017-07-07T15:41:21.181Z →                    |          |          |          |        |         |                   |  |
| cfl-mode-uniform-alpha-it1-20@2017-07-13T13:13:50.456 |          |          |          |        |         |                   |  |

- Working on adjusting encoder's luma-chroma balance
  - Currently different parts of the encoder use different weights

# Questions?